Wave Energy Coastal Waves Primer

Similar documents
Airy Wave Theory 1: Wave Length and Celerity

Waves. G. Cowles. General Physical Oceanography MAR 555. School for Marine Sciences and Technology Umass-Dartmouth

Surface Waves NOAA Tech Refresh 20 Jan 2012 Kipp Shearman, OSU

Airy Wave Theory 2: Wave Orbitals and Energy. Compilation of Airy Equations

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted

Wave Propagation and Shoaling

CVEN Computer Applications in Engineering and Construction. Programming Assignment #4 Analysis of Wave Data Using Root-Finding Methods

Sea State Analysis. Topics. Module 7 Sea State Analysis 2/22/2016. CE A676 Coastal Engineering Orson P. Smith, PE, Ph.D.

Modelling and Simulation of Environmental Disturbances

SUPERGEN Wind Wind Energy Technology Rogue Waves and their effects on Offshore Wind Foundations

COMPARISON OF DEEP-WATER ADCP AND NDBC BUOY MEASUREMENTS TO HINDCAST PARAMETERS. William R. Dally and Daniel A. Osiecki

CHAPTER 6 DISCUSSION ON WAVE PREDICTION METHODS

Swell and Wave Forecasting

WAVE MECHANICS FOR OCEAN ENGINEERING

High-Resolution Measurement-Based Phase-Resolved Prediction of Ocean Wavefields

The inner shelf is a friction-dominated realm where surface and bottom boundary layers overlap.

Ocean Wave Forecasting

Lesson 14: Simple harmonic motion, Waves (Sections )

page - Laboratory Exercise #5 Shoreline Processes

Air-Sea Interaction Spar Buoy Systems

Swell and Wave Forecasting

Determination Of Nearshore Wave Conditions And Bathymetry From X-Band Radar Systems

Coastal Wave Energy Dissipation: Observations and Modeling

What is a wave? Even here the wave more or less keeps it s shape and travelled at a constant speed. YouTube. mexicanwave.mov

MAR 110 LECTURE #14 Ocean Waves

OCEAN WAVES NAME. I. Introduction

SEASONDE DETECTION OF TSUNAMI WAVES

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK

Comparison of data and model predictions of current, wave and radar cross-section modulation by seabed sand waves

Chapter 8 Wave climate and energy dissipation near Santa Cruz Island, California

Undertow - Zonation of Flow in Broken Wave Bores

Garrett McNamara, Portugal, 30 Jan What is a wave?

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

El Niño Southern Oscillation. Pressure systems over Darwin Australia and Tahiti Oscillate Typically occurs every 4-7 years

Wave Generation. Chapter Wave Generation

EVALUATION OF ENVISAT ASAR WAVE MODE RETRIEVAL ALGORITHMS FOR SEA-STATE FORECASTING AND WAVE CLIMATE ASSESSMENT

OECS Regional Engineering Workshop September 29 October 3, 2014

Beach Wizard: Development of an Operational Nowcast, Short-Term Forecast System for Nearshore Hydrodynamics and Bathymetric Evolution

EMPIRICAL FORMULA OF DISPERSION RELATION OF WAVES IN SEA ICE

PUV Wave Directional Spectra How PUV Wave Analysis Works

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Wave Energy Atlas in Vietnam

Determination of Nearshore Wave Conditions and Bathymetry from X-Band Radar Systems

Metocean criteria for fatigue assessment. Rafael V. Schiller 5th COPEDI Seminar, Oct 8th 2014.

