Technology applications to enhance understanding of realtime snowsport head accelerations

Similar documents
Does wearing a wrist guard affect the site of wrist fracture in snow sports?

Recorded Speed on Alpine Slopes: How to Interpret Skier s Perception of Their Speed?

A portable roller ski rolling resistance measurement system

Can helmet design reduce the risk of concussion in football?

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

Helmet Usage and Safety Fact Sheet

Biomechanical Forces of Concussions. February 20, 2013 Martin Mrazik, PhD, R.Psych. University of Alberta

Dynamic analysis and motion measurement of ski turns using inertial and force sensors

Relationships among Risk Factors for Concussion in Minor Ice Hockey

Kick precision and spin rate in drop and torpedo punts

A Feedback System for the Motor Learning of Skills in Golf

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

Keywords: Highway Intersection, Intersection Accidents, Crash Type, Crash Contributing, Statistical Analysis, Design Factors

Towards determining absolute velocity of freestyle swimming using 3-axis accelerometers

Instrumentation of a kayak paddle to investigate blade/water interactions

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

Quantifying the effect of the facemask on helmet performance

Factors Associated With the Ability to Estimate Actual Speeds in Recreational Alpine Skiers

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

ScienceDirect. Rebounding strategies in basketball

ScienceDirect. Long-distance, short-distance: triathlon. One name: two ways.

Available online at ScienceDirect. The 2014 Conference of the International Sports Engineering Association

A Method for Assessing the Overall Impact Performance of Riot Helmets

Evidence Summary: Snowboarding

Effects of seam and surface texture on tennis balls aerodynamics

Final Report for Measurement of Head Velocities of Boxing Participants. with Wireless Digital Accelerometers. Daniel Bullock

Prevention of head Injuries

Variation of Nordic Classic Ski Characteristics from Norwegian national team athletes

Characteristics of ball impact on curve shot in soccer

Procedia Engineering Procedia Engineering 2 (2010)

Facts and safety tips for rugby union players

Available online at Procedia Engineering 200 (2010) (2009)

Do Mouthguards Prevent or Reduce Oral Injuries and Concussion during Sports Events?

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

MANAGEMENT OF SPEEDING COMPARING TWO APPLIED ENGINEERING MEASURES

A Comparison of Peak Linear and Angular Headform Accelerations Using Ice Hockey Helmets

Miscalculations on the estimation of annual energy output (AEO) of wind farm projects

The Singapore Copyright Act applies to the use of this document.

Evidence Summary: Skiing

Gender Differences in Head Impacts Sustained by Collegiate Ice Hockey Players

Activity profiles in adolescent netball: A combination of global positioning system technology and time-motion analysis

Basketball free-throw rebound motions

P articipation in ice hockey has significant inherent risk for

12/6/2017. Evidence-Based Practice: Head Impacts in Lacrosse: Should We Be Concerned? Disclaimer. Concussions in Lacrosse

ScienceDirect. Aerodynamic body position of the brakeman of a 2-man bobsleigh

University of Bath. DOI: /bjsports Publication date: Document Version Early version, also known as pre-print

C ricket is a popular ball sport involving the risk of ball to

White Rose Research Online URL for this paper: Version: Accepted Version

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN

20XX. Bicycle Helmets for Children 2017 tested by Folksam

ESTIMATION OF THE DESIGN WIND SPEED BASED ON

Cite this article as: BMJ, doi: /bmj c (published 4 January 2005)

Concussion in rugby Using research for improved management in contact sports. Stephanie Hollis

Load dynamics of joints in Nordic walking

How can injury surveillance inform advances in sport safety: The case of Alpine skiing

Relative Vulnerability Matrix for Evaluating Multimodal Traffic Safety. O. Grembek 1

Statistical Modelling for Injuries among the Soccer Players in Jaffna

ScienceDirect. Relating baseball seam height to carry distance

Safety Behavior for Cycling : Application Theory of Planned Behavior

Br J Sports Med 2005;39: doi: /bjsm

Considerations for the performance requirements and technical specifications of soft-shell padded headgear

Injury surveillance in the World Football Tournaments

Time Trends of Head Injuries Over Multiple Seasons in Professional Male Football (Soccer)

Snowsport Helmets: The Good and Bad

Systematic Review and Meta-analysis of Bicycle Helmet Efficacy to Mitigate Head, Face and Neck Injuries

Early release, published at on June 20, Subject to revision.

