Outline Chapter 7 Waves

Similar documents
Characteristics of Waves

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p

Physical Science 1 Chapter 6 WAVES. A wave is a disturbance that is propagated through a system. Waves transfer energy.

Force & Motion. Objective 6.P.1. 6.P.1 Understand the properties of waves and the wavelike property of energy in earthquakes, light and sound.

Table of Contents. Chapter: Waves. Section 1: The Nature of Waves. Section 2: Wave Properties. Section 3: The Behavior of Waves

This requires a medium!

Waves, Sounds, and Light

Chapter 17 Mechanical Waves

17.5 Behavior of Waves

Why are both electromagnetic and mechanical waves needed to make movies? Waves. transfer energy but do not carry medium with them.

Wave a repeating disturbance or movement that transfers energy through matter or space

WAVES. Mr. Banks 8 th Grade Science

WAVES. Unit 3. Sources: Ck12.org

What is a wave? A wave is a disturbance that transfers energy from place to place.

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

CHAPTER 10 WAVES. Section 10.1 Types of Waves

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

Introduction to Waves

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

Transverse waves cause particles to vibrate perpendicularly to the direction of the wave's motion (e.g. waves on a string, ripples on a pond).

Chs. 16 and 17 Mechanical Waves

Chapter 20 - Waves. A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another.

How do waves interact with objects? How do waves behave when they move between two media? How do waves interact with other waves?

Section 1 Types of Waves

17.1: Mechanical Waves

2 nd Term Final. Revision Sheet. Students Name: Grade: 10 A/B. Subject: Physics. Teacher Signature

WAVES. Pulses are disturbances or a single wave motion. A continuous production of pulses will give rise to a progressive wave (wave train).

Cover Sheet-Block 6 Wave Properties

Mechanical Waves and Sound

Chapter 17. Mechanical Waves and sound

Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Chapter 20 Study Questions Name: Class:

Not all waves require a medium to travel. Light from the sun travels through empty space.

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School

Directed Reading A. Section: The Nature of Waves WAVE ENERGY. surface of the water does not. Skills Worksheet. 1. What is a wave?

How are waves generated? Waves are generated by

Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy.

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another.

Section 1: Types of Waves

Unit 3: Energy On the Move

What are waves? Wave

CERT Educational Series Light and Waves Module

ENERGY OF WAVES ch.1 PRACTICE TEST

Harmonics and Sound Exam Review

Units of Chapter 14. Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect

Waves Disturbances that transport but not

a disturbance that transfers energy Carries energy from one place to another Classified by what they move through

20.1 Waves. A wave is an oscillation that travels from one place to another. Because waves can change motion, they are a travelling form on energy.

Introduction to Waves

Parts of Longitudinal Waves A compression

The physicist's greatest tool is his wastebasket Albert Einstein

A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed : Wave Basics / Wave Properties

CHAPTER 8: MECHANICAL WAVES TRANSMIT ENERGY IN A VARIETY OF WAYS

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Chapter 14: Waves. What s disturbing you?

INTRODUCTION TO WAVES. Dr. Watchara Liewrian

Mechanical waves Electromagnetic waves

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

MECHANICAL WAVES AND SOUND

Types of Waves. Section Section 11.1

Chapter 19: Vibrations And Waves

waves? Properties Interactions

Florida Benchmarks. SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials.

Academic Year First Term. Grade 6 Science Revision Sheet

Vocabulary. Energy Wave Amplitude Conduction Convection Radiation Color spectrum Wavelength Potential energy

Waves. What are waves?

Ways Waves Interact. ! Reflection! Refraction! Diffraction! Interference. Standing Waves. ! Constructive! Destructive

WAVES, WAVE BEHAVIOR, GEOPHYSICS AND SOUND REVIEW ANSWER KEY

Physics 11. Unit 7 (Part 1) Wave Motion

Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move.

Wave. 1. Transverse 2. Longitudinal 3. Standing

PRE-TEST OVER WAVES (S8P4)

Chapter 10: Waves The Test. Types of Waves: Surface Waves. Wave concepts. Types of Waves: Compression Waves. Types of Waves: Compression Waves

Name: Section: Date: Wave Review

Waves can interact with other waves, other objects, or change medium (travel through different substances)

HITES, 2011 Lecture 1 1. You are in a boat out on the ocean watching the waves go by. To fully describe the waves, you need three things:

Slide 1 / The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength Amplitude

How do waves transfer energy?

Waves. Please get out a sheet of paper for notes.

Physics 101 Lecture 20 Waves & Sound

Broughton High School

Waves and Sound. (Chapter 25-26)

Waves. Unit 9 - Light & Sound

Waves and Sound. Honors Physics

9.2 Waves. Why learn about waves? wave - a traveling oscillation that has properties of frequency, wavelength, and amplitude.

