Performance of GOE-387 Airfoil Using CFD

Similar documents
CFD Analysis ofwind Turbine Airfoil at Various Angles of Attack

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

CFD ANALYSIS OF AIRFOIL SECTIONS

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent

Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils

COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF AIRFOIL NACA0015

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS

INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP

Aerofoil Profile Analysis and Design Optimisation

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1

Effect of High-Lift Devices on Aircraft Wing

Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car

AERODYNAMIC ANALYSIS OF SUPERCRITICAL NACA SC (2)-0714 AIRFOIL USING CFD

EXPERIMENTAL INVESTIGATION OF LIFT & DRAG PERFORMANCE OF NACA0012 WIND TURBINE AEROFOIL

Study on the Shock Formation over Transonic Aerofoil

OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD

Computational Fluid Flow Analysis of Formula One Racing Car Triya Nanalal Vadgama 1 Mr. Arpit Patel 2 Dr. Dipali Thakkar 3 Mr.

Reduction of Skin Friction Drag in Wings by Employing Riblets

Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent

International Engineering Research Journal Experimental & Numerical Investigation of Lift & Drag Performance of NACA0012 Wind Turbine Aerofoil

CFD ANALYSIS AND COMPARISON USING ANSYS AND STAR-CCM+ OF MODEL AEROFOIL SELIG 1223

INTERFERENCE EFFECT AND FLOW PATTERN OF FOUR BIPLANE CONFIGURATIONS USING NACA 0024 PROFILE

Computational Analysis of the S Airfoil Aerodynamic Performance

CFD SIMULATION STUDY OF AIR FLOW AROUND THE AIRFOIL USING THE MAGNUS EFFECT

The effect of back spin on a table tennis ball moving in a viscous fluid.

Aerodynamic Analysis of a Symmetric Aerofoil

Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine

Senior mechanical energy conversion trends

Numerical Analysis of Wings for UAV based on High-Lift Airfoils

2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil

CIRCULATION CONTROLLED AIRFOIL ANALYSIS THROUGH 360 DEGREES ANGLE OF ATTACK

CFD ANALYSIS OF EFFECT OF FLOW OVER NACA 2412 AIRFOIL THROUGH THE SHEAR STRESS TRANSPORT TURBULENCE MODEL

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap

Aerodynamics of a wind turbine

Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device

CFD Analysis of Giromill Type Vertical Axis Wind Turbine

CFD DESIGN STUDY OF A CIRCULATION CONTROL INLET GUIDE VANE OF AN AEROFOIL

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program

Computational Analysis of Cavity Effect over Aircraft Wing

CFD Analysis of Supercritical Airfoil with Different Camber

Analysis of Wind Turbine Blade

Air Craft Winglet Design and Performance: Cant Angle Effect

A COMPARATIVE FLOW ANALYSIS OF NACA 6409 AND NACA 4412 AEROFOIL

International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

The Effect of Icing on the Performance of NACA Wind Turbine Blade

External Tank- Drag Reduction Methods and Flow Analysis

CFD Analysis of Effect of Variation in Angle of Attack over NACA 2412 Airfoil through the Shear Stress Transport Turbulence Model

ANALYSIS OF TRANSONIC FLOW OVER SUPERCRITICAL AIRFOIL USING CFD FOR GAS TURBINE BLADES

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft

Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study

International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS

NUMERICAL INVESTIGATION FOR THE ENHANCEMENT OF THE AERODYNAMIC CHARACTERISTICS OF AN AEROFOIL BY USING A GURNEY FLAP

Design and Analysis of Archimedes Aero-Foil Wind Turbine Blade for Light and Moderate Wind Speeds

Aerodynamic Design, Fabrication and Testing of Wind Turbine Rotor Blades

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

Flow and Heat Transfer Characteristics Over a NACA0018 Aerofoil and a Test Aerofoil A Comparative Study

Measurement of Pressure. The aerofoil shape used in wing is to. Distribution and Lift for an Aerofoil. generate lift due to the difference

A STUDY ON AIRFOIL CHRACTERISTICS OF A ROTOR BLADE FOR WIND MILL

DESIGN AND ANALYSIS OF NACA4420 WIND TURBINE AEROFOIL USING CFD

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

Analysis of Lift and Drag Forces at Different Azimuth Angle of Innovative Vertical Axis Wind Turbine

Experimental Investigation Of Flow Past A Rough Surfaced Cylinder

Computational Analysis of Blunt Trailing Edge NACA 0012 Airfoil

MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE

EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2

DESIGN AND ANALYSIS OF A NEW AIRFOIL FOR RC AIRCRAFTS AND UAVS

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE

NUMERICAL INVESTIGATION OF AERODYNAMIC CHARACTERISTICS OF NACA AIRFOIL WITH A GURNEY FLAP

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil

Welcome to Aerospace Engineering

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology.

