MARINE NAVIGATION LESSON PLAN See That Sound?

Similar documents
Recommended operating guidelines (ROG) for sidescan Sidescan sonar ROG in wrapper.doc English Number of pages: 9 Summary:

Make a Marigram. Overview: Targeted Alaska Grade Level Expectations: Objectives: Materials: Whole Picture: Grades 9-12

Engineering Design Challenge. Mapping the Ocean Floor

14/10/2013' Bathymetric Survey. egm502 seafloor mapping

1. What are the differences and similarities among transverse, longitudinal, and surface waves?

Plot the Path. Mary Anne Otten. lesson three

S-44 edition 5 The IHO s New Standard For Hydrographic Surveys Chris Howlett Head of Seabed Data Centre United Kingdom Hydrographic Office

High Frequency Acoustical Propagation and Scattering in Coastal Waters

Plot the Path into the Harbor

Activity #1: The Dynamic Beach

Tracking Juvenile Summer Flounder

Homework 2 Bathymetric Charts [based on the Chauffe & Jefferies (2007)]

Modern and Ancient Tides

Beach Profiles: Monitoring Sea Level Rise. Student Activity Sheet. Name Date Class

TITLE: North Carolina s Changing Shorelines. KEYWORDS: erosion - shorelines - mapping - sustainability

Hydrographic Surveying Methods, Applications and Uses

The Hudson s Ups and Downs

INTERNATIONAL HYDROGRAPHIC SURVEY STANDARDS

Homework 2a Bathymetric Charts [based on the Chauffe & Jefferies (2007)]

Evaluation of the Klein HydroChart 3500 Interferometric Bathymetry Sonar for NOAA Sea Floor Mapping

Pioneer Array Micro-siting Public Input Process Frequently Asked Questions

Robin J. Beaman. School of Earth and Environmental Sciences, James Cook University, Cairns, Qld 4870, Australia.

What s UP in the. Pacific Ocean? Learning Objectives

b. Graphs provide a means of quickly comparing data sets. Concepts: a. A graph can be used to identify statistical trends

APPLICATION OF SOUND PROPAGATION (IN THE PERSIAN GULF AND OMAN SEA)

Growth: Humans & Surf Clams

Meeting the Challenges of the IHO and LINZ Special Order Object Detection Requirements

Organize information about waves. Differentiate two main types of waves.

UNDERWATER SCIENCE. Multibeam Systems TECHNOLOGY FOR SUSTAINABLE FISHERIES

Waves, Light, and Sound

EXPEDITION ADVENTURE PART 2: HIGHER RESOLUTION RANGE SEISMIC IMAGING TO LOCATE A SUNKEN PIRATE SHIP OFF ILE ST MARIE.

What Do You Think? GOALS

FOR PERSONAL USE. Shoreline Erosion BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN ACTIVITY ASSESSMENT OPPORTUNITIES. Grade 4 Quarter 1 Activity 9

Lesson Overview Students learn about the varying heights of ocean waves and what causes the variation, how waves are formed, and the parts of waves.

Currents measurements in the coast of Montevideo, Uruguay

Examples of Carter Corrected DBDB-V Applied to Acoustic Propagation Modeling

Marine Renewables Industry Association. Marine Renewables Industry: Requirements for Oceanographic Measurements, Data Processing and Modelling

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Vieques Underwater Demonstration Project

page - Laboratory Exercise #5 Shoreline Processes

OIMB GK12 CURRICULUM. Beach Hopper Introduction and Jumping Experiment

Prologue. TSUNAMI - To Survive from Tsunami World Scientific Publishing Co. Pte. Ltd.

Temperature, salinity, density, and the oceanic pressure field

Add this important safety precaution to your normal laboratory procedures:

Full STEAM Ahead: Waves. Version 1 25 April 2018

a wave is a rhythmic disturbance that carries/transfers energy through matter or space A repeating movement

Gas Pressure and Distance The Force of the Fizz Within, By Donell Evans and Russell Peace

Traveling Waves vs. Standing Waves

Sound and Light in the Ocean

Air Ball! Evaluation copy

Investigating Factors That Affect Tsunami Inundation A Science Inquiry

Harmonics and Sound Exam Review

Emerging Subsea Networks

Our Council s Own: Oceanography Cadette/Senior/Ambassador Badge

DUXBURY WAVE MODELING STUDY

Level MEASUREMENT 1/2016

Battle of the Waves Sound vs Light

Standard 3.1 The student will plan and conduct investigations in which

Natural Bridges Field Trip Activity

Doppler Effect. PHY132H1F Introduction to Physics II Class 3 Outline:

BOTTOM MAPPING WITH EM1002 /EM300 /TOPAS Calibration of the Simrad EM300 and EM1002 Multibeam Echo Sounders in the Langryggene calibration area.