THE EFFECT OF BINDING POSITION ON KINETIC VARIABLES IN ALPINE SKIING

Wales Alpine Ski Racing Development Plan

Available online at ScienceDirect. The 2014 Conference of the International Sports Engineering Association

P ersonal protective equipment (PPE) is used to control

HELMETS have been shown to reduce the. Do Football Helmets Reduce Acceleration of Impact in Blunt Head Injuries?

Summary Statement Stakeholders Meeting London Hockey Concussion Summit January 18, 2009 The Stakeholders Meeting included representatives of:

Impact energy attenuation performance of football headgear

Sports-related concussions are a growing public. Biomechanical performance of leather and modern football helmets. Technical note

Available online at ScienceDirect. The 2014 conference of the International Sports Engineering Association

Keywords: multiple linear regression; pedestrian crossing delay; right-turn car flow; the number of pedestrians;

The effect of helmet use on injury severity and crash circumstances in skiers and snowboarders

Snow parks: Safety Analysis and Injury Prevention

COCHRANE CORNER. The development of an updated prehospital search filter for the Cochrane Library: Prehospital Search Filter Version 2.

Incidence of concussion over five seasons in a ski resort in Japan

Available online at ScienceDirect. Brendan Kays a, Lloyd Smith a *

Available online at Procedia Engineering 00 2 (2010) (2009)

ScienceDirect. Aerodynamics of ribbed bicycle racing helmets

abstract ARTICLE aspects in high school football.

A preliminary analysis of in-depth accident data for powered two-wheelers and bicycles in Europe

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

Rugby RIO : Internet-Based Surveillance of US High School Rugby Injuries

Special edition paper

Kinematics errors leading to Ski Injuries (2015) Haleh Dadgostar MD Sports Medicine Specialist Iran University of Medical Sciences

KICKING HORSE MOUNTAIN RESORT APPLICATION TO AMEND THE EXISTING CONTROLLED RECREATION AREA

THE 2016 SSA PERISHER. paraprogram. Snowsport AUGUST Featuring National Team Head Coaches, Paralympians and National Team Athletes.

2010 NPC Team Physician Conference. Russ O Connor MD, FRCPC (PMR), Dip Sport Med CASM

Available online at ScienceDirect. Procedia Engineering 112 (2015 ) 40 45

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

The effect of helmets on the risk of head and neck injuries among skiers and snowboarders: a meta-analysis. Methods

Level 3 Training Course Guide

Accelerometers: An Underutilized Resource in Sports Monitoring

Available online at ScienceDirect. Transportation Research Procedia 20 (2017 )

Study on Fire Plume in Large Spaces Using Ground Heating

Concussion: where are we now?

Transcription:

Available online at www.sciencedirect.com Procedia Engineering 60 ( 2013 ) 220 225 6 th Asia-Pacific Congress on Sports Technology (APCST) Technology applications to enhance understanding of realtime snowsport head accelerations Tracey J Dickson a *,Gordon Waddington a, Stephen Trathen a, Daniel Baltis a, Roger Adams b a Univesity of Canberra, University Aveneue, Canberra, ACT, 2601, Australia b Univesity of Sydney, Sydney, NSW, 2006, Australia Received 20 March 2013; revised 6 May 2013; accepted 9 May 2013 Abstract With the increasing concern about the long-term effects of concussive and sub-concussive head accelerations in sport, this research applies two technologies initially developed for team-based sports to snowsports to understand the characteristics of snowsport head acceleration. Results indicate that pediatric snowsports participants regularly achieved speeds over 23 km/h; snowsport head accelerations are rare and that when they do occur they are generally of low magnitude; and those most at risk were make snowboarders. 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license. Selection 2013 Published and peer-review by Elsevier under responsibility Ltd. Selection of the and School peer-review of Aerospace, under Mechanical responsibility and of Manufacturing RMIT University Engineering, RMIT University Keywords: Concussion; head injury; snowsport; snowboarding; skiing 1. Introduction There is increasing concern about the long term effects of repeated sub-concussive head accelerations, particularly within sport [1], and Dashnaw et al have suggested that it will be imperative to appropriately model concussive and even sub-concussive injuries in an attempt to understand, prevent, and treat the associated chronic neurodegenerative sequelae [1]. This is sympathetic with the calls by Bahr et al [2], Meeuwise et al [3] and Finch et al [4] for more robust and multivariate sport injury research. A challenge to anyone seeking to model these behaviors, particularly within snowsports, is to also understand what are current actual behaviors and how that may vary across time and place, from which * Corresponding author. Tel.: +61 2 6201 2465; fax: +61 2 6201 2550. E-mail address: tracey.dickson@canberra.edu.au 1877-7058 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license. Selection and peer-review under responsibility of the School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University doi: 10.1016/j.proeng.2013.07.079

