Discussion on Fugitive Emissions Standards Rich Davis

Similar documents
VALVE MANUFACTURERS ASSOCIATION API 622 API 624

Type Testing of Rising Stem Valves Equipped with Graphite Packing for Fugitive Emissions

Product Test Report F.A. Lennon Drive December 2015 Solon, Ohio U.S.A. Page 1 of 7. Valve Series Description Test Pressure Test Qty.

METHOD 21 - DETERMINATION OF VOLATILE ORGANIC COMPOUND LEAKS. 1.2 Scope. This method is applicable for the

Valve Inspection & Testing

Final Program PVP Pressure Vessels & Piping Conference. July 27 31, 2008 Marriott on Magnificent Mile Chicago, Illinois USA

FUGITIVE EMISSIONS EXPERIMENTAL MEASUREMENTS AND EQUIVALENCY

EFFECT OF PACKING MATERIAL AND CONFIGURATION ON ISOLATION VALVE STUFFING BOX LEAKAGE AT CRITICAL OPERATING CONDITION

Leak testing of Valves. Standards for acceptable Rates of Valve Leakage

INTERNATIONAL ASSOCIATION OF PLUMBING AND MECHANICAL OFFICIALS

BALL VALVE ASSEMBLY AND MAINTENANCE PROCEDURE FOR LCV BALL VALVES REF. DOC. MMM LCVE Rev.0 July 2010 SERIES SFF & SFR.

HYDROSTATIC LEAK TEST PROCEDURE

3-PIECE BALL VALVE, 3600 PSI/ PN 248, WITH ISO DIRECT MOUNTING PAD 306M SERIES/ PED Category II

Date of Issue: July 2016 Affected Publication: API Specification 16C, Choke and Kill Equipment, Second Edition, March 2015 ADDENDUM 1

Spilt body Flange ball valve. TC-205MFF-PN1640 User Manual English Version. Document No: TC-205MFF-PN1640.Ur-manual. Date: 2007/04/2617. Version: 1.

Ball Float Steam Trap UNA 45 MAX, UNA 46 MAX, UNA 46A MAX PN 40/Class 300 DN 40, 50, 65

Annex G (normative) Requirements for Nondestructive Examination

Telefon (+45) Telefax (+45)

Flexible Metal Hose Products

Technical Standard. API6D Ball & Plug Valve. Inspection & Test Procedure

STANDARD FOR CONTROL VALVE SEAT LEAKAGE

CONTROL VALVE SEAT LEAKAGE

Installation Instructions

TECHNOLOGIES. M Series. Positive return metering pumps [API675]

WKM Model 320F Floating Ball Valve

Fluid Sealing Association

SECTION BUTTERFLY VALVES

CLASS DH - PNEUMATIC TESTING - GREATER THAN 1 BAR (15 PSIG)

ANDERSON GREENWOOD SERIES 9000 POSRV INSTALLATION AND MAINTENANCE INSTRUCTIONS

Un-Pressurized Orefice Fittings FIO EZ. Parts List and Operation Instructions TECHNICAL MANUAL. Dn 2-6 Class Lbs

BALL VALVE ASSEMBLY AND MAINTENANCE PROCEDURE. REF. DOC.MMM900N Rev.1 March 2014 SERIES M DIN / ANSI. Page 1 of 17

KTM OM-2 SPLIT BODY FLOATING BALL VALVES INSTALLATION AND MAINTENANCE INSTRUCTIONS

FLANGED TWO-PIECE BALL VALVES

INSTALLATION, OPERATION AND MAINTENANCE INSTRUCTIONS TYPE BV2-LD

TYPE ECS SEAL METAL BELLOWS DRY-RUNNING SECONDARY CONTAINMENT Technical Specification

Installation Operation Maintenance

CVI Valve Line. Exceeds the industry s highest standards for reliability and performance

FLANGED TWO-PIECE BALL VALVES

An Urgent Bulletin from CSA Group

LESER Deutschland Standard Functional Tightness Test (Cryo) Content

CLASS D - SENSITIVE LEAK TEST GAS AND BUBBLE METHOD. 1.1 To provide definitive requirements for PNEUMATIC pressure testing of piping systems.

