Recitation question # 05

Similar documents
Respiratory System Physiology. Dr. Vedat Evren

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Circulatory And Respiration

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Respiration - Human 1

Section Three Gas transport


Respiratory Lecture Test Questions Set 3

P215 Respiratory System, Part 2

2. State the volume of air remaining in the lungs after a normal breathing.

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

Respiratory system & exercise. Dr. Rehab F Gwada

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning

Chapter 13 The Respiratory System

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives

CHAPTER 3: The respiratory system

alveoli Chapter 42. Gas Exchange elephant seals gills AP Biology

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

AP Biology. Chapter 42. Gas Exchange. Optimizing gas exchange. Gas exchange. Gas exchange in many forms. Evolution of gas exchange structures

82 Respiratory Tract NOTES

CHAPTER 3: The cardio-respiratory system

Alveolus and Respiratory Membrane

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

Gas Exchange Respiratory Systems

AP Biology. Gas Exchange Respiratory Systems. Gas exchange. Why do we need a respiratory system? Optimizing gas exchange. Gas exchange in many forms

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

Physiology of Respiration

Lab #2: Blood pressure and peripheral circulation

Respiration. The resspiratory system

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

Circulation and Respiration: Vital Signs Student Version

I. Gas Exchange Respiratory Surfaces Respiratory Surface:

Pulmonary Circulation Linda Costanzo Ph.D.

Respiration (revised 2006) Pulmonary Mechanics

BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM

Gases and Respiration. Respiration Overview I

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

Lab 17. The Respiratory System. Laboratory Objectives

Chapter 11: Respiratory System Review Assignment

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

I Physical Principles of Gas Exchange

Section Two Diffusion of gases

RESPIRATORY REGULATION DURING EXERCISE

GAS EXCHANGE & PHYSIOLOGY

Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46

Collin County Community College. Lung Physiology

2.1.1 List the principal structures of the

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi

How Animals Survive (Circulation and Gas Exchange)

Respiratory physiology II.

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Respiratory System. Part 2

Human Biology Respiratory System

Respiratory System Study Guide, Chapter 16

Figure 1. A schematic diagram of the human respiratory system.

Lung Volumes and Capacities

Monday, ! Today: Respiratory system! 5/20/14! Transport of Blood! What we ve been covering! Circulatory system! Parts of blood! Heart! tubing!

Chapter 13 The Respiratory System

Module Two. Objectives: Objectives cont. Objectives cont. Objectives cont.

GASEOUS EXCHANGE 17 JULY 2013

Lesson 9.1: The Importance of an Organ Delivery System

Some major points on the Effects of Hypoxia

Chapter 23. Gas Exchange and Transportation

Pulmonary Circulation

Regulation of Ventilation, Ventilation/ Perfusion Ratio, and Transport of Gases

Respiratory Pulmonary Ventilation

Life 24 - Blood and Circulation Raven & Johnson Ch 52 & 53 (parts)

Respiratory/Pulmonary Laboratory Experimentation

Topic 13: Gas Exchange Ch. 42. Gas Exchange pp Gas Exchange. Gas Exchange in Fish pp Gas Exchange in Fish

Chapter 23. Gas Exchange and Transportation

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

The diagram shows an alveolus next to a blood capillary in a lung. (a) (i) Draw a ring around the correct answer to complete the sentence. diffusion.

Respiratory System Review

RESPIRATORY GAS EXCHANGE

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility.

Chapter 16 Respiratory System

These two respiratory media (air & water) impose rather different constraints on oxygen uptake:

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D.

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have

Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan

BREATHING AND EXCHANGE OF GASES

(Slide 1) Lecture Notes: Respiratory System

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD

Outline - Respiratory System. Function of the respiratory system Parts of the respiratory system Mechanics of breathing Regulation of breathing

system. and then into the tissues. Diffusion of wastes such as Carbon Dioxide from tissues into blood and out of blood into the lungs.

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration.

The Respiratory System. Medical Terminology

Chapter 22 The Respiratory System

Systems of distribution

Structures of the Respiratory System include:

1.2 The structure and functions of the cardio-respiratory system Learning objectives

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook

Anatomy and Physiology Part 11: Of Blood and Breath by: Les Sellnow

ALVEOLAR - BLOOD GAS EXCHANGE 1

Transcription:

Recitation and Lab # 05 The goal of this recitations / labs is to review material related to the CV and respiratory lectures for the second test of this course. Info required to answer this recitation question has been referred to in lectures and is presented in labs as computer simulations related to circulation (3 expts), blood (2 expts), and respiration (4 expts). Although no additional info is presented in the lab section, its content allows for a better discussion of the material presented in the lecture / recitation course. 15 Question & answers related to the CV and respiratory lectures: Ranking of most important items for recitation / lab # 05 What is that this recitation question is really asking, and how would you answer it in an a, b, c, d format, consistent with the presence of the pathology known as EIPH (exercise induced pulmonary hemorrhage)?. For additional help with your answer, look forward to the lecture on exercise in humans and animals in the third segment of the course. In order to answer this recitation question you need to understand all material tested in your first exam plus the material presented in the lecture on CV & respiratory function and summarized in the lab # 04 / 05. Recitation question # 05 The fifth recitation question attempted to force you to practice on the (a,b,c,d) sub-questions in a specific CV-Respiratory pathological condition. " If you can not write an idea into a single sentence, " you probably have not yet understood the material. 1

