Electronic Supplementary Information (ESI)

Similar documents
A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Supporting Information

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

noble-metal-free hetero-structural photocatalyst for efficient H 2

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Supporting information

Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Supporting Information for

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Supporting Information

Supplementary Material

Electronic Supplementary Information (ESI)

Supplementary Information

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Electronic Supplementary Information

Electronic Supplementary Information

Supplementary Information

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Supporting Information

Supporting Information

Electronic Supplementary Information (ESI)

Supporting Information

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Supporting Information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Supporting Information

Supporting Information

Supplementary Information

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Supporting Information

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Flexible porous coordination polymers constructed by 1,2-bis(4-pyridyl)hydrazine via solvothermal in situ reduction of 4,4 -Azopyridine

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Electronic Supporting Information (ESI)

Supporting Information

Electronic Supplementary Information

LC-MS-Guided Isolation of Insulin Secretion-promoting. Monoterpenoid Carbazole Alkaloids from Murraya

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

state asymmetric supercapacitors

Three-Dimensional Plasmonic Hydrogel Architecture: Facile Synthesis and Its Macro Scale Effective Space

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Supporting Information for

complex formation in mortar-pestle along with living cell imaging

Supporting information

Supporting Information

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supporting Information

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Supplementary Information

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

Electronic Supplementary Information

Supporting Information

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Supporting Information

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Complex Systems and Applications

Supporting Information

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

Supporting information. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation

Supporting Information

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Supporting Information

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

Highly enhanced performance of spongy graphene as oil sorbent

Electronic Supplementary Information

A tribute to Guosen Yan

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 ISSN SUPPORTING INFORMATION

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Fortunoids A C, Three Sesquiterpenoid Dimers with. Different Carbon Skeletons from Chloranthus fortunei

Supplementary Information

Bafilomycins and Odoriferous Sesquiterpenoids from Streptomyces albolongus Isolated from Elephas maximus Feces

Supporting information

RSC Advances.

Supporting information for J. Med. Chem., 1994, 37(5), , DOI: /jm00031a018

Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%

GSA Data Repository Widespread dispersal and aging of organic carbon in shal-low marginal seas Rui Bao et al. Table DR1.

Curriculum Vitae. Yu (Will) Wang

Supporting Information

A Coal Mine Multi-Point Fiber Ethylene Gas Concentration Sensor

General Information. Department of Physics, Kansas State University, 116 Cardwell Hall Manhattan, KS 66506, USA. Education

Transcription:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) An activatable fluorescent probe with an ultrafast response and large Stokes shift for live cell bioimaging of hypochlorous acid Feng Liu, Ying Tang, Yongqing Kuang, Dan Pan, Xianjun Liu, Ru-Qin Yu*, Jian-Hui Jiang* State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China * Corresponding authors. E-mail: rqyu@hnu.edu.cn; jianhuijiang@hnu.edu.cn. Tel.: 86-731-88822577; Fax: 86-731-88822872.

Table of Contents 1. Instrumentation 2. Comparison of this method and other assays 3. Structure characterizations of HPBD, HPBD-1, HPBD-2 4. Detection limit and linear range of HPBD for HOCl detection 5. Colorimetric response of HPBD to various ROS and RNS 6. Sensing mechanism study 7. MTT assay

1. Instrumentation Mass spectra (MS) were performed using an LCQ Advantage ion trap mass spectrometer from Thermo Finnigan or Agilent 1100 HPLC/MSD spectrometer. 1 H NMR and 13 C NMR spectra spectra were recorded on a Bruker DRX-400 NMR spectrometer (Bruker) using tetramethylsilane (TMS) as an internal standard. UV-vis absorption spectra were plotted using a Shimadzu UV-2450 spectrophotometer with a wavelength interval of 2 nm. Fluorescence spectra were obtained on a HORIBA Fluoromax-4 spectrofluorometer (JobinYvon, Japan) with both excitation and emission slits set to 5.0 nm. The ph was verified using a Mettler-Toledo FE20 ph meter. The fluorescence imaging of cells was performed using a confocal laser scanning microscopy (Olympus, FV-1000).