TBV OPERATION AND MAINTENANCE MANUAL SERIES 2800: FLANGED BALL VALVE. For technical questions, please contact the following:

LEAKAGE ACCEPTANCE RATES COMPARISON METAL & SOFT SEATED VALVES ISO 5208/API 598/API 6D/MSS SP-61/FCI 70-2

ISO INTERNATIONAL STANDARD

IAPMO GUIDE CRITERIA FOR BALL VALVES IAPMO IGC PURPOSE

Summary of Substantive Changes between the 2004 e1 and 2017 editions of ASSE 1011, Hose Connection Vacuum Breakers

ISO INTERNATIONAL STANDARD. Testing of valves Fire type-testing requirements. Essais des appareils de robinetterie Exigences de l'essai au feu

Flange Bolt Torquing. for Resistoflex Plastic-Lined Piping Products. Torquing. Retorquing. Hydrotesting. Annual retorquing

ROTATING DISK VALVES INSTALLATION AND MAINTENANCE 1. SCOPE 3 2. INFORMATION ON USAGE 3 3. VALVE TYPES 3 4. OPERATORS 5 5. VALVE CONSTRUCTION 6

EASTERN ENERGY SERVICES PTE LTD. 60 Kaki Bukit Place #02-19 Eunos Tech Park Singapore, SG Singapore Telephone: Fax:

1 Scope... 2 Functions of cementing float equipment... 3 Definitions... 4 Calibration... 5 Test Categories... 6 General...

Anderson Greenwood Type 4142 piped away pressure relief valves

6.6 Relief Devices. Introduction

Polyethylene Valves for Natural Gas.

VESSEL & REACTOR VALVES. VS Series SPRAY & RINSE VALVES PROCESS VALVES

PANACEA P125 USER MANUAL

Ball Float Steam Trap UNA 43 PN 16/CL 125/JIS 10K UNA 46 PN 40/CL 150/CL 300/JIS 10K/JIS 20K DN 80, 100, 150, 3", 4", 6"

High-Purity. Ball Valves

Installation Instructions

ANDERSON GREENWOOD TYPE 4020 ATMOSPHERIC PRESSURE AND VACUUM RELIEF VALVES

ASSE International Product (Seal) Listing Program

PRS(TC)4,8 USER MANUAL. Read the complete manual before installing and using the regulator.

v. Size shall be specified on drawings.

DR.ING. CARLO AVANZINI PROFESSIONAL ENGINEER GRIP TEST REPORT NOVA SIRIA, ROLETTO, Premise

FLANGED MULTI-PORT BALL VALVES

American Society of Sanitary Engineering PRODUCT (SEAL) LISTING PROGRAM

ANDERSON GREENWOOD TANK BLANKETING REGULATORS

,!! ~~ Testing Procedure ~/'L

SAPAG. Safety valves, type 5700 Storage, Use, Operation and Maintenance Instructions. IMPORTANT NOTICE

SABERINDO PACIF SABERINDO PACIFIC CIFIC SABERINDO PA. A Tyco International Company

World Area Differences Technical Information

PANACEA P100 LOW PRESSURE USER MANUAL

LRS(H)4 Pressure-Reducing Regulator User Manual

Constant Pressure Crude Oil Container Model CPCCP

CONTROL VALVE TESTING

TYPE 3710 CARTRIDGE SPLIT SEAL Technical Specification

American Petroleum Institute Purchasing Guidelines Purchase API Spec 6DSS online at

Tank Blanketing Pressure Regulators RHPS Series

Bushing Viton O-ring (Other material available) Anti-Static Device

RHPS Series RD(H)F40 User Manual. Read the complete manual before installing and using the regulator.

Oxidation Stability of Gasoline and Aviation Fuels

INSTRUMENTATION VALVES

USER INSTRUCTIONS. NAF Duball DL Ball Valves. Installation Operation Maintenance. Experience In Motion. flowserve.com

INSTALLATION, MAINTENANCE & OPERATING INSTRUCTIONS 2-4 REDUCED PORT/ FULL PORT (5700/6700) ANSI CLASS 150/300/600/900/1500/2500 TRUNNION BALL VALVES

Presented to the IAPMO Standards Review Committee on March 7, 2016

PANACEA P200 STAINLESS STEEL USER MANUAL

Installation, Operation, and Maintenance Manual

Circular Sight Windows

HIGH-PRESSURE RELIEF VALVES

MSS STANDARD PRACTICE SP-61 This MSS Standard Practice was developed under the consensus of the MSS Technical Committee 114 and the MSS Coordinating C

Instruction Manual Pressure Relief Valve and Rupture Disc Chlorine or Sulfur Dioxide, Series 869

Pibiviesse High Performance Control Ball Valve

Gas Lift Valve Testing

Noth American 7347 High Pressure Gas Regulators

PROCEDURES FOR REPAIRS TO ASME NV STAMPED PRESSURE RELIEF DEVICES OF NUCLEAR SAFETY RELATED PRESSURE RELIEF VALVES

Fisher 8532 High-Performance Butterfly Valve

AWWA C504 COMPLIANT VALVES FROM 3 THRU 108

Engineered Valves Group. Revision 2. FABRI-VALVE High Performance Knife Gate Valve.