Advanced PMA Capabilities for MCM

Lab 2: Superposition of waves on a string

Figure 8: Buoyancy Force and Weight Acting on an Object

Air Ball! LabQuest Vernier Gas Pressure Sensor Vernier Motion Detector basketball stopper with needle, stopper stem and tubing attached meter stick

The Surge of the Storm By Margaret Olsen and Katie Greganti

ENVIRONMENT AGENCY GREAT OUSE AND 100 FT DRAIN QUARTERLY BATHYMETRIC SURVEY DECEMBER 2013 SITE SURVEY REPORT NO. H6787

Real Time Surveying GPS and HYDRO Software for Tide and Swell Compensation

Crowdsourced Bathymetry Data via Electronic Charting Systems

South Bay Coastal Ocean Observing System California Clean Beaches Initiative

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011

Where are the Bathymetric Hot-Spots?

Anchoring Is Important

THE CHALLENGES OF A LARGE-AREA BATHYMETRIC SURVEY

Mapping a Magnetic Field. Evaluation copy. Figure 1: Detecting the magnetic field around a bar magnet

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Advantages of Using Combined Bathymetry and Side Scan Data in Survey Processing T.M. Hiller, L.N. Brisson

STUDY REPORT W&AR-03 RESERVOIR TEMPERATURE MODEL ATTACHMENT B DON PEDRO RESERVOIR BATHYMETRIC STUDY REPORT

ATON System Workshop

13. TIDES Tidal waters

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Earthquake Waves. Purpose: To give students a visual example, using a slinky, of how an energy wave propagates through the Earth.

ICES Guidelines for Multibeam Echosounder Data (Compiled September 2006)

Lesson 48: Wave Velocity and Boundaries

from ocean to cloud PARAMETRIC SUB-BOTTOM PROFILER, A NEW APPROACH FOR AN OLD PROBLEM

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

Geospatial Positioning Accuracy Standards Part 5: Standards for Nautical Charting Hydrographic Surveys - Public Review Draft

Phys1111K: Superposition of waves on a string Name:

Table of Contents. Chapter: Waves. Section 1: The Nature of Waves. Section 2: Wave Properties. Section 3: The Behavior of Waves

Parts of Longitudinal Waves A compression

Bathymetry Data Collection for Subaqueous Soil Mapping. Maggie Payne 2 nd National Workshop on Subaqueous Soils Rhode Island August 9-12, 2010

SEASONDE DETECTION OF TSUNAMI WAVES

Design and Planning Considerations For a Seabed Survey

Cruise Report. Field Oceanography. Team 5, Leg 3

GNSS Technology for the Determination of Real-Time Tidal Information

Investigating Factors That Affect Tsunami Inundation A Science Inquiry

Mapping the Sea Bottom Using RTK GPS and Lead-Line in Trabzon Harbor

SCI-5 MES_Lamb_Oceans Exam not valid for Paper Pencil Test Sessions

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves

Ozobot Bit Classroom Application: Boyle s Law Simulation

Transcription:

Marine Navigation Hydrography Lesson Plan MARINE NAVIGATION LESSON PLAN See That Sound? Theme Hydrographic Survey Links to Overview Essays and Resources Needed for Student Research http://oceanservice.noaa.gov/topics/navops/hydrosurvey/ http://chartmaker.ncd.noaa.gov/hsd/hydrog.htm Subject Area Physical Science/Earth Science Grade Level 9-12 Focus Question How can scientists obtain information about the bathymetry of the seafloor to help mariners navigate safely in coastal areas? Learning Objectives Students will explain the concept of sonar, and describe the major components of a sonar system. Students will compare and contrast multibeam and sidescan sonar systems. Students will design a relatively low-cost sidescan sonar system that could be built by an amateur ocean explorer. Materials Needed Computers with internet access; if students do not have access to the internet, see suggestions under Learning Procedure Step 1 Copies of Guidance for Research on Hydrographic Sonar Worksheet, one copy for each student or student group (Optional) Materials for sonar simulation activity (see Learning Procedure Step 4): Graphing calculator, data logger, and motion sensor; ideally, one for each student group String