Physical Science Ch. 10: Waves

Waves Multiple Choice

Conceptual Physics. Chapter 25: Vibrations and Waves Mr. Miller

2 Characteristics of Waves

Mechanical Waves. Mechanical waves are created by the vibration of objects. Mechanical waves can be either transverse or longitudinal.

Check out Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

P11 Waves 1 Basics.notebook December 13, 2013

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

Crave the Wave, Feb 16, 2008 TEAM Mentor Invitational Score Rank

Chapter 16 Waves and Sound

Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse

Practice Problems For 1st Wave Exam

Transcription:

Outline Chapter 7 Waves 7-1. Water Waves 7-2. Transverse and Longitudinal Waves 7-3. Describing Waves 7-4. Standing Waves 7-5. Sound 7-6. Doppler Effect 7-7. Musical Sounds 7-8. Electromagnetic Waves 7-9. Types of EM Waves 7-10. Light "Rays" 7-11. Reflection 7-12. Refraction 7-13. Lenses 7-14. The Eye 7-15. Color 7-16. Interference 7-17. Diffraction

7-1. Water Waves Water waves are really circular. They are an example of Mechanical waves.

7-1. Water Waves

7-1. Water Waves

7-1. Water Waves

7-1. Water Waves

7-2. Transverse and Longitudinal Waves Transverse waves are mechanical waves in which the particles of the matter through which they pass move perpendicular to the wave direction; transverse waves can travel only through solids. Longitudinal waves are mechanical waves in which the particles of the matter through which they pass move parallel to the wave direction in a series of compressions and rarefactions. Longitudinal waves can travel through fluids as well as solids. Water waves are a combination of both transverse and longitudinal waves.

7-2. Transverse and Longitudinal Waves Transverse waves can travel only through solids. Longitudinal waves can travel through fluids as well as solids. Water waves are a combination of both transverse and longitudinal waves.

How Earthquake Waves Travel Shadow Zone (no P or S waves) shows evidence for a core S waves cannot travel through liquid and are like transverse waves Refraction of P or longitudinal waves shows the changes in composition of the interior

S-Wave Shadow Zone

P-Wave Shadow Zone

7-3. Describing Waves Wavelength (λ) is the distance from crest to crest. Amplitude (A) is the maximum displacement from a normal position.

7-3. Describing Waves Frequency (f) is the number of crests that pass a given point each second; the unit of frequency (cycles per second) is the hertz (Hz). Speed (v) is the rate at which each crest moves; wave speed is equal to wavelength times frequency: v = λf Period (T) is the time needed for a wave to pass a given point.

7-4. Standing Waves Standing waves occur when reflected waves interact with forward-moving waves in such a way that some points in the medium have amplitudes twice that of the normal amplitude and at other points the amplitude is zero. Such waves appear to be stationary or standing still.

7-5. Sound Sound waves are longitudinal waves. Speed of sound is about 343 m/s (767 mi/h) in sea-level air at ordinary temperatures. Sound travels faster in liquids and solids than in gases. http://cgi.ebay.com/ws/ebayisapi.dll?viewitem&category=47066&item=7329094194&rd=1

Sound Propagation The disturbance travels down the tube The wave moves by making the air molecules oscillate back and forth These molecules bump into the molecules further into the tube, and so on...

High Pressure corresponds to Compressions-- PEAKS in the SINE wave Low Pressure correspond to Rarefactions-- VALLEYS in the SINE wave

Fig. 7.13 Echo Sounding By measuring the time a By measuring the time a sound echo takes to return to the ship the sea depth can be measured.

7-5. Sound The decibel (db) is the unit of sound intensity. Sounds with frequencies below about 20 Hz are called infrasound; those above about 20,000 Hz are called ultrasound. The human ear is most sensitive to sound frequencies between 3000 and 4000 Hz.

7-6. The Doppler Effect The doppler effect is the apparent change in frequency of a wave due to the relative motion of the listener and the source of the sound. The doppler effect also occurs in light waves and is used by astronomers to calculate the speed at which stars are approaching or receding.

Line Spectra in Stars and the red shift indicating movement away or towards us. 7 -

Fig. 7.10 Sound waves can be generated by vibrating strings of a violin, the vibrating air column of a clarinet and the vibrating membrane of a drum.

7-7. Musical Sounds Fundamental tone is the tone produced when an object vibrates as a whole; this is always the lowest frequency. Overtones are higher frequencies that are produced when an object vibrates in segments; they add richness and quality, or timbre, to the fundamental tone. Resonance is the ability of an object to be set in vibration by a source whose frequency is equal to one of its natural frequencies of vibration. The fundamental frequencies in ordinary human speech are mostly below 1000 Hz, averaging about 145 Hz in men and about 230 Hz in women.

Resonance Tacoma Narrows Bridge Collapse in 1940 Tacoma Narrows Movie

7-8. Electromagnetic Waves r r James Maxwell (1831-1879) Electromagnetic (em) waves consist of linked electric and magnetic fields traveling at the speed of light.