2. Comparison of this method and other assays Table S1. Comparison of this method and other assays Methods Materials Linear range Detection limit Ref. Colorimetric Method N,N -diethyl-p-phenylenediamine (DPD) 0-40 μm - 1 Electrochemical Method a commercial 2B pencil lead-based graphite sensor 0-6 ppm 0.303 μa ppm -1 cm - 2 2 Chemiluminescence Method carbon nitride quantum dots (g-cnqds) 0.02-10 μm 0.01 μm 3 Fluorescent probe Probes λ ex /λ em Sensing Detection medium and 0-5 μm 25 nm 4 (nm) moieties [probe] AC-ClO 480/576 1,8-diamino naphthalene PBS buffer (ph 10.0, 20 mm) and DMF (1/4, v/v), 5 μm nanoprobe (MTPE-M) 340/498-595 dicyanoviny l PBS buffer solutions (ph 7.4, 10 mm, containing 0-45 μm 0.47 μm 5 1% DMSO and 1 mm CTAB) 10 μm HKOCl-3 490/527 2,6- dichlorophe nol PBS solution (10 mm, ph 7.4, DMF 0.1%) 10 μm BClO 480/505 pyrrole PBS/EtOH (ph 7.4, 1:9); 0-10 μm 0.33 nm 6 0-10 nm 0.56 nm 7 1 μm HBP 480/508 heterocyclic hydrazone PBS buffer-meoh (v/v = 50/50, 50 mm PBS, ph7.4) 1-8 μm 2.4 nm 8 5 μm Probe 1b 464/505 540/585 diaminomal eonitrile PBS buffer/dmf (ph 7.4, 8:2) 0.9-90 μm 0.2 μm 9 3 μm probe 1 450/556 oxime H 2 O:CH 3 CN (99.5 : 0.5, 0-25 μm 163 nm 10 v/v) buffered with HEPES (50 mm), ph = 7.4. 5 μm Flu-1 -/530 oxime HEPES/DMSO (ph - - 11 7.05,1:9) 10 μm

SeCy7 690/786 selenide PBS buffer (ph 7.4) 6-60 μm 310 nm 12 30 μm CM1 405/480 selenide PBS (ph=7.4) 4 μm 0-6.4 μm 10 nm 13 HCSe 510/526 selenide H 2 O-CH 3 CN (v/v = 99/1, 0-9 μm 7.98 nm 14 0.1 M PBS, ph 7.4) 10 μm Cou-Rho- HOCl 410/473-594 thiosemicar bazide PBS/DMF (ph 7.4, 1:1) 5 μm 0.1-100 μm 52 nm 15 RSTPP 553/580 thio-lactone PBS (ph=7.4) 0-35 μm 9 nm 16 2.5 μm FBS 498/523 thio-lactone KH 2 PO 4 buffer (50 mm, ph 7.4) 0-1.0 μm 200 nm 17 2 μm PNIS 325/447 thione PBS solution (50 mm, ph 0-60 μm 210 nm 18 7.4, DMF 0.2%) 2 μm Ptz-AO 475/540 thioether H 2 O 0-25μM 2.7 nm 19 5 μm Hypo-SiF 570/606 thioether ph 7.4 phosphate buffer - - 20 solution and 0.5% DMF 5 μm PZ Py 400/562 thioether PBS (ph 7.3, 10 mm, 0-80 μm 17.9 nm 21 containing 0.05% DMSO) 5 μm Cy7-NpS 750/790 thioether 100 mm PBS, ph 7.40 0-0.384 0.62+0.09 22 10 μm μm μm TP-HOCl 1 375/500 1,3- oxathiolane PBS/EtOH (1:1, PH 7.4) 5 μm 0-200 nm 16.6 nm 23 HPBD 455/585 1,3- oxathiolane PBS buffer-ch 3 CN (v/v=4/1, 20 mm PBS, ph 7.4) 10 μm 0-40 μm 50 nm This work