Tracey J. Dickson et al. / Procedia Engineering 60 ( 2013 ) 220 225 221 models or analogs may be developed. Snowsports presents a different challenge than when trying to model behaviors in other concussive-prove sports such as ice hockey and football, in that snowsports are conducted across large geographic areas, that has variable terrain, changing snow conditions and a wide range of climatic conditions across a season and even within a day. However existing technologies currently utilized in football have the potential to enhance the understanding of real-time concussive and sub-concussive snowsport head accelerations and behaviors that may be able to inform future modeling of snowsports behaviors [5, 6]. Additionally, insights from this research will help inform future snowsport safety messages [7], the efficacy of current helmet design testing upper limits of c. 23km/h and future sport technology developments. 1.1. Sport head injury research and concussion prevention Van Mechelen et al [8] suggested that injury prevention strategies should be informed by a clarification of the problem and an analysis of the mechanism/s of injury. More recently Bahr et al [2, 9] and Meeuwisse et al [3] indicated that sport injury prevention research design and analysis needed to identify the many factors that may influence injury incidence and severity, with a particular focus upon those risk factors, intrinsic or extrinsic, that are modifiable. This was expanded upon by Finch who advocated multidisciplinary approaches in evaluating injury causation, including epidemiological, biomechanical and behavioural [10]. Additionally, in the broader safety research, it has been recommended to move beyond single immediate causes of incidents to a consideration of multiple and systemic causes in the chain of events [11]. Issues in sport injury prevention research may occur in both the design and analysis of the research, but also in the dissemination and adoption phases. In the design phase it has been suggested that sports injury research is plagued with the lack of consistent injury and exposure definitions [10], which is exacerbated by the inappropriate choice, or lack of adequate controls in the dominant case-control study design [4]. For example, Finch et al described four snowsport head injury studies assessing the effectiveness of helmet use [12-15] none of which used biomechanical matching of controls to the head injured cases. The controls included people who did not experience either a head injury or a head impact. As a result of this design issue it was suggested that the strong conclusions about the effectiveness of helmets must be treated with caution as the controls are not fully comparable to the cases [4]. However a later review of the same data by Cusimano and Kwok [16] did not critique the research design nor the selection of controls in these studies and it was readily accepted that helmets reduced head injuries even though there was no evidence that the controls had experienced similar fall mechanisms to the cases. In the analysis phase it has been suggested, that with enhanced research design, more robust multivariate analysis may be completed [9]. To date there has not been a range of studies with this level of analysis for snowsport head impact research. In addition to the need for robust design and analysis, program evaluation of interventions is essential [8, 10], first by clarifying the problem, then evaluating the effectiveness of any intervention strategies, such as education, protective equipment usage or environmental modification. The recent Consensus statement on concussion in sport indicated that there is no good clinical evidence that currently available protective equipment [i.e. helmets and mouthguards] will prevent concussions For skiing and snowboarding, there are a number of studies to suggest that helmets provide protection against head and facial injury and hence should be recommended for participants in alpine sports [17].

