Trajectory Planning and Motion Simulation for a Hydraulic Actuated Biped Robot

Similar documents
ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots

Journal of Chemical and Pharmaceutical Research, 2016, 8(6): Research Article. Walking Robot Stability Based on Inverted Pendulum Model

Kungl Tekniska Högskolan

Centre for Autonomous Systems

Humanoid Robots and biped locomotion. Contact: Egidio Falotico

Body Stabilization of PDW toward Humanoid Walking

Motion Control of a Bipedal Walking Robot

Emergent walking stop using 3-D ZMP modification criteria map for humanoid robot

Stable Upright Walking and Running using a simple Pendulum based Control Scheme

Faster and Smoother Walking of Humanoid HRP-2 with Passive Toe Joints *

OPTIMAL TRAJECTORY GENERATION OF COMPASS-GAIT BIPED BASED ON PASSIVE DYNAMIC WALKING

Robot motion by simultaneously wheel and leg propulsion

Stability Control of Bipedal Walking Robot

Mobile Robots (Legged) (Take class notes)

Programming Self-Recovery in the humanoid Leong Ti Xean 1 Yap Kian Tiong 2

Gait Analysis of a Little Biped Robot. Received May 2015; accepted July 2015

Dynamically stepping over large obstacle utilizing PSO optimization in the B4LC system

YAN GU. Assistant Professor, University of Massachusetts Lowell. Frederick N. Andrews Fellowship, Graduate School, Purdue University ( )

Truba college of Engineering & Technology, Indore, India. Truba college of Engineering & Technology, Indore, India.

The Design of Electrical Putter Car Moving Robots Based on Microcontroller Control Jie TANG and Xiao-min LIU

a Robot WItH a suspended load

Analysis of a Kinematic Model for a Forestry Six-Wheeled Luffing Articulated Vehicle Chassis

Proof Copy. Controlling the Walking Period of a Pneumatic Muscle Walker. Takashi Takuma Koh Hosoda. Abstract. 1. Introduction

1502. The effect of mechanism design on the performance of a quadruped walking machine

ZSTT Team Description Paper for Humanoid size League of Robocup 2017

Walking Experiment of Biped Robot with Antagonistic Actuation Using Non-Linear Spring

Compliance Control for Biped Walking on Rough Terrain

Trajectory Planning for Smooth Transition of a Biped Robot

Robots With Legs. Helge Wrede

Controlling Walking Behavior of Passive Dynamic Walker utilizing Passive Joint Compliance

Biped Walking Robot Control System Design

Experimental Realization of Dynamic Walking for a Human-Riding Biped Robot, HUBO FX-1

Spring Locomotion Concepts. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Design and control of Ranger: an energy-efficient, dynamic walking robot

A Bio-inspired Behavior Based Bipedal Locomotion Control B4LC Method for Bipedal Upslope Walking

DEVELOPMENT OF A FULL-SIZED BIPEDAL HUMANOID ROBOT UTILIZING SPRING ASSISTED PARALLEL FOUR-BAR LINKAGES WITH SYNCHRONIZED ACTUATION

Design, Fabrication and Analysis of Microcontroller Based Bipedal Walking Robot Vaidyanathan.V.T 1 and Sivaramakrishnan.R 2

Locomotion Concepts. Autonomous Mobile Robots. Concepts Legged Locomotion Wheeled Locomotion. Autonomous Systems Lab. Zürich. Localization.

Computer Aided Drafting, Design and Manufacturing Volume 26, Number 2, June 2016, Page 53. The design of exoskeleton lower limbs rehabilitation robot

BIPED TRANSFORMER. Group No. 9

Effects of a Passive Dynamic Walker s Mechanical Parameters on Foot- Ground Clearance

Simulation of the Hybtor Robot

Using GPOPS-II to optimize sum of squared torques of a double pendulum as a prosthesis leg. Abstract

Neuro-Fuzzy ZMP Control of a Biped Robot

The Design of ZMP Measure System for Biped Robot LI Bin 1, a, LI Zhihai 2, b, LI Jiejia 1, c, BU Chunguang 2, d

Dynamic analysis and motion measurement of ski turns using inertial and force sensors

Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor

Design and Simulation of Legged Walking Robots in MATLAB Environment

3D Limit Cycle Walking of Musculoskeletal Humanoid Robot with Flat Feet

GaitAnalysisofEightLegedRobot

REPORT DOCUMENTATION PAGE

Gait Pattern Generation and Stabilization for Humanoid Robot Based on Coupled Oscillators