Hydrography Lesson Plan Marine Navigation Boxes, cans, and other objects to create a model seafloor Meter stick Felt tip marker for marking string Audio/Visual Materials Needed None Teaching Time One or two 45-minute class periods, plus time for student research Seating Arrangement Groups of 2-3 students Maximum Number of Students 30 Key Words Hydrography Sonar Sidescan sonar Multibeam sonar Bathymetry Background Information Hydrography is the science of measuring and describing the physical features of bodies of water and adjacent land areas that are periodically underwater (such as areas that are covered and uncovered by rising and falling tides). Hydrographic surveys are undertaken to obtain information needed for ship navigation, harbor maintenance (e.g., dredging), coastal engineering (e.g., erosion control), coastal resource management (location of various habitat types), and other activities; but the most common use of hydrographic data is as an aid to safe navigation. All hydrographic surveys involve bathymetry (the measurement of depth in large bodies of water). In addition, most surveys also collect information about the types of material found on the sea floor (sand, mud, rock, etc.) since this knowledge is important to vessels anchoring, dredging, engineering projects and to understanding the ecology of biological communities.

Marine Navigation Hydrography Lesson Plan NOAA s National Ocean Service (NOS) conducts hydrographic surveys through its Office of Coast Survey (OCS). The OCS is the oldest scientific organization in the U.S., created in 1807 to fulfill President Thomas Jefferson s order for a complete survey of the U.S. coast. Since its formation, the OCS has conducted over 10,600 hydrographic surveys. The OCS Historical Map & Chart Collection contains over 20,000 maps and charts from the late 1700s to present day (visit http://historicals.ncd. noaa.gov/historicals/histmap.asp for an Image catalog and link to software for viewing downloaded maps; see http://chartmaker. ncd.noaa.gov/staff/charts.htm for more information about NOAA s nautical charts). Modern hydrographic surveys often use sidescan sonar to depict bathymetry and locate other significant features (such as shipwrecks). Sonar (which stands for SOund NAvigation and Ranging) systems consist of a transmitter that sends pulses of sound energy through the water and a receiver that detects return signals (echoes) that are reflected back from the seafloor or other objects. In a sidescan sonar system, the transmitter is typically towed behind the survey vessel in a torpedo-shaped container called a towfish. The energy transmission from the towfish is a fan-shaped signal that sweeps the seafloor from directly under the towfish to either side, typically out to a distance of about 100 meters. The strength of the return echo is continuously recorded and analyzed by a computer to create a picture in which objects that reflect more acoustic energy are shown as lighter areas on the image, while objects that reflect less energy are shown as darker areas. If an object extends into the water column, a shadow will be created that will show up as a white area on the picture. Multibeam sonar systems also are frequently used by hydrographers. These systems provide fan shaped coverage similar to sidescan sonars, but do not continuously record the strength of the return echo. Instead, the multibeam system records depth by measuring the time elapsed between transmission of a sound signal and detection of the reflected signal by the sonar s receiver. Multibeam sonar transmitters are generally attached to a vessel, rather than being towed as in sidescan systems. Surveys usually are carried out by steering the survey vessel on a series of parallel tracks (courses) that are close

Hydrography Lesson Plan Marine Navigation enough to ensure that the area covered by the sidescan or multibeam sonar overlaps on adjacent tracks. In this lesson, students will research sonar technology, and use the results of their research to design a sidescan sonar system that could be constructed on a limited budget. Optionally, students may also simulate sonar operation using a motion detector, graphing calculator, and a data logging system (such as the Texas Instruments calculator based laboratory (CBL) system or calculator based ranger (CBR) system). Learning Procedure 1. To prepare for this lesson, review the questions on the Guidance for Research on Hydrographic Sonar Worksheet, and the answers to questions provided in Step 3. If students do not have classroom internet access, this Worksheet may be completed as a homework assignment using home, library, or other internet resources. 2. Introduce the science of hydrography by briefly reviewing the historical and present-day importance of marine navigation, and asking students to brainstorm the types of information needed to safely navigate the Earth s oceans. In addition to weather, students should recognize the importance of information about depth and physical characteristics of the seafloor, particularly in coastal areas. Tell students that the Office of Coast Survey is the oldest scientific organization in the U.S. and was created in 1807 to prepare a hydrographic survey of the entire U.S. coast by order of President Thomas Jefferson. At that time, depths were commonly measured using a lead line, which was simply a rope marked at fixed intervals (usually fathoms; one fathom equals six feet) attached to a lead cylinder which was lowered to the bottom. When the line went slack, depth was estimated from the marks on the rope. Often, the bottom of the lead cylinder was hollowed out and filled with wax. When the lead was brought back on board the survey ship, bits of sand, shell, mud, etc. stuck in the wax gave the surveyors clues about the materials present on the seafloor.