Installation / Operation / Maintenance Manual KLINGER Reflex Level Gauge Type R 25

MODEL 200 KNIFE GATE VALVES INSTALLATION & MAINTENANCE MANUAL

Transcription:

Discussion on Fugitive Emissions Standards Rich Davis Business Development Manager Flexitallic LP

Emissions Standards API 622 Type Testing of Process Valve Packing for Fugitive Emissions (under revision) API 624 API 641 2

Why Do We Do Fugitive Emissions Standards? 3

Rich Davis A little history: Since 1990, I ve been involved in the creation and implementation of test standards covering fugitive emissions. These included: Chairman ISA SP0093 Fugitive Emissions Valve Test Member API 622 & Revision 1 Member ISO 15848-1 & 2 Co Chair API 624 4

Fugitive Emissions Sources Valves are considered to account for approximately 60% of Fugitive Emissions of a Refinery Flanges, Pumps, 15% Tanks, 10% Relief valves, 15% Valve Stem, 80% Other Joints, 20% *Source Monitoring and Containment of Fugitive Emissions from Valve Stems, University of British Columbia, Vancouver 5

History Testing started with the Petroleum Environmental Research Forum 93-20 About 1993 6

API 622 Type Testing of Process Valve Packing for Fugitive Emissions (under revision) This standard specifies the requirements for comparative testing of valve stem packing for process applications where fugitive emissions are a consideration. Packing(s) shall be suitable for use at service temperatures 29 C to 538 C ( 20 F to 1000 F). Factors affecting fugitive emissions performance that are considered by this standard include temperature, pressure, thermal cycling and mechanical cycling and corrosion. 7

Graphite Oxidation 20 F to 1000 F, exceeds the capabilities of graphite, when exposed to oxygen. The upper temperature can be an issue. This is why we require an oxidation analysis in API 622. Flexitallic is currently working on a study of graphite and oxidation. We are working to assess oxidation inhibitors and how they work. 8

API-622 Test fixture packing gland dimensions and tolerances are specified. The test fixture is arranged to follow the PERF testing. It relays the information obtained in that testing. Mechanical cycles = 1510 The test fixture shall be equipped with an actuator capable of stroking the test stem to simulate the mechanical cycle of a valve as follows: Rotating stem: Rate: 10 to 15 per second Rotation: 90 ±5 9

Revision: 1/8 Packing Tests We ve added a new section to the fixture dimensions and design to allow for testing of 1/8 packing. API 602 & 603 valves using narrow section packing have failed the API 624 test and led to this revision of the API 622 test. 10

Twisted / Rolled Graphite Packing Twisted / Rolled packing doesn t offer the same level of sealing as the cross braid packing. 1/8 Cross Section Packing Possible construction 11

API-622 Weight Loss Testing Graphite Foil Weight Loss Test Procedure Conducted in a controlled environment using suitable testing equipment. Flexible graphite sample size shall be between 0.5 grams and 3.5 grams. Three samples shall be tested. Record weight of each sample. Samples shall be preconditioned for one hour at 150ºC (302ºF) with a ramp up speed of 10ºC (18ºF) per minute. After one hour, the samples shall continue ramping up at 10ºC (18ºF) per minute to the final test temperature of 593ºC (1100ºF). 12

API-622 Weight Loss Testing This test temperature shall be held for 24 hours and then cooled. Weigh samples after cooling and record weight. TGA testers can weigh samples without being removed from the heat source which is acceptable. Determine the percent weight loss of each sample and record. Average the results and a weight loss greater than 15% is not acceptable. Note: This test method also follows an established testing standard, FSA-G-604-07, issued by the Fluid Sealing Association. 13

Test Procedure Test Fluid: The test fluid used shall be dry methane gas, 97% minimum purity, subjected to a temperature range from ambient to 260ºC (500ºF) and pressures from 0 to 4,137 kpag (0 to 600 psig). 14