Recitation question # 05 The fifth recitation question attempted to force you to practice on the (a,b,c,d) sub-questions in a specific CV-Respiratory pathological condition. " If you can not write an idea into a single sentence, " you probably have not yet understood the material. Virtual Lab # 05 The goal of this recitations / labs is to review material related to the CV and respiratory lectures for the second test of this course. Info required to answer this recitation question has been referred to in lectures and is presented in labs as computer simulations related to circulation (3 expts), blood (2 expts), and respiration (4 expts). Although no additional info is presented in the lab section, its content allows for a better discussion of the material presented in the lecture / recitation course. 15 Physiology Interactive Lab Simulation (PhILS) Students should review all simulated experimental labs available in the software package used for this course. Students should perform the different labs following the instructions and time schedule defined for each lab. 2

Physiology Interactive Lab Simulations (PhILS version 2.0 has fewer labs than PhILS version 3.0) Osmosis and diffusion 01 varying ECF concentration Metabolism 02 size and basal metabolic rate 03 cyanide and electron transfer Skeletal muscle function 04 stimulus dependent force generation 05 the length - tension relationship 06 principles of summation and tetanus 07 EMG and twitch amplitude Resting potential 08 resting potential and external K 09 resting potential and external Na Action potentials 10 the compound action potential 11 conduction velocity and temperature 12 refractory period 13 measuring ion currents Synaptic potential 14 facilitation and depression 15 temporal summation of EPSPs 16 spatial summation of EPSPs Endocrine function 17 thyroid gland and metabolic rate PhILS - (cooling and peripheral blood flow) 1) Connect a transducer to a volunteer s finger 2) Use the Virtual Data Acquisition System to display the finger pulse signal on the screen of a virtual computer 3) Explain why the signal changes when an ice bag is placed on the wrist, is left in place for a short time, and removed from the wrist Ice bag on or off on left wrist" 3

PhILS - (cooling and peripheral blood flow) Sphincters are bands of smooth muscle and are wrapped around arterioles. A contraction of these sphincters reduces the diameter of the arteriole and decreases blood flow. Arteriole sphincters in the hands and feet are very sensitive to temperature. In this lab, an ice bag is placed on a student wrist to show that cooling dramatically reduces blood flow to the fingers. If the ice bag is left on the wrist, blood flow slowly increases, and if the ice is removedblood flow is quickly restored to or even above resting levels. PhILS - (blood pressure and gravity) 1) Connect a transducer to a volunteer s finger 2) Use the Virtual Data Acquisition System to display the finger pulse signal on the screen of a virtual computer 3) Use a blood pressure cuff to prevent blood flow to an arm and release the pressure to measure the systolic pressure as blood flow returns, as monitored by the finger pulse signal 4) Describe what happens to blood pressure in the finger as the arm is raised Both arms down Left arm up Right arm up 4

PhILS - (blood pressure and gravity) cuff" How would this pattern Both arms (both down arms down) change (sistolic pressure and pulse Left amplitude), arm up if the right or left arm is raised?" Right arm up A force must be applied to move a fluid through a tube. The heart is a pump that provides pressure to push blood through the blood vessels of the circulatory system. The pressure of the fluid will decline if it flows against the force of gravity. This lab demonstrate that elevating a hand above the head decreases the blood pressure and blood flow. PhILS - (blood pressure and body position) 1) Connect a transducer to a volunteer s finger 2) Use the Virtual Data Acquisition System to display the finger pulse signal on the screen of a virtual computer 3) Use a blood pressure cuff to prevent blood flow to an arm and release the pressure to measure the systolic pressure as blood flow returns, as monitored by the finger pulse signal 4) Describe what happens to blood pressure when the volunteer lies down 5

PhILS - (blood pressure and body position) How would this pattern (standing up) change (sistolic pressure and pulse amplitude), if you are lying down?" The brain must be perfused at all times with blood at the appropriate pressure, irrespective of body position. Baroreceptors measure the blood pressure in the carotide arteries, which supply the brain with blood. In a standing individual, the head is above the heart, so blood pressure will decline as blood flows against gravity. When lying down, however, the head and heart are at the same level. Therefore, the heart creates a lower blood pressurebecause no compensatory blood pressure increases are required to overcame the effect of gravity. PhILS - (ph and Hb - O2 binding) 1) Dispense a blood sample with a virtual pipette into a tube 2) Assemble the tonometer and apply a vacuum 3) Measure color of blood solution in a virtual spectrophotometer 4) Construct an O2-dissociation curve using blood color and barometric pressure 5) Superimpose other O2-dissociation curves for blood samples at different phs 6) Explain effect of ph on the amount of O2 bound to hemoglobin How does this experimental set-up works?" 6