Marine Navigation Hydrography Lesson Plan Ask students how hydrographic data on depth bottom topography are obtained by modern hydrographers. Some students will probably be familiar with the concept of sonar. If not, they may have heard about this technology in connection with submarine warfare. Provide each student or student group with a copy of the Guidance for Research on Hydrographic Sonar worksheet, and tell students that their assignment is to prepare a written report that includes answers to questions on the worksheet, as well as a design for a sidescan sonar system that could be constructed with a maximum budget of $500. You may want to direct students to the OCS webpage on sidescan and multibeam sonar (http://chartmaker.ncd.noaa.gov/hsd/wrecks.htm) to get them started. 3. Lead a discussion of students answers to worksheet questions, then have each group present their ideas for a low-cost sidescan sonar. Sonar is an acronym for SOund NAvigation and Ranging The basic components of a sonar system are: A transmitter capable of emitting an acoustic signal; A receiver capable of detecting echoes from the transmitted signal; and A processing unit to interpret the reflected signal. Students may also mention: A cable to connect the processor with the transmitter and receiver; A transducer (which is analogous to the antenna on a radio transmitter or receiver); and A towfish to allow the transducer(s) to be towed behind the survey vessel. Transducers for sidescan sonar are often towed behind the survey vessel because: Being able to tow the transducer at some depth below the surface means that there is less water through which the acoustic signal must travel, so there is less absorption and

Hydrography Lesson Plan Marine Navigation scattering of the acoustic energy, and consequently, the signal is stronger; The transducer is less affected by the surface motion of the survey vessel (particularly rolling motion); and The transducer can be towed beneath a thermocline (the boundary between two water masses of different temperature) which can interfere with the acoustic signal. Higher frequencies give better image resolution (more detail) but travel shorter distances than lower frequencies. sidescan and multibeam sonars both transmit a fan-shaped pattern of acoustic signals, sidescan systems continuously record the strength of the return echo caused by the transmitted signal bouncing off of the sea floor or other object. Multibeam systems, on the other hand, record depth by measuring the time elapsed between transmission of a sound signal and detection of the reflected signal by the sonar s receiver. Multibeam sonar transmitters are generally attached to a vessel, rather than being towed as is typical of sidescan systems. The usual approach to creating a low cost sidescan sonar is to adapt a conventional fish finder type of depth sounder. The primary modification is to construct a towfish (e.g., from PVC pipe fitted with aluminum stabilizing fins) to carry the transducer so that it points to one side rather than straight down. Somewhat more advanced designs use multiple transducers. Some amateur-built sidescan sonars are capable of producing very good images, and have been used to locate shipwrecks. 4. (Optional) Option A: Procedure Using CBL Systems Steven Stevenoski of Lincoln High School, Wisconsin Rapids, WI developed an activity as part of the Teachers Experiencing Antarctica and the Arctic Program (see http://tea.armadaproject. org/teainfo/tea_flyer_0203aa.pdf for information on the TEA program, and http://tea.armadaproject.org/activity/stevenoski/seeingtheseafloorusingsoundmultibeamsidescansonar_main.html)] in which students demonstrate how sound waves can be used to create images of objects using a motion detector, data logger, and graphing calculator. The original activity is based on a Texas Instruments graphing calculator, CBL ( calculator based labo-

Marine Navigation Hydrography Lesson Plan ratory ) system, and Vernier motion detector. A CBR ( calculator based ranger ) system would provide a lower cost alternative, and other calculators, data loggers, and motion detectors could be used in a similar way. The following is an outline of the activity. Specific instructions will depend upon the particular systems available, but manufacturers instructions for typical activities using these systems (e.g., measuring the velocity of a toy car) can be easily adapted for the sonar simulation. If students will be using Texas Instruments systems, a variety of guidebooks for CBL, CBR, and graphing calculators can be downloaded from http://education.ti.com/educationportal/sites/us/ sectionhome/download.html. The basic set-up for the simulation consists of a variety of objects (at least six) of varying height and shape. These are arranged on the floor between two points two to four meters apart. A string is stretched between these points, 1.0 to 1.5 meters above the floor (in the original activity, a stool was placed to mark the location of the two points and to provide an attachment for the string). The motion detector is connected to the data logger (and if necessary to the graphing calculator), and the system is set up to collect distance data as a function of time. One student holds the motion detector at one end of the string, triggers the system to begin data collection, and moves the motion detector smoothly along the string to the other end. It is important that the motion detector is moved at a constant rate of speed, which should be slow enough to allow the system to collect enough data points to adequately map the objects. If the motion detector is moved slowly, more data points (distance measurements) will be collected. Finally the data points are graphed as a function of time. Since the elapsed time is proportional to the linear distance along the string, the series of distance measurements should create a profile of the objects beneath the string. Actually, a reverse profile will be created, since taller objects will be closer to the string, and hence the distance to tall objects will be smaller than the distance to shorter objects. A simple data transformation can be used to correct this distortion (e.g., object height = (measured distance) (height of string).