Aerodynamic Modification of CFR Formula SAE Race Car

Unsteady Aerodynamics of Tandem Airfoils Pitching in Phase

Design and Development of Micro Aerial Vehicle

STUDY OF VARIOUS NACA SERIES AEROFOIL SECTIONS AND WING CONTOUR GENERATION USING CATIA V5

Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2

Effect of Co-Flow Jet over an Airfoil: Numerical Approach

STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS

AIRFOIL PROFILE OPTIMIZATION OF AN AIR SUCTION EQUIPMENT WITH AN AIR DUCT

Effect of Dimple on Aerodynamic Behaviour of Airfoil

A Numerical Simulation Comparing the Efficiencies of Tubercle Versus Straight Leading Edge Airfoils for a Darrieus Vertical Axis Wind Turbine

STUDY OF THE INFLUENCE OF A GAP BETWEEN THE WING AND SLOTTED FLAP ON THE AERODYNAMIC CHARACTERISTICS OF ULTRA-LIGHT AIRCRAFT WING AIRFOIL

EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT

An Analysis of Lift and Drag Forces of NACA Airfoils Using Python

An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD

Performance Evaluation of Small Wind Turbine Using CFD

Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces

Anna University Regional office Tirunelveli

STUDY OF MODEL DEFORMATION AND STING INTERFERENCE TO THE AERODYNAMIC ESTIMATIONS OF THE CAE-AVM MODEL

Computational Modeling of Circular Arc Airfoils at low Reynolds Number

CFD Analysis and Experimental Study on Impeller of Centrifugal Pump Alpeshkumar R Patel 1 Neeraj Dubey 2

AF101 to AF109. Subsonic Wind Tunnel Models AERODYNAMICS. A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100)

WINGLET CANT AND SWEEP ANGLES EFFECT ON AIRCRAFT WING PERFORMANCE

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b

Journal of Engineering Science and Technology Review 9 (5) (2016) Research Article. CFD Simulations of Flow Around Octagonal Shaped Structures

CFD Analysis of an Aircraft delta wing

Transcription:

International Journal of Aerospace Sciences 2017, 5(1): 1-7 DOI: 10.5923/j.aerospace.20170501.01 Performance of GOE-387 Airfoil Using CFD Mohamed A. Fouad Kandil *, Abdelrady Okasha Elnady Mechatronics Department, Faculty of Engineering, October 6 University, Egypt Abstract In this research, CFD analysis of the two-dimensional subsonic flow over a GOE 387 airfoil at various angles of attack and operating at a Reynolds number of 3 x10 5 is presented. Pressure distribution, Pressure Coefficient (C p ), Moment Coefficient (C m ) Lift Coefficient (C l ), and Drag Coefficient (C d ) are determined. The geometry of the airfoil is created using ANSYS Design Modeler. CFD analysis is carried out using FLUENT 17.2 at various angles of attack from -5 to 20. Pressure distributions over GOE-387 airfoil for different angles of attack are presented. Moment coefficients and pressure coefficients are plotted against the angle of attack. C l -C d graph is plotted. Keywords Airfoil, Angle of Attack, CFD, Moment Coefficient, Pressure Coefficient, Lift, Drag 1. Introduction In the early 1800s, Sir George Cayley discovered that a curved surface produced more lift than a similar sized flat plate. What aviation pioneers discovered, which still holds true today, is that the most efficient way to do this is to use a curved, streamlined shape the airfoil. Airfoil is defined as the cross-section of a body that is placed in an airstream in order to generate useful aerodynamic force. The Wright brothers, many of the early designers used eyeball engineering in developing or copying the airfoil shape used on their airplanes. From about 1912, airfoil development and research moved to the wind tunnel laboratories found at the University of Göttingen in Germany, the Royal Aircraft Factory in the United Kingdom, and the National Advisory Committee for Aeronautics (NACA) in the United States. Since then, the wind tunnel, complex mathematics, and the computer have all played important roles in airfoil development. For the last three decades, Computational Fluid Dynamics (CFD) has fascinated researchers, as it is a fast, accurate and reliable method of analyzing the variation of hydrodynamic properties of the flow over and within a body. Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that uses numerical methods and algorithms to solve complex problems involving fluid flow. Some of the recent interesting work in the study of airfoils has been discussed below. Patel, Karna S., et al [1] have obtained the drag and lift forces using CFD. Kevadiya, Mayurkumar [2] investigated NACA 4412 airfoil at various angles of attack from 0 to 12 using CFD analysis. * Corresponding author: mohamedtheuploader@gmail.com (Mohamed A. Fouad Kandil) Published online at http://journal.sapub.org/aerospace Copyright 2017 Scientific & Academic Publishing. All Rights Reserved Variations of pressure coefficient are plotted in form of contour for 1 105 Reynolds number. Patil et al. [3] investigated the effect of low Reynolds number on lift and drag for the wind turbine blade. They found out as Reynolds number increases, lift and drag forces increases. Haque et al. [4] conducted various experimental studies to understand the effects of Reynolds number and angle of attack in flow analysis. Yao et al. [5] studied the aerodynamic performance of wind turbine airfoils and compared the numerical results with experimental data. The effect of transonic flow over an airfoil has been studied and a comparative analysis has been was done to analyze the variation of the angle of attack and Mach number [6]. Kandil and Elnady present a CFD analysis of GOE 387 airfoil [7]. In the light of the review of the existing literature, the present study aims to analyze the flow field for GOE 387 airfoil at various angles of attack with constant Reynolds number of 3 x10 5. The flow was obtained by solving the steady-state governing equations of continuity and momentum conservation with Transition k-kl-omega turbulence model. Pitching moment coefficient (C m ): The pitching moment coefficient (C m ) is the moment (or torque) produced by the aerodynamic force on the airfoil if that aerodynamic force is considered to be applied, not at the center of pressure, but at the aerodynamic center of the airfoil. CC mm = MM qqqqqq where M is the pitching moment, q is the dynamic pressure, S is the wing area, and c is the length of the chord of the airfoil. C m is a dimensionless coefficient so the consistent unit must be used for M, q, S, and c.

