state asymmetric supercapacitors

Similar documents
Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Supplementary Information

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Supporting Information for

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Supporting Information

Supporting Information

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Supporting Information

Supplementary Material

Electronic Supporting Information (ESI)

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Supporting Information

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Supporting Information for

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Supporting information

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI)

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Supplementary Information

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Electronic Supplementary Information

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supporting Information

Supporting Information

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Electronic Supplementary Information

Electronic Supplementary Information (ESI)

Supplementary Information

Supporting Information

Electronic Supplementary Information

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

noble-metal-free hetero-structural photocatalyst for efficient H 2

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Supporting information

Supporting Information

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Supporting Information

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Electronic Supplementary Information

Supporting Information

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Supporting Information

Supplementary Information

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Highly enhanced performance of spongy graphene as oil sorbent

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Supporting Information

Supporting Information

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

Electronic Supplementary Information (ESI) for. MnOOH/Nitrogen-Doped Graphene Hybrid Nanowires. Sandwiched by Annealing Graphene Oxide Sheets for

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Curriculum Vitae. Yu (Will) Wang

Supporting Information

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

Electronic Supplementary Information

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Supplementary Information

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

Flexible Nb 4 N 5 /rgo Electrode for High-Performance Solid State Supercapacitors. Huazhong University of Science and Technology Wuhan , China

Supporting information

3D CNTs/Graphene-S-Al 3 Ni 2 Cathodes for High-Sulfur-Loading and Long-Life Lithium Sulfur Batteries

Complex Systems and Applications

Electronic Supplementary Information (ESI)

Supporting Information

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Zhaohuai Li, Qiu He, Xu Xu,* Yan Zhao, Xiaowei Liu, Cheng Zhou, Dong Ai, Lixue Xia, and Liqiang Mai*

Electronic Supplementary Information for

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

Supporting Information. Highly simple and rapid synthesis of ultrathin gold nanowires with

Measurements of the Cross Section for e 1 e 2! Hadrons at Center-of-Mass Energies from 2 to 5 GeV

Supporting information. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation

Preliminary Audition

2012 International Conference on Future Energy, Environment, and Materials

Devices and chemical sensing applications of metal oxide nanowires

Transcription:

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 3D hierarchical CoO@MnO 2 core-shell nanohybrid for high-energy solid state asymmetric supercapacitors Chao Li, a Jayaraman Balamurugan, a Tran Duy Thanh, a Nam Hoon Kim, a* Joong Hee Lee a,b* a Advanced Materials Institute of BIN Convergence Technology (BK21Plus Global) & Dept. of BIN Convergence Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea. b Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea. Corresponding to Prof. Joong Hee Lee (jhl@jbnu.ac.kr) and Prof. Nam Hoon Kim (nhk@jbnu.ac.kr) ---------------------------------------------------------------------------------------------------------------- *Corresponding author: Fax: +82 63 270 2341; Tel: +82 63 270 2342 Email address: Prof. Joong Hee Lee (jhl@jbnu.ac.kr) and Prof. Nam Hoon Kim (nhk@jbnu.ac.kr) ----------------------------------------------------------------------------------------------------------------

Fig. S1 (a) FE-SEM, (b) EDAX, and (c-e) EDS color mapping of the carbon coated CoO NWs/Ni foam.

Fig. S2 FE-SEM images of (a) Bare Ni foam, and (b) as-synthesized CoO NWs/Ni foam.

Fig. S3 EDAX spectrum of 3D CoO@MnO 2 core-shell nanohybrid.

Fig. S4 Dark field STEM elemental mapping analysis of the CoO NWs (a) selected area and corresponding elemental mapping of (b) cobalt, (c) oxygen.

Fig. S5 High-resolution XPS spectrum of O1s for 3D CoO@MnO 2 core-shell nanohybrid.

Current density (A g -1 ) 20 0-20 50 mv 5 mv -0.2 0.0 0.2 0.4 0.6 0.8 Potential (V) Fig. S6 CV curves with different scan rates of CoO NWs.

Potential (V) 0.5 0.4 0.3 0.2 0.1 1 A g -1 2 A g -1 3 A g -1 5 A g -1 8 A g -1 10 A g -1 20 A g -1 0.0-0.1 0 200 400 600 800 1000 1200 1400 Time (s) Fig. S7 GCD curves of 3 D CoO NWs at different current density.

0.5 0.4 CoO NWs 3D CoO@MnO 2 Potential (V) 0.3 0.2 0.1 0.0-0.1 0 500 1000 1500 2000 2500 Time (s) Fig. S8 GCD curves of CoO NWs and 3D CoO@MnO 2 core-shell nanohybrid at 1 A g 1.