PhILS - (ph and Hb - O2 binding) ph = pk + log HCO3 PCO2 A low ph can be created by cell production of lactic acid and CO2, which reacts with H2O to form H + HCO3. This reaction catalyzed by carbonic anhydrase, enzyme found inside RBCs. The H ions bind to beta chains and decrease Hb s affinity to O2. In high cellular respiration, arterioles sphincters relax to direct blood to these cells. Factors in environment created by respiring cells, e.g. high CO2, increase O2 Hb dissociation. PhILS - (DPG and Hb - O2 binding) 1) Dispense a blood sample with a virtual pipette into a tube 2) Assemble the tonometer and apply a vacuum 3) Measure color of blood solution in a virtual spectrophotometer 4) Construct an O2-dissociation curve using blood color and barometric pressure 5) Superimpose a second O2-dissociation curves for a blood sample to which 2,3 DPG has been added 6) Explain effect of DPG on the amount of O2 bound to hemoglobin 7

PhILS - (DPG and Hb - O2 binding) 2,3 diphosphoglycerate (DPG) binds to the beta chains and decreases Hb s affinity for O2. DPG facilitates O2 unloading to the tissues, but decreases O2 loading at the lung. DPG levels increase at high elevations, where less O2 is available in the air and blood PO2 levels are low. Therefore, while DPG promotes O2 unloading from Hb at the tissues, at the lungs less O2 is available and Hb is less capable of picking-up O2. PhILS - (altering body position) 1) Use virtual instruments to monitor breathing of a student volunteer and display the signal on a computer virtual screen 2) Measure the tidal volume 3) Describe the changes that take place in the pulmonary circulation when a person lies down 4) Explain the changes in tidal volume when a person lies down 8

PhILS - (altering body position) Pressure of a fluid declines as it moves against gravity. The heart is located in the thorax and pumps blood to the lungs. In the standing individual, gravitational effects produce lower blood pressure in the apex of the lung (shoulder region) than at the base. As a result pulmonary capillaries in the apex of lungs are closed so that alveolar air in this region is not available for gas exchange with blood. In a person lying down, however, gravity has less effect and alveolar capillaries are open. This provides a larger surface area for gas exchange compared with someone standing, so tidal volume is less. PhILS - (altering airway volume) 1) Use virtual instruments to monitor breathing of a student volunteer and display the signal on a computer virtual screen 2) Measure the tidal volume 3) Explain the changes in tidal volume when the volunteer breaths through a plastic tube 9

PhILS - (altering airway volume) The human lung consists of alveolus and airways. O2 and CO2 are exchanged across alveoli walls between air and pulmonary blood supply. Air that enters the lung at the end of a breathing cycle remains in the airways and is not available for exchange. In this lab, the volume of airways or anatomical dead space, was artificially enlarged by breathing through a plastic tube. The volunteer exhibits compensatory changes in the depth of breathing or tidal volume. The lab demonstrates that the volunteer increases the tidal volume of the air that enters the alveoli, however, the alveolar ventilation remained constant. PhILS - (exercise induced changes) 1) Use virtual instruments to monitor breathing of a student volunteer and display the signal on a computer virtual screen 2) Measure the respiratory reserve volume, tidal volume, and the expiratory reserve volume 3) Explain the changes in breathing patterns when the volunteer exercises 10

PhILS - (exercise induced changes) Exercise increases the depth (tidal volume) and rate of breathing. The volume of the airways remain constant, so every extra ml of air that is inhaled goes into the alveoli and is available for exchange with the blood in the pulmonary capillaries, this is seen as an increase in alveolar ventilation during exercise. Force expiration during exercise decreases the expiratory reserve volume. This means that less (stale) air remains in the lungs after the volunteer has breathed out, so there is less stale ait to mix with the incoming fresh air. PhILS - (deep breathing and cardiac function) 1) Use virtual instruments to monitor breathing of a student volunteer and display the signal on a computer virtual screen 2) Connect a pulse transducer to the volunteer s finger to monitor blood flow and heart rate on the virtual computer screen 3) Predict how heart rate varies during the breathing cycle 11

PhILS - (deep breathing and cardiac function) Compare inhalation vs " exhalation for:" " Intrathoraxic pressure (P)" " Veins negative P in heart" " Heart rate" " Stroke volume (estimated)" " Venous return to the heart" The breathing cycle consists of a period of inhalation and exhalation. During inhalation, the volume of the thorax increases and the pressure inside the thorax decreases. This draw air into the lung and also pull blood towards the heart which is located inside the thorax. One theory maintains that the increase in venous return produces a faster stretching of the wall of the atria, and this increases heart rate. During exhalation, the volume of the thorax decreases and pressure of the thorax increases. This pushes air out of the lungs and increases venous return. The result is a decrease in heart rate. 12