2 Mohamed A. Fouad Kandil et al.: Performance of GOE-387 Airfoil Using CFD Pressure Coefficient C p : C p is the difference between local static pressure and free-stream (at ) static pressure, nondimensionalized by the free-stream dynamic pressure. At any point in the flow where the local pressure coefficient C p is defined as CC pp = PP PP 1 2 ρρ UU 2 The Total or Stagnation Upstream Pressure P T is the sum of the static and dynamic pressure at that point according to Bernoulli's equation: PP TT = PP + 1 2 ρρ UU 2 Thus, C P may also be written in terms of the differential pressures as CC pp = PP PP PP TT PP C P, at the airfoil stagnation point, is unity. Figure 3. Mesh of the computational domain Model Data: Nodes 97961 Elements 97396 2. Geometry and Mesh Generation The geometry of GOE 387 is shown in Figure 1. For discretization of the computational domain, an unstructured mesh with the body of influence centered on the airfoil and rectangular path were selected. The mesh used for the analysis is shown in Figures 2 and 3, Pressure based steady-state solver with Transition k-kl-omega turbulence model is used for analysis. Figure 1. Geometry of GOE 387 Airfoil 3. Inputs and Boundary Conditions The problem consists of flow around an airfoil at various angles of attack (-5, 0, 5, 10, 15, 20 degrees). The inputs and boundary conditions are presented in Table 1. Table 1. Inputs and boundary conditions Input Value Solver Pressure based State Steady Vicious model Transition k-kl-omega Material Air Density 1.225 kg/m 3 Viscosity 1.7894e-05 Reynold Number 3 x 10 5 Inlet velocity 4.3822 m/s Chord-length 1 m Pressure-velocity coupling Coupled 4. Results and Discussion Figure 2. Completed Mesh 4.1. Contours of Pressure Magnitude The contours of pressure magnitude obtained for various angles of attack from CFD simulations are shown in Figures 4, 5, 6, 7, 8 and 9. The flow accelerates on the upper side of the airfoil and the velocity of flow decreases along the lower side, according to Bernoulli s principle the upper surface will experience low pressure and the lower surface will experience higher pressure. As the pressure on the lower surface of the airfoil is greater than that of the incoming flow stream, the airfoil is effectively pushed upward normal to the incoming flow stream.