Oceans - Laboratory 12

Waves. Types of Waves. Parts of a wave. Insert wind_wave.wmv. Shark attack

A study of advection of short wind waves by long waves from surface slope images

Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy

3. Observed initial growth of short waves from radar measurements in tanks (Larson and Wright, 1975). The dependence of the exponential amplification

EFFECTS OF WAVE, TIDAL CURRENT AND OCEAN CURRENT COEXISTENCE ON THE WAVE AND CURRENT PREDICTIONS IN THE TSUGARU STRAIT

An experimental study of internal wave generation through evanescent regions

Offshore Wind Turbine monopile in 50 year storm conditions

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

Numerical modeling of refraction and diffraction

WAVE BREAKING AND DISSIPATION IN THE NEARSHORE

PHYSICAL AND NUMERICAL MODELLING OF WAVE FIELD IN FRONT OF THE CONTAINER TERMINAL PEAR - PORT OF RIJEKA (ADRIATIC SEA)

Nearshore waveclimate

Currents measurements in the coast of Montevideo, Uruguay

Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected)

Chapter 10 Lecture Outline. The Restless Oceans

MAR 110 LECTURE #20 Storm-Generated Waves & Rogue Waves

THE WAVE CLIMATE IN THE BELGIAN COASTAL ZONE

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET

Gravity wave effects on the calibration uncertainty of hydrometric current meters

Wave-Current Interaction in Coastal Inlets and River Mouths

Inter-comparison of wave measurement by accelerometer and GPS wave buoy in shallow water off Cuddalore, east coast of India

Appendix D: SWAN Wave Modelling

Energy from seas and oceans

Undertow - Zonation of Flow in Broken Wave Bores

Waves Part II. non-dispersive (C g =C)

Surface Wave Processes on the Continental Shelf and Beach

Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering

Gravity waves in stable atmospheric boundary layers

WAVE FORECASTING FOR OFFSHORE WIND FARMS

An Atlas of Oceanic Internal Solitary Waves (February 2004) by Global Ocean Associates Prepared for Office of Naval Research Code 322 PO

Pathways Interns: Annika O Dea, Ian Conery, Andrea Albright

Salmon: Introduction to ocean waves

WaMoS II Wave Monitoring System

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Ocean Waves and Surf Forecasting: Wave Climate and Forecasting

ABNORMALLY HIGH STORM WAVES OBSERVED ON THE EAST COAST OF KOREA

Chapter 22, Section 1 - Ocean Currents. Section Objectives

CHAPTER 10 WAVES. Section 10.1 Types of Waves

Prediction of Nearshore Waves and Currents: Model Sensitivity, Confidence and Assimilation

g L Agenda Chapter 13 Problem 28 Equations of Motion for SHM: What if we have friction or drag? Driven Oscillations; Resonance 4/30/14 k m f = 1 2π

Wave behaviour in the inner surf zone

Coastal & Marine Environment. Chapter. Wave Transformation. Mazen Abualtayef Assistant Prof., IUG, Palestine

Chapter 16. Waves-I Types of Waves

INTRODUCTION TO COASTAL ENGINEERING AND MANAGEMENT

Physics Mechanics

Testing TELEMAC-2D suitability for tsunami propagation from source to near shore

PROC. ITB Eng. Science Vol. 36 B, No. 2, 2004,

Wave Forces on a Moored Vessel from Numerical Wave Model Results

DUXBURY WAVE MODELING STUDY

Refined Source Terms in WAVEWATCH III with Wave Breaking and Sea Spray Forecasts

INTRODUCTION TO WAVES. Dr. Watchara Liewrian

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens

Nearshore Placed Mound Physical Model Experiment

Parts of Longitudinal Waves A compression

Transcription:

Wave Energy Coastal Waves Primer (R. Budd) NIWA Internal Project Report: October 2004 NIWA Project: IRL05301

Wave Energy Coastal Waves Primer Murray Smith Craig Stevens Richard Gorman Prepared for FRST Wave Energy Project Group NIWA Internal Report: October 2004 NIWA Project: IRL05301 National Institute of Water & Atmospheric Research Ltd 301 Evans Bay Parade, Greta Point, Wellington Private Bag 14901, Kilbirnie, Wellington, New Zealand Phone +64-4-386 0300, Fax +64-4-386 0574 www.niwa.co.nz All rights reserved. This publication may not be reproduced or copied in any form without the permission of the client. Such permission is to be given only in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system.