References 1 L. Moberg and B. Karlberg, Anal. Chim. Acta., 2000, 407, 127-133. 2 S. Pan, M. J. Deen, R. Ghosh, Anal. Chem., 2015, 87, 10734-10737. 3 Y. R. Tang, Y. Y. Su, N. Yang, L. C. Zhang, Y. Lv, Anal. Chem., 2014, 86, 4528-4535. 4 J. L. Fan, H.Y. Mu, H. Zhu, J. Y. Wang, X. J, Peng., Analyst, 2015, 140, 4594-4598. 5 Y. Huang, P. S. Zhang, M. Gao, F. Zeng, A. J. Qin, S.Z. Wu and B. Z. Tang, Chem. Commun., 2016, 52, 7288-7291. 6 J. J. Hu, N.-K. Wong, M. Y. Lu, X. M. Chen, S. Ye, A. Q. Zhao, P. Gao, R. Y.-T. Kao, J. G. Shen and D. Yang, Chem. Sci., 2016, 7, 2094-2099. 7 H. Zhu, J. L. Fan, J. Y. Wang, H. Y. Mu and X. J. Peng, J. Am. Chem. Soc., 2014, 136, 12820-12823. 8 W.-C.Chen, P. Venkatesan, S.-P. Wu, Anal. Chim. Acta., 2015, 882, 68-75. 9 L. Yuan, W. Y. Lin, J. Z. Song and Y. T. Yang, Chem. Commun., 2011, 47, 12691-12693. 10 S. I. Reja, V. Bhalla, A. Sharma, G. Kaur and M. K, Chem. Commun., 2014, 50, 11911-11914. 11 X. H. Cheng, H. Z. Jia, T. Long, J. Feng, J. G. Qin and Z. Li, Chem. Commun., 2011, 47, 11978-11980. 12 G. H. Cheng, J. L. Fan, W. Sun, J. F. Cao, C. Hua and X. J. Peng, Chem. Commun., 2014, 50, 1018-1020. 13 G. P. Li, D. J. Zhu, Q. Liu, L. Xue and H. Jiang, Org. Lett., 2013, 15, 2002-2005. 14 S. R. Liu and S. P. Wu, Org. Lett., 2013, 15, 878-881. 15 L. Yuan, W. Y. Lin, Y. N. Xie, B. Chen and J. Z. Song, Chem. Eur. J., 2012, 18, 2700-2706. 16 Q. L. Xu, K.-A. Lee, S. Y. Lee, K. M. Lee, W.-J. Lee, and J. Y. Yoon, J. Am. Chem. Soc., 2013, 135, 9944-9949. 17 Q. L. Xu, C. H. Heo, J. A. Kim, H. S. Lee, Y.Hu, D. Y. Kim, Anal. Chem., 2016, 88, 6615-6620. 18 J. Zhou, L. H. Li, W. Shi, X. H. Gao, X. H. Li and H. M. Ma, Chem. Sci., 2015, 6, 4884-4888. 19 L. J. Liang, C. Liu, X. J. Jiao, L.C. Zhao and X. S. Zeng, Chem. Commun., 2016, 52, 7982-7985. 20 Q. A. Best, N. Sattenapally, D. J. Dyer, C. N. Scott, and M. E. McCarroll, J. Am. Chem. Soc., 2013, 135, 13365-13370. 21 H. D. Xiao, K. Xin, H.F. Dou, G. Yin, Y. W. Quana and R. Y. Wang, Chem. Commun., 2015, 51, 1442-1445. 22 F. S. Tian, Y.Jia, Y.N. Zhang, W. Song, G. J. Zhao, Z. J. Qu, C.Y. Li, Y. H. Chen, P. Li, Biosensors and Bioelectronics, 2016, 86, 68-74. 23 L. Yuan, L. Wang, B. K.Agrawalla, S.-J. Park, H. Zhu, B. Sivaraman, J. J. Peng, Q.-H. Xu and Y.- T. Chang, J. Am. Chem. Soc., 2015, 137, 5930 5938. 24 This workccc

3. Structure characterizations of HPBD, HPBD-1, HPBD-2 Fig. S1. 1 H NMR spectrum of HPBD in d 6 -DMSO. Fig. S2. 13 C NMR spectrum of HPBD in d 6 -DMSO.

lf-160303-251 #5 RT: 1.00 AV: 1 NL: 8.84E5 T: + c EI Full ms [ 49.50-500.50] 100 191.0 95 90 251.0 85 80 75 70 65 60 Relative Abundance 55 50 45 40 35 30 25 146.0 163.0 20 190.0 15 10 5 119.0 192.0 252.0 117.0 132.0 250.0 89.0 174.0 60.0 77.0 206.0 253.0 207.0 221.0 257.7 0 50 100 150 200 250 300 350 400 450 500 m/z Fig.S3. EI spectrum of HPBD in Methanol. Fig. S4. HRMS (EI) spectrum of HPBD in Methanol.