0.6 0.5 After 1 st cycle After 10000 th cycle Potential (V) 0.4 0.3 0.2 0.1 0.0-0.1 0 50 100 150 200 250 300 350 400 450 Time (s) Fig. S9 GCD curves of 3D CoO@MnO 2 core-shell nanohybrid at 5 A g 1 (before and after stability).

4 CPE 3 R s R ct W -Z'' (Ohm) 2 1 After 1 st cycle After 10000 th cycle 0 0 1 2 3 4 Z' (Ohm) Fig. S10 EIS spectrum of 3D CoO@MnO 2 core-shell nanohybrid before and after stability tests.

Fig. S11 TEM images with different magnification of as-synthesized NG. The NG shows that the continuous, transparent, and crumpled graphene sheets were stacked together and formed a few-layered structure, which was perhaps initiated by N-atoms doped into graphene matrices. Also, it can be seen from the images that the physical structure and nature of NG sheets are not strongly affected during the current synthesis method.

Current density (A g -1 ) 15 10 5 0-5 -10-15 -20-25 50 mv 10 mv -1.0-0.8-0.6-0.4-0.2 0.0 Fig. S12 CV curves of NG at different scan rates. Potential (V)

Specific capacitance (F g -1 ) 400 300 200 100 0 5 10 15 20 Current density (A g -1 ) Fig. S13 Specific capacitance vs the current density of as-synthesized NG (three-electrode system).

Current density (A g -1 ) 40 20 0-20 -40 NG (Negative electrode) 3D CoO@MnO 2 (Positive electrode) -0.9-0.6-0.3 0.0 0.3 0.6 Potential (V) Fig. S14 3D CoO@MnO 2 core-shell nanohybrid and NG measured at the scan rate of 50 mvs 1 in a three electrode system.

Capacitance retention(%) 100 80 60 40 20 0 0 2000 4000 6000 8000 10000 Cycle number 86.8 % Fig. S15 The cycling stability of 3D core-shell CoO@MnO 2 //NG ASC measured at a current density of 10 A g 1 up to 10000 cycles test.

-Z'' (Ohm) 6 4 2 0 R s R ct CPE 0 4 8 12 Z' (Ohm) W After 1 st cycle After 10000 th cycle Fig. S16 EIS comparison before and after stability test of 3D core-shell CoO@MnO 2 //NG ASC.

Table S1. Electrode properties comparison with reported literatures. Reported Electrode Materials Electrolyt e Voltage window (V) Current density (A g -1 ) Mass Loading (mg cm -2 ) C sp (F g -1 ) Stability (Cycle No.) Referen ce No. α-mno 2 NWs@δ-MnO 2 core-shell Co 3 O 4 @NiO NWs 6 M KOH -0.1-0.55 1 2 M KOH 0-0.55 2 ZnO@Co 3 O 4 2 M KOH 0-0.52 1 Ni@NiCo 2 O 4 6 M KOH 0-0.45 1 NiCo 2 O 4 @PAN I core-shell 1 M H 2 SO 4 0-0.8 1 Co 3 O 4 @CeO 2 2 M KOH 0-0.45 2.08 Co 3 O 4 @CoMoO 4 Co 3 O 4 @Co(OH) 2 core-shell NiCo 2 O 4 @3D graphene m hybrid 1.5 m Co3O4 2.1 m NiO 0.9 m Co3O4 1.5 m hybrid 2.0 m hybrid 1.54 m hybrid 0.89 m Co3O4 3.0 m hybrid 4.8 231 853 858 899 901 1038 3 M KOH 0-0.6 1 1040 2 M KOH 0-0.4 1 m Co3O4 1.2 m Co(OH)2 0.3 1095 6 M KOH 0-0.5 1 1402 98.1% 10000 95.1% 6000 128.7% 6000 93.2% 6000 91% 3000 94.4% 5000 87.55% 5000 92% 2000 76.6% 5000 1 2 3 4 5 6 7 8 9 SnO 2 @Ni(OH) 2 core-shell 6 M KOH 0-0.5 0.5 1553 10 Co 3 O 4 @MnO 2 1 M LiOH 0-0.5 1 m Co3O4 1693 89.8% 11