222 Tracey J. Dickson et al. / Procedia Engineering 60 ( 2013 ) 220 225 1.2. Current snowsport helmet standards There is much debate about the current range of sport helmet standards, including snowsports, that questions the relevance of the testing limits as well as considering the future of helmet design given emerging materials [18, 19]. The three main international voluntary helmet standards for snowsports are: ASTM 2040[20], Snell RS-98[21] and CEN 1077[22] (Table 1). Recently the Canadian Standards Authority has developed a fourth standard, CSA Z263.1-08 [23], though to date no helmets have been manufactured to this standard. The standards have many similarities including the maximum velocity at which helmets are tested on a flat anvil (c. 22.5 km/h for both Snell RS-98 and ASTM 2040), yet it is known that snowsport participants easily exceed these speeds in normal activity [24, 25]. Also, an acceptable design is one where peak accelerations of the test head forms reach 250-300g, yet it has been suggested that head accelerations must be reduced to below 100g to prevent concussions [26]. It is clear from these standards that they are not tested at levels that may replicate what may be considered normal snowsport behaviors, and the question should be asked, should they, or should other prevention strategies, be applied? And, if they are not tested at those levels, should they be advocated as the primary head injury prevention strategy? Table 1. Summary of four current volunteer snowsport helmet standards Impact Testing Snell RS-98 CEN 1077 ASTM 2040 CSA Z263.1-08 Impact on flat anvil 100 Joules = c. 22.54 km/h 69 Joules = c. 19.52 km/h 6.2 m/s = c. 22.32 km/h 5.40 m/s = c. 19.44 km/h Impact on hemispherical 80 Joules No test 4.8 m/s No test object & edge Impact = c. 20.16 km/h = c. 17.28 km/h Number of impacts per site Single Single Single Three Shell penetration 1 m drop 15.94 km/h 3.84 m/s = 13.82 km/h 15 mm metal dowel through any gap in helmet Acceptable peak acceleration experienced by head form 300g 250g 300g 250g Peripheral vision from center 105 105 N/A 105 2. Method To measure snowsport behaviors and record head accelerations, a descriptive study was conducted during 2009-11 with a convenience sample of pediatric snowsport participants participating in school snowsport programs in the Australian Snowy Mountains. Participants wore Giro-9 helmets fitted with Symbex s Head Impact Telemetry (Fig.1a and b) to measure frequency, location and severity of head accelerations, and also GPSports Spi Elite data logging system (Fig.1c) to track participants speed, distance travelled and location. The HIT System uses six accelerometers deployed against the head to model head (not helmet) acceleration and has been used in other sports such as American football and ice hockey to measure head accelerations over 10g [27]. The modified helmets complied with ASTM 2040. The GPSport Spi Elite captured time, distance, speed, heart rate, location, body load and impacts and were synchronized with the helmet data via the use of a single computer. As with the HIT system the Spi Elites, which were created in Australia, were initially developed for use with team-based field sports such as football and rugby union [28].

Tracey J. Dickson et al. / Procedia Engineering 60 ( 2013 ) 220 225 223 Data from the helmets was uploaded into the HIT system database for analysis while the GPS data was uploaded onto the Team AMS software via the same laptop computer for analysis. Uploading the data via the same computer enabled data, and thus incident times, from both sources to be synchronized. The questionnaire data and summary data from HITs and the GPSs were entered into PASW 18.0 for Mac for statistical analysis. All impacts recorded via the helmets were crosschecked to the Team AMS software to investigate when and where the event occurred. Fig. 1. (a) Giro-9 helmet fitted with accelerometers; (b) Giro-9 helmet showing placement of electronics; (c) GPSport SpiElite and harness The inclusion criteria for a verified fall with a head acceleration that warranted further investigation was: Head linear accelerations greater than 40g; Confirmation via geospatial data from the Spi Elite unit that it was an on-snow event; Body impact greater than 2g recorded by the Spi Elite within five one-hundredth s of a second of the head impact; A decrease in velocity recorded by the Spi Elite within five one-hundredth s of a second of the head impact. 3. Results From a technology design perspective, when interpreting the HIT data, three things need to be taken into account, firstly that two different HIT system on-off switch systems were used on the helmets across the life of the project. In 2009, the switch was the press-stud for the goggle strap, while the helmets used over 2010-11 had an on-off switch imbedded into the padding of the helmet over the forehead. The change was to ensure that there was no inadvertent on/off switching when removing or replacing goggles or when the helmet was in transit. The second consideration is that the HIT system can record multiple head accelerations that may be part of the same impact event. For example, one helmet recorded 17 impacts within one minute between the time period 15:26:01 and 15:27:00, yet this would probably be related to the same fall event or a false-positive reading. The third aspect, as noted earlier, is that the HIT system cannot indicate where in the resort the impact occurred, thus impacts may be false-positives due to on-off switch errors, snowplay, hitting the helmet on a lift, rough-play between friends, or even mistreatment of the helmet after removal. Through crossreferencing of the HITS data to the Spi Elite location data these false-positives may be excluded. A total of 674 head accelerations over 10g were recorded (average of 14.7 per participant) of which 64% were between 10 and 20g, 6% were over 40g, and only 2 of the recorded accelerations were at a level that may be expected to result in a concussion, i.e. >98g [27]. To confirm that the accelerations