Contents 1. Introduction 1 2. Linear theory Kinematics: 1 2.1 Wave classification 1 2.2 Velocity 2 3. Energy 4 4. Real waves 5 5. WaveSim 7 6. Wave Loading on Structures 8 7. Wave energy absorption 9 8. Measuring waves 10 9. Modeling Waves 10 10. Wave Resources 12 11. Bibliography/Links 15 11.1 Links 15 11.2 Literature 15 12. Brief Glossary: 17

1. Introduction Any wave energy technology development requires a solid understanding of wave theory and practice. Here we summarise some important points relevant to the project. 2. Linear theory Kinematics: 2.1 Wave classification It is convenient to classify waves as deep, intermediate (transitional) or shallow. We do this since deep and shallow waves exhibit quite different properties. This is shown for example a) in the way the water motion (and energy) is attenuated with depth b) the way the wave speed depends on wave period (or frequency). Table 1: Wave classification, based on the ratio of depth (h) to wavelength (L), or kh where the wavenumber, k, is 2π/L: Shallow h/l < 1/20 kh < π/10 Intermediate 1/20 < h/l < ½ π /10 < kh < π Deep ½ < h/l < π < kh < Table 2: Representative values of key wave parameters for typical coastal waves that we are likely to encounter, propagating in water depths, h. These are period, T, wavelength, L, and phase velocity, C: h (m) T (s) L C h/l Classification Young waves, small 10 3 s 14 m 4.7 m/s.71 Deep fetch (harbour) Young waves, coastal 5 5 s 30 m 6.1 m/s.17 Intermediate Swell on coastal shore 3 12 s 64 m 5.3 m/s.05 Shallow Swell on open ocean 300 12 s 225 m 18.7 m/s 1.3 Deep Note that young waves generated in a shallow harbour can still be categorized as deep-water waves, since their short wavelengths do not feel the bottom. Wave Energy Coastal Waves Primer 1

2.2 Velocity We need to also distinguish between the phase velocity of the wave (i.e. the speed the wave form propagates), and the orbital velocity (i.e. the velocity that water particles or tracers travel). In deep water the orbital velocity ideally traces out circular motion, while in shallow water this becomes increasingly elliptical with a decreasing amount of vertical excursion. Ideally for small amplitude waves there is no net transport of water, only of energy. In reality, for finite amplitude waves, unclosed particle orbits do result in a small net migration (Stokes drift). Figure 1: Wave orbital velocities are elliptical in shallow water, circular in deep water. (From Dean & Dalrymple, 1984) The schematic in Figure 1 illustrates the shallow-water elliptical motion in contrast to deep-water circular motion. For deep-water waves, the velocity (and pressure) is attenuated exponentially with depth. Thus most of the wave energy is confined to surface layers. In contrast for shallow water waves, the horizontal excursion is the same at all depths beneath the wave, but the total vertical excursion increases linearly from zero at the bed, to H (the wave height) at the surface. One of the other important properties of water waves is that they are dispersive, i.e. the speed that they travel depends on their wavelength (or period), unlike nondispersive sound waves. This fact is often overlooked since we are accustomed to viewing shallow-water waves breaking on the beach which, as we will see, appear to be non-dispersive. The relationship between frequency and wavelength is given by the general dispersion relationship: ω 2 = gk tanh (kh). (1) Wave Energy Coastal Waves Primer 2