Revision of Leak Detection Device Specifications The original standard laid out specific details of the leak detection equipment that could only be fulfilled by a TVA-1000 leak detector. The revision of this section will permit the use of a wider range of newer leak detection devices. An Example: Phoenix PHX21 15

API-622 Lubricant Content PTFE content shall be established by determining the % total fluorine in the packing, and comparing with a base fluorine percentage of 76, as follows: Determine total percent of fluorine content using ASTM D1179 or ASTM D4327. Place the evaporation dish in a hot-air oven set between 100 C 121 C (212 F 250 F) for 30 minutes. Cool the evaporation dish to room temperature in a desiccator. Note: A reference test method for Soxhlet Extraction can be found in ASTM C613. 16

API 622 Corrosion Test Corrosion Test Overview The corrosion test provides methods for evaluation of cold and hot corrosion caused by the packing. It also provides a means for evaluating the effect of inhibitor systems and valve stem metallurgy combinations with respect to corrosion rate and weight loss. 17

API 622 Test Report Mechanical testing Leak test results no adjustments allowed Oxidation test results nothing greater than 15%. Lubricant, Leachables and PTFE results. Density test results Photos 18

API 624 Type Testing of Rising Stem Valves Equipped with Graphite Packing for Fugitive Emissions 19

API-624 This API standard specifies the requirements and acceptance criteria (100 ppmv) for fugitive emission type testing of rising and rising-rotating stem valves equipped with packing previously tested in accordance with API Standard 622. Packing shall be suitable for use at service temperatures 29 C to 538 C ( 20 F to 1000 F). The type testing requirements contained herein are based upon elements of EPA Method 21. Valves larger than NPS 24 or greater than class 1500 are outside the scope of this standard. 20

API-624 Valve Selection & Pre-test The test valve shall be completely assembled and ready for testing. Test valve shall be randomly selected from manufacturer or distributor stock where such stock is available. For valves not in stock, the manufacturer shall certify that the test valve was not modified in any way to meet type test requirements and is a typical representation of the manufacturer s stock product. Valve selection shall be approved by the purchaser. 21

Position - Safety - Gas The stem orientation for a test valve shall be vertical This has created some problems with some lubricants. As a safety precaution, the air in the valve cavity shall be purged with an inert gas prior to starting the testing. The test medium used shall be either methane gas, 97% minimum purity. 22

API-624 Type Testing Valves are subjected to a total of 310 mechanical cycles and 3 thermal cycles. Mechanical cycling shall begin with the valve at ambient temperature. An optional low temperature test at -29 C (-20 F) may be performed if requested by the purchaser. The elevated test temperature shall be 260 C ± 2 percent (500 F ± 5 percent). The test pressure shall be the lower of 600 psig or the maximum allowable pressure at 500 F per ASME B16.34 for the applicable material group and shall be held constant throughout the test. 23

API 624 24

API 624 Leak Measurement Packing leakage measurements around the full circumference of the stem OD and packing OD and the highest reading shall be recorded. Static and dynamic stem leakage measurements shall be taken. This is typically done using aluminum foil surrounding the stem. Leak measurements shall be sniffed using a detection probe. (This is often done using an aluminum foil) Packing adjustment during type testing is not permitted. 25

API 624 Valves Qualified All valves of the same basic design as the test valve may be deemed to have been type tested, subject to additional limitations: 26

API 624 Valves Qualified Any change in valve sealing system design, packing material, packing manufacturer, or packing type/model requires a requalification. If the location of the valve manufacturing facilities is different than what is listed on the API 624 certificate, the purchaser may request requalification. 27

API 641 Type Testing of Quarterturn Valves for Fugitive Emissions 28

API 641 Scope This standard specifies the requirements and acceptance criteria for fugitive emission type testing of quarter-turn valves. The type testing requirements contained herein are based upon elements of EPA Method 21. Valves larger than NPS 24and valves greater thanasme B16.34 class 1500 are outside the scope of this standard. Valves with a pressure rating at ambient temperature less than 6.89 barg (100 psig) are outside the scope of this standard. Repacking or resealing of valves is outside the scope of this standard. 29

Valve Selection & Test Preparation The test valve shall be fully assembled, tested to applicable industry standards, and ready for fugitive emissions testing. The test valve shall be randomly selected from manufacturer or distributor stock, where such stock is available. For valves not in stock, the manufacturer shall certify that the test valve was not modified in any way to meet type test requirements and is a typical representation of the manufacturer s stock product. 30