224 Tracey J. Dickson et al. / Procedia Engineering 60 ( 2013 ) 220 225 occurred on-snow the HIT system data with cross-checked with the Spi Elite GPS data revealing that only three peak accelerations recorded over 40g could be verified as having occurred while the participant was wearing the helmet on-snow, or 4.2 per 1,000 hours of all snowsport. The threshold of 40g was chosen to reflect the focus on sub-concussive accelerations and that previous research using the HIT system has demonstrated that concussions, as diagnosed by a physician, have occurred at linear accelerations as low as 60g [29]. As all three were male snowboarders, one a novice, one intermediate and one advanced, this would equate to 10.6 head accelerations over 40g per 1,000 hours of snowboarding participation. 4. Discussion While there is a growing concern about the long-term effects of sub-concussive head accelerations in sport there is little research that characterizes real-time behaviors that may inform future injury prevention strategies and helmet designs. Through the use of two different sports technologies this research has added to our understanding of on-snow behaviors of pediatric snowsport participants, including the characterization of head accelerations. Key insights drawn from this research are: Pediatric snowsport participants regularly achieve maximum speeds greater than 23km/h; If head accelerations do occur they do occur are generally of low magnitude; Those most at risk of a head accelerations > 40g were male snowboarders; The existing snowsport helmet standards do not reflect current knowledge about on-snow behaviors, nor existing concerns about potential concussion thresholds and the cumulative effects of sub-concussive accelerations. Future snowsport injury prevention strategies may focus upon informing people about the limitations of existing helmet standards, while future adaptations of existing GPS and accelerometer facilities such as in Smart phones may enhance the understanding of real-time head acceleration severity and frequency to inform future developments of helmet standards and design. Acknowledgements This research was funded by the New South Wales Sporting Injuries Committee and the National Institute of Sports Studies, University of Canberra, and supported by Simbex Inc., NH. References [1] Dashnaw, M. L., Petraglia, A. L., and Bailes, J. E., 2012, "An overview of the basic science of concussion and subconcussion: where we are and where we are going," Neurosurg. Focus, 33(6), p. E5. [2] Bahr, R., and Krosshaug, T., 2005, "Understanding injury mechanism: a key component of preventing injuries in sport," Br. J. Sports Med., 39(6), pp. 324-329. [3] Meeuwisse, W. H., Tyreman, H., Hagel, B., and Emery, C., 2007, "A Dynamic Model of Etiology in Sport Injury: The Recursive Nature of Risk and Causation," Clin. J. Sport Med., 17(3), pp. 215-219. [4] Finch, C. F., Ullah, S., and McIntosh, A. S., 2011, "Combining Epidemiology and Biomechanics in Sports Injury Prevention Research: A New Approach for Selecting Suitable Controls," Sports Med., 41, pp. 59-72. [5] Dickson, T. J., Terwiel, F. A., Waddington, G., and Trathen, S., 2011, "Evaluation of the use of a GPS data-logging device in a snowsport environment," Proc. Eng., pp. 470-475. [6] Dickson, T. J., Trathen, S., and Waddington, G., 2011, "Investigating characteristics of head impacts in paediatric snowsport participants: using telemetry, GPS positioning and acceleration logging," Proc. Eng., pp. 476-480. [7] Picard, A., 2010, "Helmets on the slopes cut head injury risk," Globe and MailVancouver.