Fig.S5. 1 H NMR spectrum of HPBD-1 in d 6 -DMSO. Fig. S6. 13 C NMR spectrum of HPBD-1 in d 6 -DMSO.

lf-160314-206 #16 RT: 2.74 AV: 1 SB: 3 3.59-3.93 NL: 1.48E6 T: + c EI Full ms [ 49.50-500.50] 206.0 100 90 80 70 Relative Abundance 60 50 40 30 159.0 20 10 117.0 132.1 172.0 105.0 189.0 90.0 76.0 207.0 0 50 100 150 200 250 300 350 400 m/z Fig.S7. EI spectrum of HPBD-1 in Methanol. Fig.S8. HRMS (EI) spectrum of HPBD-1 in Methanol.

Fig.S9. 1 H NMR spectrum of HPBD-2 in d 6 -DMSO. Fig. S10. 13 C NMR spectrum of HPBD-2 in d 6 -DMSO.

lf-160314-281 #19 RT: 3.33 AV: 1 SB: 3 4.35-4.69 NL: 1.14E6 T: + c EI Full ms [ 49.50-500.50] 100 281.0 95 90 210.0 85 80 75 70 65 60 Relative Abundance 55 50 45 40 35 30 25 183.0 211.0 20 15 10 5 119.0 238.0 146.0 264.0 134.1 198.0 52.0 117.0 67.0 92.0 129.0 156.0 76.0 105.0 171.0 65.0 83.0 253.0 279.0 225.0 282.0 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 m/z Fig.S11. EI spectrum of HPBD-2 in Methanol. Fig.S12. HRMS (EI) spectrum of HPBD-2 in Methanol.

4. Detection limit and linear range of HPBD for HOCl detection. The spectrum of free HPBD (10 μm) was collected for 10 times to determine the background noise σ. Then the solution was treated with various concentration of HOCl from 0-40 μm. A linear regression curve was then fitted according to the emission intensity at 585 nm in the range of 0-40 μm. As exhibited in Fig.S13, HPBD can quantitatively detect HOCl in the range from 0 to 40 μm with good linearity (R 2 = 0.99604). Another linear regression curve was then fitted according to the data in the range of HOCl from 0 to 4 μm, and the slope of the curve was obtained (Fig. S14). The detection limit (3σ/slope) was then determined to be 50 nm. Fig. S13. The titration curve plotted with the fluorescnece intensity of HPBD (10 μm) at 585 nm as a function of HOCl concentration in range of 0-40 μm. λ ex = 455 nm.

Fig. S14 The titration curve plotted with the fluorescnece intensity of HPBD (10 μm) at 585 nm as a function of HOCl concentration in range of 0-4 μm. λ ex = 455 nm.

5. Colorimetric response of HPBD to various ROS and RNS Fig.S15 (a) Absorption spectra of HPBD (10 μm) upon adding various ROS and RNS (40 μm) in a PBS buffer-ch 3 CN(v/v=4/1, 20 mm PBS, ph 7.4). (b) Colorimetric (upper row) and fluorometric (lower row, irradiated at 365 nm) photographs of HPBD (25 μm) in a PBS buffer-ch 3 CN (v/v=4/1, 20 mm PBS, ph 7.4). Left to right: HPBD, HOCl,. OH, H 2 O 2, 1 O 2, NO 2-, NO 3-, NO, ONOO -, O - 2 and t- BuOOH.

6. Sensing mechanism study pd-151111-191 #27 RT: 0.44 AV: 1 NL: 2.08E7 T: + c ESI ms [ 50.00-800.00] 100 192.2 Relative Abundance 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 214.1 20 245.7 15 10 5 0 193.2 209.0 230.0 274.4 291.9 318.4 96.8 79.1 86.8 118.7 132.7 150.2 270.0 382.4 191.5 325.9 340.8 374.3 399.9 50 100 150 200 250 300 350 400 m/z Fig.S16. ESI-MS spectrum of HPBD/HOCl mixture. Fig.S17. Mechanistic study of probe reacting with HOCl and indentification of adduct using HPLC method. (a) 100 µm probe HPBD; (b) 100 µm DBDC; (c) the reaction products of 100 µm probe with HOCl. Detection: UV-vis (398 nm) detector. Flow rate: 1mL/min. T: 20 C. Injection volume: 100 µl. Mobile phase: methanol/water=80/20 (v/v).

7. MTT assay Fig. S18. Cytotoxicity assay of RAW 264.7 cells were treated in the presence of HPBD (0-25 µm) incubated for 24 h.