Hydrography Lesson Plan Marine Navigation Option B: Procedure Without CBL Systems The following procedure is based on the traditional (i.e., pre-sonar) technique for measuring depth with a lead line. Divide the class into an equal number of groups, and pair each group with another. One group in each pair will set up a series of objects to create a model sea bottom, and the other group will attempt to analyze lead line data to obtain an accurate picture of the bottom. Objects should include a variety of shapes, including at least one with relatively high vertical relief (to simulate part of a ship sticking up from the bottom). Be sure the Interpretation group cannot see the objects. Mark a string at three-inch intervals, and arrange the string above the objects as described above. Mark a second string about 2 m long at one-inch intervals and attach a weight (fishing sinker, metal nut, etc) to one end of the string. The Set-up group should use the weighted string to obtain depth measurements at three-inch intervals, and call these measurements out to the Interpretation group. When all measurements have been collected, the Interpretation group should graph these and state their predictions about the model sea floor. Have groups switch roles and repeat the procedure with a new arrangement of objects. These simulations illustrate the importance of sample intervals in obtaining an accurate picture of the bottom, as well as the difficulty of drawing inferences about three-dimensional shapes from two-dimensional data. You may want to introduce the concept of sidescan sonar, which provides three-dimensional bottom data (see http://ocean.noaa.gov/technology/tools/sonar/ sonar.html for more information about sidescan sonar). The Bridge Connection http://www.vims.edu/bridge/ In the Site Navigation menu on the left, click on Ocean Science Topics, then Human Activities, then Technology for links to resources about marine technology. The Me Connection Have students write a brief essay describing real or imaginary circumstances in which new hydrographic surveys could be urgently important to people who have nothing to do with

Marine Navigation Hydrography Lesson Plan marine navigation. If they have trouble with this, you may suggest that they consider the aftermath of severe coastal storms. Extensions 1. Visit http://www.ocean-institute.org/edu_programs/materials/p/ PDF/PDF_SFE/A_SONAR.pdf and/or http://www.education-world. com/a_lesson/00-2/lp2083.shtml for other activities about sonar. 2. Replicate the use of tallow on traditional lead lines by adding small objects (rocks, shells, sand, etc) to the model seafloor, and having students gather data about bottom type using a piece of modelling clay or wax attached to the bottom of a fishing weight (pyramid shapes, at least 2 oz, work best). Resources http://oceanservice.noaa.gov/topics/navops/hydrosurvey National Ocean Service hydrographic survey Web site http://www.oceanexplorer.noaa.gov/technology/tools/sonar/sonar.html NOAA s Ocean Explorer Web page about sonar http://chartmaker.ncd.noaa.gov/hsd/wrecks.htm Office of Coast Survey Web page about sonar http://www.l-3klein.com/; http://www.c-max.co.uk/; http://www.geoacoustics.co.uk/df-sonar.htm; http://www.wesmar.com/ Web sites for commercial sidescan sonar manufacturers National Science Education Standards Content Standard A: Science as Inquiry Understandings about scientific inquiry Content Standard B: Physical Science Structure and properties of matter Content Standard E: Science and Technology Abilities of technological design Understandings about science and technology

Hydrography Lesson Plan Marine Navigation Content Standard F: Science in Personal and Social Perspectives Natural resources Natural and human-induced hazards Science and technology in local, national, and global challenges Links to AAAS Oceans Map (aka benchmarks) 5D/H3 Human beings are part of the Earth s ecosystems. Human activities can, deliberately or inadvertently, alter the equilibrium in ecosystems. 10

Marine Navigation Hydrography Worksheet MARINE NAVIGATION WORKSHEET Guidance for Research on Hydrographic Sonar Your assignment is to prepare a written report that includes answers to the following questions, and a design for a sidescan sonar system that could be constructed with a maximum budget of $500. Answering these questions should lead you to some useful approaches for the design problem. 1. Sonar is actually an acronym. What does it mean? 2. What are the basic components of a sonar system? 3. Why are transducers for sidescan sonar often contained in a towfish that is towed behind the survey vessel? 4. What are the advantages and disadvantages of high frequency (500 khz and up) sonar signals compared to lower frequency (50 khz or 100 khz) signals? 11

Hydrography Worksheet Marine Navigation 5. What is the difference between sidescan sonar and multibeam sonar? 6. Discuss the importance of sidescan sonar and multibeam sonar to one of the following areas: ocean transportation, oceanographic research, disaster response, or maritime archaeology. 12