where ω is the radian frequency (ie ω = 2πf = 2π/T), g is gravitational acceleration (9.81m/s 2 ), k is the wavenumber (2π/L), h is water depth, T the wave period, and L the wavelength. This transcendental equation is usually solved iteratively (e.g. Newton method) or using a lookup table. The dispersion equation becomes simple for the two extremes of deep and shallow water: Deep water: kh, tanh (kh) 1, ω 2 = gk i.e. frequency independent of depth Shallow water: kh 0, tanh(kh) kh, ω 2 = gk 2 h. Of immediate interest is the phase velocity, c (speed of crests) and group velocity, c g (speed of energy propagation). Deep: c = ω/k = g/ ω c g = ω / k = c/2 Shallow: c = gh c g = ω / k = c. Waves slow down with decreasing depth, and in the shallow water extreme, crests travel at the same speed regardless of frequency (or wavelength). This is what we observe on a surf beach, and contrasts to deep water where fast (long wavelength) waves are continually overtaking and moving through slower (shorter) ones. Note that the frequency is always invariant (although it can be Doppler shifted by currents); it is the phase velocity and wavelength that decrease in shallower water. A practical consequence of the slowing phase velocity in shallow water is that wave crests refract to become parallel to the bathymetry. For a wave approaching the shore obliquely, those parts entering shallow water first are slowed, while deeper parts continue to catch up, thus swinging the wave crest around parallel to the depth contours and shoreline. The distribution of wave height is often treated as a random Gaussian process. However this belies the fact that there is often an underlying group structure, which is evident when time-space data is available. This structure is the wave sets familiar to surfers. The practical implication of this is that the space-time occurrence of wave breaking in deep water is not random, but structured, and in certain cases (narrow band wave spectra) is predictable. It is wave breaking that provides the strongest impact forces on structures. Wave Energy Coastal Waves Primer 3

3. Energy The energy of water waves is equally divided between a) potential energy and b) kinetic energy. The potential energy relates to the raising of water from the trough to a crest. The potential energy per unit area of a water surface raised by ς is given by E p = ½ ρ g ς 2. For a theoretical sinusoidal wave of amplitude H/2 averaged over a wave period this becomes Ep = 1/16 ρgh 2. Kinetic energy can be shown to have an equal value integrated over depth. However it can be seen in Figure 1 that the depth distribution of kinetic energy is quite different between deep and shallow water waves. The total average potential plus kinetic energy (after integrating over depth) per unit surface area is: E = 1/8 ρgh 2 regardless of depth, and the power transported per unit crest length is: P = 1/2 ρga 2 C g. More generally, when energy is distributed across a spectrum (S) of wave periods or frequencies (f) : P = ρg C g (f) S(f) df (This may depend on the distances one is integrating over). The rate that energy is transported by the waves, the energy flux, F, is: F = E C g = E (ω/k) ½ (1 + 2kh/sinh (2kh)). On large scales energy will be lost to bottom friction, but if the depth changes rapidly with respect to this scale, we can treat E as constant. One consequence of the conservation of energy is that as waves enter shallow water from depth h 1 to h 2, E 1 C g1 = E 2 C g2. Substituting for E, the wave height must increase to compensate for the decrease of group velocity: H 2 = H 1 (C g1 /C g2 ). Wave Energy Coastal Waves Primer 4

This shoaling equation tells us for example that a 10 s period wave approaching the shore from deep water will increase in amplitude by 11% by the time it reaches 5m depth, and 54% at 2m depth. Refraction is normally taken into account as well. 4. Real waves In the real world, waves are not monochromatic sine waves (see Fig. 2 below), but due to the complex forcing mechanisms, occur as a continuous wave spectrum. In addition the spectrum of waves has a directional spread so a fully resolved measurement will also specify the direction from which a wave component is travelling. Figure 2: Water surface velocities towards and away from the observer recorded using microwave radar from RV Tangaroa in 2004 showing the complex structure in time and space. Data slices are shown above and to the right of image panel. Wave Energy Coastal Waves Primer 5

Figure 3: The wave example above comes from Wellington Harbour. The top panel shows a typical water elevation times series. Typically, it is not a simple sinusoid but shows a combination of frequencies. The bottom panel shows the resulting wave spectrum. In order to define the wave parameters such as period and height, there are generally 2 approaches: (1) from the timeseries e.g. the average time between zero crossings, Tz. (2) from the spectrum. e.g. the dominant period is obtained from the peak of the spectrum, Tp. The moments of the spectrum can also be used to give the theoretical Tz. The significant wave height, Hs, is calculated from the area under the spectrum, m0. i.e. Hs =4 (m0). The spectrum in the lower panel shows an approximate f -4 fall off in wave energy from the peak. In this case of young waves, the peak frequency is 0.43 Hz (peak period 2.3s) and significant wave height, Hs = 0.30 m. Wave Energy Coastal Waves Primer 6