Tracey J. Dickson et al. / Procedia Engineering 60 ( 2013 ) 220 225 225 [8] van Mechelen, W., Hlobil, H., and Kemper, H. C. G., 1992, "Incidence, Severity, Aetiology and Prevention of Sports Injuries: A Review of Concepts," Sports Med., 14(2), pp. 82-99. [9] Bahr, R., and Holme, I., 2003, "Risk factors for sports injuries - a methodological approach," Br. J. Sports Med., 37(5), pp. 384-392. [10] Finch, C. F., 2006, "A new framework for research leading to sports injury prevention," J. Sci. Med. Sport, 9, pp. 3-9. [11] Katsakiori, P., Sakellaropoulos, G., and Manatakis, E., 2009, "Towards an evaluation of accident investigation methods in terms of their alignment with accident causation models," Safety Sci., 47(7), pp. 1007-1015. [12] Hagel, B. E., Pless, I. B., Goulet, C., Platt, R. W., and Robitaille, Y., 2005, "Effectiveness of helmets in skiers and snowboarders: case-control and case crossover study," Br. Med. J., 330(7486), pp. 281-281. [13] Mueller, B. A., Cummings, P., Rivara, F., Brooks, M. A., and Terasaki, R. D., 2008, "Injuries of the Head, Face, and Neck in Relation to Ski Helmet Use," Epidemiology, 19(2), pp. 270-276. [14] Sulheim, S., Holme, I., Ekeland, A., and Bahr, R., 2006, "Helmet use and risk of head injuries in alpine skiers and snowboarders," JAMA, 295(8), pp. 919-924. [15] Hagel, B. E., Pless, I. B., Goulet, C., Platt, R. W., and Robitaille, Y., 2005, "The effect of helmet use on injury severity and crash circumstances in skiers and snowboarders," Accid. Anal. Prev., 37(1), p. 103. [16] Cusimano, M. D., and Kwok, J., 2010, "The effectiveness of helmet wear in skiers and snowboarders: a systematic review," Br. J. Sports Med., 44, pp. -. [17] McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvo ák, J., Echemendia, R. J., Engebretsen, L., Johnston, K., Kutcher, J. S., Raftery, M., Sills, A., Benson, B. W., Davis, G. A., Ellenbogen, R. G., Guskiewicz, K., Herring, S. A., Iverson, G. L., Jordan, B. D., Kissick, J., McCrea, M., McIntosh, A. S., Maddocks, D., Makdissi, M., Purcell, L., Putukian, M., Schneider, K., Tator, C. H., and Turner, M., 2013, "Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012," Br. J. Sports Med., 47(5), pp. 250-258. [18] McIntosh, A. S., Andersen, T. E., Bahr, R., Greenwald, R., Svein, K., Turner, M., Varese, M., and McCrory, P., 2011, "Sports helmets now and in the future," Br. J. Sports Med., 45(16), pp. 1258-1265. [19] Shealy, J. E., Johnson, R. J., and Ettlinger, C. F., 2008, "The Science Behind Helmets," Ski Canada, 37(2), pp. 50-53. [20] ASTM International, 2000, "F2040 Standard Specification for Helmets Used for Recreational Snow Sports," ASTM InternationalWest Conshohocken, PA. [21] Snell Memorial Foundation, 1998, "1998 Standard for Protective Headgear RS-98 For Recreational Skiing and Snowboarding," http://www.smf.org/standards/ski/rs98std.html. [22] European Committee for Standardization, 1996, "EN 1077:1996 Helmets for alpine skiers," European Committee for Standardization, Brussels. [23] Canadian Standards Association, 2009, "CSA Z263.1-08 Recreational alpine skiing and snowboarding helmets,"ontario. [24] Dickson, T. J., Terwiel, F. A., Waddington, G. S., and Trathen, S., 2012, "Easiest routes and slow zones: How fast do I go? Speeds and distances of recreational and expert snowsport participants," J. ASTM Int., p. JAI104490 [25] Shealy, J. E., Ettlinger, C. F., and Johnson, R. J., 2005, "How Fast Do Winter Sports Participants Travel on Alpine Slopes?," J. ASTM Int., 2(7), pp. 12092-12098. [26] McIntosh, A., Frechede, B., McCrory, R., Ferry, E., Oberst, T., and Pierre, P., 2010, "Biomechanics of concussion in sport Differences between injury and non-injury cases," Journal of science and medicine in sport / Sports Medicine Australia, 12, pp. e179-e180. [27] Greenwald, R. M., Gwin, J. T., Chua, J. J., and Crisco, J. J., 2008, "Head Impact Severity Measures for Evaluating Mild Traumatic Brain Injury Risk Exposure," Neurosurgery., 62(4), pp. 789-798. [28] Gizmag Team, 2007, "Real-time athlete monitoring - the future of sport," Gizmag. [29] Guskiewicz, K. M., and Mihalik, J. P., 2011, "Biomechanics of Sport Concussion: Quest for the Elusive Injury Threshold," Exerc. Sport Sci. Rev., 39(1), pp. 4-11.