Nanoeedle Arrays 1.0 m MnO2 0.67 5000 3D core-shell CoO@MnO 2 6 M KOH -0.1-0.5 1 m CoO 1.24 m hybrid 2.13 1835 97.7% 10000 This work Table S2. ASC Device properties comparison with reported literatures. Reported ASC Device Electrolyte Device Window (V) Energy Density ( Wh kg - 1 ) Power Density ( kw kg - 1 ) Stability (Cycle No.) Reference No. GNR//GNR-MnO 2 PAAK-KCl 0-2 29.4 12.1 H-TiO 2 @MnO 2 // H- TiO 2 @C core-shell MnO 2 /Carbon fiber// Graphene/Carbon fiber V 2 O 5 /Pin//rGO RuO 2 -IL-CMG// IL- CMG PVA-LiCl 0-1.8 59 0.045 PVA-LiCl 0-1.5 27.2 0.98 PVA- LiNO 3 0-1.8 38.7 0.9 PVA- H 2 SO 4 0-1.8 19.7 0.5 NiCo 2 O 4 /CC//PGP PVA-LiOH 0-1.8 60.9 0.57 β-ni(oh) 2 //AC PVA-KOH 0-1.4 9.8 0.15 NiO//α-Fe 2 O 3 PVA-KOH 0-1.25 12.4 0.95 88% 5000 91.2% 5000 95.2% 3000 91.1% 5000 79.4% 2000 96.8% 5000 76% 2000 85% 10000 12 13 14 15 16 17 18 19

Carbon aerogel // Co 3 O 4 NWs PVA-KOH 0-1.5 17.9 0.75 CoO@MnO 2 //NG PVA-KOH 0-1.8 85.9 0.85 85% 1000 86.8% 10000 20 This work Notes and References 1 Z. P. Ma, G. J. Shao, Y. Q. Fan, G. L. Wang, J. J. Song and D. J. Shen, ACS Appl. Mater. Interfaces, 2016, 8, 9050-9058. 2 X. H. Xia, J. P. Tu, Y. Q. Zhang, X. L. Wang, C. D. Gu, X. B. Zhao and H. J. Fan, ACS Nano, 2012, 6, 5531-5538. 3 D. P. Cai, H. Huang, D. D. Wang, B. Liu, L. L. Wang, Y. Liu, Q. H. Li and T. H. Wang, ACS Appl. Mater. Interfaces, 2014, 6, 15905-15912. 4 G. X. Gao, H. B. Wu, S. J. Ding, L. M. Liu and X. W. Lou, Small, 2015, 11, 804-808. 5 N. Jabeen, Q. Y. Xia, M. Yang and H. Xia, ACS Appl. Mater. Interfaces, 2016, 8, 6093-6100. 6 J. W. Cui, X. Y. Zhang, L. Tong, J. B. Luo, Y. Wang, Y. Zhang, K. Xie and Y. C. Wu, J. Mater. Chem. A, 2015, 3, 10425-10431. 7 Z. X. Gu, R. F. Wang, H. H. Nan, B. Y. Geng and X. J. Zhang, J. Mater. Chem. A, 2015, 3, 14578-14584. 8 X. H. Xia, J. P. Tu, Y. Q. Zhang, J. Chen, X. L. Wang, C. D. Gu, C. Guan, J. S. Luo and H. J. Fan, Chem. Mater., 2012, 24, 3793-3799. 9 C. F. Zhang, T. Kuila, N. H. Kim, S. H. Lee and J. H. Lee, Carbon, 2015, 89, 328-339. 10 Q. Q. Ke, C. Guan, M. R. Zheng, Y. T. Hu, K. H. Hoa and J. Wang, J. Mater. Chem. A,

2015, 3, 9538-9542. 11 D. Z. Kong, J. S. Luo, Y. L. Wang, W. N. Ren, T. Yu, Y. S. Luo, Y. P. Yang and C. W. Cheng, Adv. Funct. Mater., 2014, 24, 3815-3826. 12 M. K. Liu, W. W. Tjiu, J. S. Pan, C. Zhang, W. Gao and T. X. Liu, Nanoscale, 2014, 6, 4233-4242. 13 X. H. Lu, M. H. Yu, G. M. Wang, T. Zhai, S. L. Xie, Y. C. Ling, Y. X. Tong and Y. Li, Adv. Mater., 2013, 25, 267-272. 14 N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Y. Tang and M. Q. Zhu, Adv. Energy Mater., 2016, 6, 1501458. 15 X. Zhou, Q. Chen, A. Q. Wang, J. Xu, S. S. Wu and J. Shen, ACS Appl. Mater. Interfaces, 2016, 8, 3776-3783. 16 B. G. Choi, S. J. Chang, H. W. Kang, C. P. Park, H. J. Kim, W. H. Hong, S. G. Lee and Y. S. Huh, Nanoscale, 2012, 4, 4983-4988. 17 Z. Gao, W. L.Yang, J. Wang, N. N. Song and X. D. Li, Nano Energy, 2015, 13, 306-317. 18 S. T. Senthilkumar and R. K. Selvan, Phys. Chem. Chem. Phys., 2014, 16, 15692-15698. 19 S. W. Zhang, B. Yin, Z. B. Wang and F. Peter, Chemical Engineering Journal, 2016, 306, 193-203. 20 W. W. Liu, X. Li, M. H. Zhu and X. He, J. Power Sources, 2015, 282, 179-186.