International Journal of Aerospace Sciences 2017, 5(1): 1-7 3 Figure 4. Pressure contours at -5 degrees of angle of attack Figure 8. Pressure contours at 15 degrees of angle of attack Figure 5. Pressure contours at 0 degrees of angle of attack Figure 6. Pressure contours at 5 degrees of angle of attack Figure 9. Pressure contours at 20 degrees of angle of attack 4.2. Distribution of Pressure Coefficient The distribution of pressure coefficient of GOE 387 airfoil under different angles of attack is shown in the following Figures 10, 11, 12, 13, 14 and 15. It can be seen that the pressure coefficient varied largely under different attack angle. The pressure coefficient of the airfoil s upper surface was negative and the lower surface was positive, thus the lift force of the airfoil is in the upward direction. Larger the attack angle, greater is the difference of pressure coefficient between the lower and upper surface. We can also see that the coefficient of pressure difference is much larger on the front edge, while on the rear edge it was much lower, thus indicating that the lift force of the airfoil is mainly generated from the front edge. Figure 7. Pressure contours at 10 degrees of angle of attack

4 Mohamed A. Fouad Kandil et al.: Performance of GOE-387 Airfoil Using CFD Figure 10. Pressure coefficient at -5 angle of attack Figure 11. Pressure coefficient at 0 of attack

International Journal of Aerospace Sciences 2017, 5(1): 1-7 5 Figure 12. Pressure coefficient at 5 angle of attack Figure 13. Pressure coefficient at 10 angle of attack

6 Mohamed A. Fouad Kandil et al.: Performance of GOE-387 Airfoil Using CFD Figure 14. Pressure coefficient at 15 angle of attack Figure 15. Pressure coefficient at 20 angle of attack 4.3. Curve of Moment Coefficient vs. Angle of Attack The Moment coefficient is computed at aerodynamic center for various angles of attack using the Transition k-kl-omega model. The results are tabulated in Table 2 and shown in Figure 16.

International Journal of Aerospace Sciences 2017, 5(1): 1-7 7 Table 2. Moment Coefficients C m with Angle of Attack Moment Coefficient (C m ) Angle of Attack α -0.10424-5 -0.09619 0-0.10339 5-0.09347 10-0.07241 15-0.04693 20 5. Conclusions With the help of CFD software Ansys-Fluent, successful analysis of the aerodynamic performance of GOE 387 airfoil has been carried at various angles of attack (-5, 0, 5, 10, 15, 20 degrees) with constant Reynolds number (3 x10 5 ) using the Transition k-kl-omega turbulence model. The pressure coefficient of the airfoil s upper surface was negative and the lower surface was positive, thus the lift force of the airfoil is in the upward direction. The coefficient of pressure difference is much larger on the front edge, while on the rear edge it was much lower. The moment and force reference point is taken at 25% of Mean Aerodynamic Cord, the magnitude of the aerodynamic moment remains nearly constant when the angle of attack changes. REFERENCES [1] Patel, Karna S., et al. "CFD Analysis of an Aerofoil." International Journal of Engineering Research 3.3 (2014): 154-158. Figure 16. Curve of Moment Coefficient vs. Angle of Attack 4.4. Lift and Drag Characteristics Lift drag characteristics of the GOE-387 airfoil are obtained by plotting C l against C d as shown in Figure 17. From this figure, the lift and drag characteristics are summarized as follows: (C l /C d ) max 69.6000 C dmin 0.0115 C lmindrag: 0.5140 C do 0.0206 [2] Kevadiya, Mayurkumar. "CFD Analysis of Pressure Coefficient for NACA 4412." International Journal of Engineering Trends and Technology, Chennai 4.5 (2013): 2041-2043. [3] Bhushan S. Patil, Hitesh R. Thakare, Computational Fluid Dynamics Analysis of Wind Turbine Blade at Various Angles of Attack and different Reynolds Number, Procedia Engineering, 127(2015), 1363-1369 M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, High resolution fiber distributed measurements with coherent OFDR, in Proc. ECOC 00, 2000, paper 11.3.4, p. 109. [4] Nazmul Haque, Mohammad Ali, Ismat Ara, Experimental Investigation on the performance of NACA 4412 aerofoil with curved leading edge plan form, Procedia Engineering, 105(2015), 232-240 M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. Available: http://www.ctan.org/tex-archive /macros/latex/contrib/supported/ieeetran/. [5] Jin Yao, Weibin Yuan, Jianliang Wang, Jianbin Xie, Haifeng Zhou, MingjunPeng, young Sun, Numerical simulation of aerodynamic performance for two-dimensional wind turbine airfoils, Procedia Engineering, 31(2012), 80-86 PDCA12-70 data sheet, Opto Speed SA, Mezzovico, Switzerland. [6] Novel Kumar Sahu, Mr. Shadab Imam, Analysis of Transonic Flow over an Airfoil NACA0012 using CFD, International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 4, April 2015 J. Padhye, V. Firoiu, and D. Towsley, A stochastic model of TCP Reno congestion avoidance and control, Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999. Figure 17. Curve of Lift Coefficient vs. Drag Coefficient [7] Mohamed A. Fouad Kandil, Abdelrady Okasha Elnady, CFD Analysis of GOE 387Airfoil, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), Volume 14 - Issue 5, Sep. Oct. 2017, PP 80-85.