Safety Considerations for Type Testing The test medium used shall be methane 97% minimum purity. The valve may be de-pressured between thermal cycles. All testing shall be in accordance with local and national codes and regulations. Purge the partially open valve with methane gas to eliminate air in the valve cavity prior to starting the testing. 31

Type Testing Currently a total of 1510 mechanical cycles and 3 thermal cycles 32

Valve Groups; Valve Temperature Rating 33

Valve Groups; Valve Temperature Rating Pa valve pressure at ambient temperature Pe valve pressure at elevated temperature Te valve elevated temperature Ta ambient temperature For Group A valves Te = 260 C (500 F) Pe = 41.4 barg (600 psig) Pa = 41.4 barg (600 psig) 34

Valve Groups; Valve Temperature Rating For Group B valves Te = 260 C (500 F) Pe = Valve Pressure rating at 260 C (500 F) Pa = Valve Pressure rating at ambient temperature or 41.4 barg (600 psig), whichever is less 35

Valve Groups; Valve Temperature Rating For Group C valves Te = Maximum temperature rating of the valve at 6.89 barg (100 psig) or 500F, whichever is lower. Pe = 6.89 barg (100psig) Pa = Valve Pressure rating at ambient temperature or 41.4 barg (600 psig), whichever is less 36

Valve Groups; Valve Temperature Rating < 260 C (500 F) 37

Valve Groups; Valve Temperature Rating < 260 C (500 F) For Group D valves Te = Maximum temperature rating of valve Pe = 41.4 barg (600 psig) Pa = 41.4 barg (600 psig) 38

Valve Groups; Valve Temperature Rating < 260 C (500 F) For Group E valves Te = Maximum temperature rating of valve Pe = Valve pressure rating at maximum temperature rating of valve Pa = Valve pressure rating at ambient temperature or 41.4 barg (600 psig), whichever is less 39

Valve Groups; Valve Temperature Rating < 260 C (500 F) For Group F valves Te = Maximum temperature rating of the valve at 6.89 barg (100 psig) Pe = 6.89 barg (100 psig) Pa = Valve Pressure rating at ambient temperature or 41.4 barg (600 psig), whichever is less 40

Valve Groups; Valve Temperature Rating < 260 C (500 F) The elevated test temperature, test pressure while at the elevated test temperature, and test pressure while at ambient temperature shall be as follows for any valve tested per this standard. The elevated test temperature shall be equal to the value established for variable Te per section 8.7 or 8.8 The test pressure while at the elevated test temperature shall be the value established for variable Pe per section 8.7 or 8.8. The test pressure while at ambient temperature shall be the value established for variable Pa per section 8.7 or 8.8. 41

Actuation The test valve may be equipped with a method of actuation capable of mechanically cycling the valve. For torque-seated valves with offset stems, the closing torque shall be set to the manufacturer s published torque used for seat closure at the corresponding maximum test pressure. Running torque values shall be recorded at approximately mid-stroke on the first and last mechanical cycle of testing. 42

Test Overview One stem seal adjustment is allowed during valve testing and shall be noted on the Fugitive Emissions Test Report in Annex A. Packing gland torque values are to be recorded prior to disassembly. Valve shall be disassembled and components including stem, stem seal, gland follower, and stem seal chamber shall be inspected and the condition documented. The Fugitive Emissions Test Report in Annex A shall indicate pass when the measured leakage does not exceed 100 ppmv. 43

Leak Test Equipment and Calibration Similar to the new API 622 The test equipment shall be inspected prior to each use to ensure against fouling of the detector probe. 44

Valves Qualified Valves of the same quarter-turn design as the test valve may be deemed to be a qualified, subject to the following additional limitations: The value for Te, as determined by section 8.7 or 8.8, is not greater than the value for Te of the test valve. The value for Pe, as determined by section 8.7 or 8.8, is not greater than the value for Pe of the test valve. The value for Pa, as determined by section 8.7 or 8.8, is not greater than the value for Pa of the test valve. 45

Valves Qualified Stem diameter is between one-half to two times the test valve; The stem seal is of the same material, design, sealing stress, shape and construction, independent of the seal size; The dimensions of the overall seal set height is between 75% and 125% of the test valve; The type of motion, the type of obturator, the type of obturator support, the type of offset, and the type of stem support is identical; Tolerance classes (grades) and surface finish specifications of all valve components which affect sealing performance are identical. Any change in valve sealing system design including, but not limited to, stem seal material, stem seal manufacturer, or stem seal model requires a requalification. 46

THANK YOU 47