Figure 4: Open ocean example, from the Bay of Plenty, is more typical than the earlier harbour spectrum in that it shows mixed wind-sea and swell; the swell frequency is 0.08 Hz (period 12 sec) and the dominant sea frequency is 0.12 Hz (period ~8sec). 5. WaveSim This Matlab tool was developed to display movies of real (and artificial) wave fields. The initial distribution took Waverider data from waveriders deployed at Mokohinau Island and Mangawhai. Figure 5: WAVESIM3 still frame showing wave orbits and water surface elevation. Wave Energy Coastal Waves Primer 7

6. Wave Loading on Structures Forces on submerged wave-affected structures are well described elsewhere (e.g. Grosenbaugh, 2002) with an emphasis on gas platforms and pipeline/cable scenarios. The Figure below summarizes the relevant forces on an ideal structure, including those due to buoyancy, acceleration/inertia and drag (F b, F a, F d ). These forces act in response to the local water motion (u) which is characterized as a function of time (t) and space (x). Implicit in this is time variation where some forces (F b ) are constant as long as the structure is submerged, some are related to water velocity (F d ) and some are related to water acceleration (F a ). The forces acting on the object (and to a lesser extent on the mooring line) are transferred along the mooring as both a force (and if it has any compressive strength a bending moment). To maintain equilibrium, there must be a restorative force (F r ) and bending moment (M r ) acting at the base of the mooring. Figure 6: Dynamics showing hydrodynamics and forces on a submerged body. With respect to wave energy converter modelling we will need to determine (1) the basic shape of the structure (2) the flexibility of all mooring elements (3) the coefficients of drag and added mass for all elements. Wave Energy Coastal Waves Primer 8

Most of these properties can be derived from the literature, modelling of the combined response will need to be verified with laboratory/field validation. 7. Wave energy absorption Considering wave energy from the perspective of simply absorbing it we can look to a number of successful floating breakwater approaches that can remove around 80% of energy that could be considered wind-wave (e.g. Seymour and Hanes 1979). Figure 7: Sketch of floating breakwater http://209.196.135.250/floating_breakwater.htm The structural similarities between a floating breakwater and a NZ-style mussel farm are clear. Figure 8: Wave attenuation by a mussel farm. Energy Transmission Ratio ETR for the wave attenuation scaling analysis as a function of frequency (x-axis) and initial wave height (given in legend). From Plew et al. (2005). Wave Energy Coastal Waves Primer 9

8. Measuring waves We can classify wave measurements in two categories: a) in-situ and b) remote sensing, each with advantages and disadvantages. Table 3: Wave measurement summary. Device Sensor Advantage Disadvantages a) In-situ Wave-rider buoy Pressure sensors (e.g. DOBIE) Wave Staff Accelerometer (magnetometer) Pressure Resistance or Capacitance Suitable for longterm deployments Robust Inexpensive Suitable for longterm deployments Accurate to high frequencies Expensive to purchase and maintain Limited to shallow depths Limited to shallow depths Less robust ADV Acoustic Also measures current Moderately expensive ($40k) ADP Acoustic 3 independent measures of wave height. Measures current profile Robust at sea bed Moderately expensive b) Remote sensing Radar Doppler effect Measures over a range of distances Requires suitable site Requires operator Satellite Electromagnetic backscatter or altimeter Covers vast areas of ocean Poor spatial resolution Very poor temporal resolution Not highly accurate 9. Modeling Waves Wind generated waves can now be modeled well in open-ocean deep water. The most common community-developed model is WAM and is typically driven by meteorological analysis data. This is used in NIWA s wave hindcasts (See below). In shallower coastal water, the SWAN model is proving efficient except in particularly complicated situations e.g. variable bathymetry. Both of these models are spectral models in that they provide a statistical spectrum of wave energy. Wave growth is Wave Energy Coastal Waves Primer 10

modeled as a consequence of the imbalance between: energy advection and the source terms : wind-input, dissipation due to breaking, dissipation by bottom friction, and non-linear wave-wave interactions. Figure 9: New Zealand regional WAM wave model for a particular time. Windfields input from ECMWF reanalysis. Figure 10: Mean Hs derived from NIWA wave hindcast averaging 20 years of the above results see (Gorman et al 2003). Wave Energy Coastal Waves Primer 11