7-9. Types of EM Waves The electromagnetic spectrum is the range of frequencies of em waves.

Fig. 7.22 Reflected light is polarized and can be filtered out by using sunglasses made from polarizer material.

7-9. Types of EM Waves Heinrich Hertz (1857-1894) Radio communication uses amplitude modulation (AM) or frequency modulation (FM).

7-9. Types of EM Waves Guglielmo Marconi at his laboratory in Newfoundland with the instruments that detected the first radio transmission across the Atlantic Ocean. The Waves were reflected by the ionosphere.

7-11. Reflection The image in a mirror appears to originate from behind the mirror.

7-12. Refraction Refraction is the change in direction of a train of waves when they enter a medium in which their speed changes. Light is refracted when it goes from one medium into another medium in which the speed of light is different.

7-12. Refraction Shallow Water waves move slower at shallow depths and thus cause refraction. The amount of deflection when light is refracted depends on the speeds of light in the two mediums.

7-12. Refraction The internal reflection of light occurs when the angle through which a light ray passing from one medium to a less optically dense medium is refracted by more than 90.

7-13. Lenses A converging lens is thicker in the middle than at its rim and brings parallel light to a single point at a distance called the focal length of the lens. A diverging lens is thinner in the middle than at its rim and spreads out parallel light so that it seems to come from a point behind the lens.

7-13. Lenses How a magnifying glass works.

How a Camera Works A camera uses a converging lens to focus light rays from an object onto the film.

7-14. The Eye The human eye operates much like a camera

Fig. 7.50 Refraction at the cornea gives rise to most of the focusing power of the human eye. Water in direct contact with the cornea reduces the refraction and thus we cannot focus and need goggles to keep the water away from the cornea. Beavers have transparent eyelids that act as goggles and fish use eyes with thick lens to counteract this effect.

7-14. The Eye Farsightedness occurs when the eyeball is too short, focusing the object behind the retina and making it difficult to focus on nearby objects. Nearsightedness occurs when the eyeball is too long, focusing the object in front of the retina and making it difficult to focus on distant objects.

7-14. The Eye Blind spot-close your left eye and look directly at the X. When the X is about 20 cm from your eye, the spot on the right will disappear. (page 223 in book)

7-14. The Eye Astigmatism occurs when the cornea or lens has different curvatures in different planes. Below (a) how a cross looks normally and (b) how it looks if a person has an astigmatic eye.

7-15. Color White light is a mixture of light waves of different frequencies. Each frequency of light produces the visual sensation of a particular color.

7-15. Color Dispersion is the separation of a beam of white light into its various colors or frequencies; rainbows are caused by the dispersion of sunlight by water droplets.

7-15. Color What makes the evening sky red? How do colors affect each other?

The Blue Sky White light from the sun Air molecules scattering All colors are scattered, BUT blue and violet are scattered STRONGLY, so the blue and violet light becomes more intense, and that is what we see The result: You look up and see a beautiful blue sky!

7-15. Color What makes the evening sky red? How do colors affect each other? Take a look at the sky from the planet Mars! http://www.panoramas.dk/fullscreen3/f2_mars.html

7-16. Interference Interference refers to the adding together of two or more waves of the same kind that pass by the same point at the same time. 1. In constructive interference, the original waves are in step and combine to give a wave of greater amplitude. 2. In destructive interference, the original waves are out of step and combine to give a wave of smaller amplitude.

7-16. Interference When light of only one color (one wavelength) strikes a thin film, the film appears dark where the light waves reflected from its upper and lower surfaces undergo destructive interference; the film appears bright where constructive interference takes place. When white light strikes a thin film, the reflected waves of only one color will be in step at a particular place while waves of other colors will not; this interference results in a series of brilliant colors.

7-17. Diffraction Diffraction is the ability of waves to bend around the edge of an obstacle.

7-17. Diffraction Because of diffraction, the images of microscopes and telescopes are blurred at high magnification. The larger the diameter of a lens or mirror used in an optical instrument, the less significant the diffraction and the sharper the image. The resolving power of a telescope depends upon the wavelength of the light that enters it divided by the diameter of the lens or mirror; the smaller the resolving power, the sharper the image.

Fig. 7.68 Antenna arrays are used together to produce supper reception and resolving power in one direction.

Lecture Quiz 7 1. Why do ocean waves curl? 2. What effect do Police use to measure your speed? 3. What is the difference between red and blue light besides color? 4. Give an example of resonance? 5. Why is the sky blue?

Lecture Quiz 7 1. What are 3 characteristics of a wave? 2. Sound is what type of wave? 3. What effect do Police use to measure your 3. What effect do Police use to measure your speed? 4. Give some 3 examples of electromagnetic waves? 5. What are the two types of interferences?