To model an individual wave, various versions of a Boussinesq model are being developed. The current challenge is to incorporate breaking effects in shallow water, with the associated current generation. For engineering applications, empirical relations are often used to predict wave heights and periods. Both wave height and period grow with fetch (distance over which the wind-forcing is acting) and duration (over which wind-forcing has been acting). The most common reference for this type of wave prediction is the US Army Corps Shore Protection Manual. Complications occur when: bathymetry is irregular, wind field is influenced by complex orography, or currents are strong. 10. Wave Resources A wave hindcast (Gorman et al. 2003; Gorman 2003) provided a wave climate offshore of a number of selected sites from 1977 to 1997. The hindcast model was driven by European Centre for Medium Range Weather Forecasting re-analysis windfields, and run on a 1.125x1.125 degree grid for the SW Pacific and Southern Ocean region. Directional spectra, saved at grid cells around the coast, have been interpolated to points on the 50m isobath and filtered to account for limited fetch to the coastline (Gorman et al. 2003). The hindcast generates 3-hourly estimates of significant wave height Hs (~2a) (Fig. 11), the frequency of the peak of the wave spectrum fp as well as a range of parameters relating to the energy flux. The Hs is the average of the highest 1/3 of the waves which is equivalent to the square root of the summed variance of the wave spectrum. It can be expected that the largest wave height within each 3 hr sample period will be about 2Hs. Figure 11: Raw hindcast data for 4 coastal-ocean sites spread around New Zealand. This represents around 58,000 data points per site. Wave Energy Coastal Waves Primer 12

The analysis provided a suite of figures to demonstrate the resource availability - these include A site map showing the approximate location A distribution of Hs occurrence statistics A distribution of peak period occurrence statistics A distribution of percentage occurrence of total omnidirectional wave energy flux occurrence statistics Monthly averages of Hs and peak Hs. The 20 year peak Hs gives an indicator for survival modelling. Event-duration scatter diagram showing the number of events exceeding a particular Hs for a given period. Figure 12: Monthly averages of Hs at four sites around New Zealand. Wave Energy Coastal Waves Primer 13

Figure 13: Significant wave height occurrence statistics for a particular site. Figure 14: Event-duration occurrences for a site for three values of Hs (2, 3 & 4 m) where the symbols show the number of events exceeding Hs continuously for that duration. Wave Energy Coastal Waves Primer 14

11. Bibliography/Links 11.1 Links Banks Peninsula Wave Rider NIWA http://www.niwa.co.nz/services/waves Ecan http://www.ecan.govt.nz/coast/wave-buoy/wave-buoy.html WAM http://www.ecmwf.int/products/data/technical/wam/representations.html Ocean Engineering University of New Hampshire: http://www.unh.edu/oe/ European Centre for Medium-Range Weather Forecasts http://www.ecmwf.int/ SWAN wave model http://fluidmechanics.tudelft.nl/swan/default.htm 11.2 Literature Barnett P.S. and E.P.M. Brown (1987). The potential for wave generation off New Zealand. 8 th Australasian Conference on Coastal and Ocean Engineering, 87/11. IE Aust, 30 Nov 4 Dec 1987, Launceston, Tasmania. Barstow, S., and R. Deo (1993). A wave energy resource climatology for the South Pacific. Proc. European Wave Energy Symposium, Edinburgh, Scotland, July '93. Brown, E.P.M. (1988). An estimate of New Zealand s wave power resource for electricity generation. Proc. 1 st Symposium of the N.Z Ocean Wave Society, pp 17-27. Brown, E.P.M. (1990). Wave Power investigations in New Zealand. IPENZ Transactions, 1990, pp173-183. Brown, E.P.M. (1990). Comparison of Ocean Wave Power calculation methods. An estimate of New Zealand s wave power resource for electricity generation. Proc. 2 nd Symposium of the N.Z Ocean Wave Society, pp 49-63 Dean, R.G. and R.A. Dalrymple 1984, Wave Mechanics for Engineers and Scientists, Englewood Cliffs: Prentice-Hall, Inc. Falnes, J. 2002 Ocean Waves and Oscillating Systems, CUP. Gorman, R.M., Bryan, K.R. and Laing, A.K. (2003). Wave hindcast for the New Zealand region - deep water wave climate. New Zealand Journal of Marine and Freshwater Research 37(3): 589-612. Wave Energy Coastal Waves Primer 15

Gorman, R.M. and Laing, A.K. (2001). Bringing wave hindcasts to the New Zealand coast. Journal of Coastal Research Special Issue 34: 30-37. Gorman, R.M. (2003) The treatment of discontinuities in computing the nonlinear energy transfer for finite-depth gravity wave spectra. Journal of Atmospheric and Oceanographic Technology, 20, 206-216. Grosenbaugh, M., S. Anderson, R. Trask, J. Gobat, W. Paul, B. Butman and R. Weller, Design and performance of a horizontal mooring for upper-ocean research, J. Atmos. Oceanic Technol., 19, pp.1376-1389, 2002. Hornstra, M.W. (1983). Wave Power a New Zealand study. M.E. Thesis, Dept of Mech. Eng., University of Auckland. 232pp. Komen, G.J., et al., 1994. Dynamics and modelling of ocean waves. Cambridge, University Press Laing, A.K. 1993. Estimates of wave height data for New Zealand waters from numerical modelling. New Zealand Journal of Marine and Freshwater Research 27: 157-175. Pickrill, R.A., and J.S.Mitchell, (1979). Ocean wave characteristics around New Zealand. New Zealand journal of marine and freshwater research, 13(4):504-520. Plew. D.; Stevens. C.; Spigel, R.;Hartstein, D. 2005. Hydrodynamic implications of large offshore mussel farms.. IEEE Journal of Oceanic Engineering, Special Issue on Open Ocean Aquaculture Engineering 30:95-108. Reid, S.J. and B. Collen (1983). Analysis of wave and wind reports from ships in the Tasman Sea and New Zealand waters. N.Z Met Service, Misc. Pub 182. Seymour R.J. and D. M. Hanes, 1979 Performance analysis of tethered float breakwaters, J. Waterway, Port, Coastal & Ocean Eng., 105, pp. 265-280. Smith, M.J.; Stevens, C.L.; Gorman, R.M.; McGregor, J.A.; Neilson, C.G. (2001) Wind-wave development across a large shallow intertidal estuary: a case study of Manukau Harbour, New Zealand. NZ Journal of Freshwater and Marine Research, 35: 985-1000. Stevens, C.L.; Hurd, C.L.; Smith, M.J. (2001). Water motion relative to subtidal kelp fronds, Limnology and Oceanography, 46(3): 668-678. WAMDI group, 1988. The WAM model - a third generation ocean wave prediction model. J. Phys. Oceanogr. 18, pp. 1775-1810 Wave Energy Coastal Waves Primer 16

12. Brief Glossary: ECMWF - European Centre for Medium-Range Weather Forecasts Frequency (f) number of crests (or troughs) passing a fixed point per second. The inverse of wave period. Period (T) time interval between two successive crests passing a fixed point Phase velocity (c) - speed that the waveform travels (L/T). Significant wave height (Hs) the most commonly used measure of wave height. It represents the height of approximately the highest third of waves. Hs = 4.0 (mo). Note that in a real sea in a three hour period you would expect to see a wave 2Hs in height. Swell - waves whose source region is very distant. As a result they have long periods (e.g. 8-12 sec) Wavelength (L) the distance between successive crests Wind-waves generated by the local wind (e.g. 5 s period) Young waves - waves which are generated when either a) waves have not had time to develop to the point where the phase velocity approaches the wind speed or b) waves have not had the distance over which to develop to the point where the phase velocity approaches the wind speed Wave Energy Coastal Waves Primer 17