RECENTLY, various humanoid robots have been

Abstract 1. INTRODUCTION

Study of Dynamic Biped Locomotion on Rugged Terrain - Derivation and Application of the Linear Inverted Pendulum Mode -

Robotics and Autonomous Systems

Robotics and Autonomous Systems

Limit Cycle Walking and Running of Biped Robots

Decentralized Autonomous Control of a Myriapod Locomotion Robot

Toward a Human-like Biped Robot with Compliant Legs

TYROL: EVOLUTION OF A 10-AXIS BIPED ROBOT

HUMANOID robots involve many technical issues to be

Learning Energy Efficient Walking Based on Ballistics

SHUFFLE TURN OF HUMANOID ROBOT SIMULATION BASED ON EMG MEASUREMENT

PERCEPTIVE ROBOT MOVING IN 3D WORLD. D.E- Okhotsimsky, A.K. Platonov USSR

Spider Robot for Motion with Quasistatic. Force Constraints

Sample Solution for Problem 1.a

Keywords--Bio-Robots, Walking Robots, Locomotion and Stability Controlled Gait.

A NEW GOLF-SWING ROBOT MODEL UTILIZING SHAFT ELASTICITY

Biorobotic Locomotion: Biped Humanoid Walking. using Optimal Control

Research on Goods and the Ship Interaction Based on ADAMS

Optimal Gait Primitives for Dynamic Bipedal Locomotion

Dynamic Characteristics of the End-effector of a Drilling Robot for Aviation

Gait analysis for the development of the biped robot foot structure

Generation of Robot Motion Based on Measurement of Human Movement. Susumu Sakano 1, Satoru Shoji 1

Dynamic Lateral Stability for an Energy Efficient Gait

The Effect Analysis of Rudder between X-Form and Cross-Form

CHAPTER IV FINITE ELEMENT ANALYSIS OF THE KNEE JOINT WITHOUT A MEDICAL IMPLANT

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION

Biomechanics and Models of Locomotion

A Walking Pattern Generation Method for Humanoid robots using Least square method and Quartic polynomial

Learning Energy Efficient Walking with Ballistic Walking

WALKING MOTION ANALYSIS USING SMALL ACCELERATION SENSORS

Path-Planning and Tracking in a 3D Complex Environment for an Anthropomorphic Biped Robot

Development of a Locomotion and Balancing Strategy for Humanoid Robots

In this course you will learn the following

Development and analysis of a novel add-on drive mechanism for motorizing a manual wheelchair and its step climbing strategy

BUILDING A BETTER PASSIVE WALKER

Adaptive Gait for Large Rough Terrain of a Leg-Wheel Robot (Third Report: Step-Down Gait)

Compliance for a cross four-bar knee joint

This course will deal with Locomotion and Navigation that includes:

Slip Observer for Walking on a Low Friction Floor

EXPERIMENTAL STUDY OF EXOSKELETON FOR ANKLE AND KNEE JOINT

Data Driven Computational Model for Bipedal Walking and Push Recovery

ABSTRACT PATTERNS USING 3D-DYNAMIC MODELING. Kaustav Nandy, Master of Science, Department of Electrical And Computer Engineering

Bio-Inspired Optimal Control Framework to Generate Walking Motions for the Humanoid Robot icub Using Whole Body Models

Effects of Ankle Stiffness on Gait Selection of Dynamic Bipedal Walking with Flat Feet

BIOLOGICALLY INSPIRED QUADRUPED ROBOT BIOSBOT: MODELING, SIMULATION AND EXPERIMENT

ABSTRACT 1 INTRODUCTION

-Elastic strain energy (duty factor decreases at higher speeds). Higher forces act on feet. More tendon stretch. More energy stored in tendon.

Transcription:

Research Journal of Applied Sciences, Engineering and Technology 5(0): 3004-3009, 203 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 203 Submitted: September 6, 202 Accepted: November 0, 202 Published: March 25, 203 Trajectory Planning and Motion Simulation for a Hydraulic Actuated Biped Robot Xuewen Rong, Huixing Fan, Haiyan Wang and Xin Ma School of Control Science and Engineering, Shandong University, Jinan 25006, China Abstract: The purpose of this research is to generate a stable motion for a hydraulic actuated biped robot. Since the application effect of most dynamic biped robot locomotion theories is not very well and the static walk pattern is hard to realize on human-sized hydraulic actuated biped robot because of the small size of foot compared with body height. In this study, we propose a trajectory planning method based on static walking strategy. Firstly, the mechanical structure and kinematics model of the hydraulic biped robot are described. Then, we analyze why biped robot always falls backward during the walking period and propose an improved motion by adding a section of CoG movement during single support phase. The gait planning is realized with cubic spline trajectory. Finally the motion is verified with coordinated simulations based on ADAMS and MATLAB software. Keywords: Biped robot, coordinated simulation, hydraulic actuated, trajectory planning INTRODUCTION When talking about robot, people will firstly think of a mechanical and electronic device with human look, which is actually humanoid robot in narrow sense. Humanoid robot has almost the same appearance as a human and is suitable for moving in an environment which contains stairs, obstacles and so on, where a human lives. Therefore, humanoid robots are suited for the current social infrastructures (Yokoi, 2007). The most obvious feature for robot is to walk (Vukobratovic, 983). Humanoid robot should have human-like legs and walking capability. The pioneer work about humanoid robot is begun with the research on biped walking structure. Since the first study concerning bipedal robots was carried out in Japan with the world s first active walking biped robot WL-5 developed by Waseda University in 97 (Kato and Tsuiki, 972), many research have been done on the development of biped robotics in the following 40 years. Honda s ASIMO (Sakagami et al., 2002) and Boston Dynamics PETMAN are two more famous biped robots. However, it is still difficult to generate humanlike walking motion automatically. So far, most of theories applied in biped robot are still based on the concept of ZMP proposed by VuKobratovic and Stepanenbo (972) and inverted pendulum theories proposed by Hemami et al. (973). But ZMP stability criteria are not essential conditions for stable walk and inverted pendulum is based on the assumption that most weight of the robot is centralized to a point. Both of them have their own limitations. The application effect of most dynamic biped robot locomotion theories are not very well except for a few biped robots such as ASIMO and PETMAN. This study generates a stable motion for a hydraulic actuated biped robot. Since the application effect of most dynamic biped robot locomotion theories is not very well and the static walk pattern is hard to realize on human-sized hydraulic actuated biped robot because of the small size of foot compared with body height. In this study, we propose a trajectory planning method based on static walking strategy. Firstly, the mechanical structure and kinematics model of the hydraulic biped robot are described. Then, we analyze why biped robot always falls backward during the walking period and propose an improved motion by adding a section of CoG movement during single support phase. The gait planning is realized with cubic spline trajectory. Finally the motion is verified with coordinated simulations based on ADAMS and MATLAB software. MECHANISM DESIGN AND KINEMATIC ANALYSIS OF THE HYDRAULIC ACTUATED BIPED ROBOT So far, most of biped robots are actuated by servo motors. However, servo motors sold in market are mostly with high speed and low torques. To drive the joints of robot, we need to add complicated reduction gears, which are always the weakest and heaviest elements of an electric motor assembly and many moving parts of them prone to wear. Pneumatic systems respond very quickly and easy to sustain, but the compressibility of air means that precise position control of the systems is impossible. Hydraulic actuators have very high power-to-weight ratios, high bandwidth and fast response capability. Hydraulic actuators can be very effective for high power applications (Yibin et al., 20). Corresponding Author: Xuewen Rong, School of Control Science and Engineering, Shandong University, Jinan 25006, China 3004

O2 X2 Z2 Z3 O3 X3 Z0 O0 X0 X Z O Z4 X4 O4 (a) O5 Z5 X5 O6 X6 Z6 (b) (b) Fig. : The structure of the hydraulic biped robot: (a) mechanical structure, (b) DOFs distribution In past years, few robots are actuated by hydraulic actuators because of their low integration and great weight, but all these weaknesses have been overcome with the development of hydraulic techniques, especially the successful cases on Boston Dynamics BigDog (Raibert et al., 2008) and PETMAN and SUCRO s Hanma. The hydraulic drive unit system going to use is the same as Hanma and its performance are as follows: the weight is less than 2 kg, the maximum working stroke of the servo actuator is at most 60 mm, the maximum dynamic force is 700 kgf, the maximum working speed is 0.48 m/s and the frequency of the servo actuator is much more than 00 Hz. All actuators are powered by a stationary hydraulic power pack or a portable hydraulic power pack driven by an engine while the biped robot is outside the LAB. The hydraulic actuated biped robot developed is shown in Fig. a. The biped robot is mainly composed of two legs. The anticipated mass of the whole robot is less than 50 kg without payload. The maximum height is 300 mm and it will be lower to about 000 mm during walking. Each leg has 5 DOFs (Degrees of Freedom), as shown in Fig. b. Among them, both hip articulations and ankle joints have two DOFs: roll and pitch, while the knee only has one pitch DOF. In addition, most DOFs are actuated except two ankle roll joints. To model the kinematics of the biped robot, we build its coordinate frames shown in Fig. 2 according to D-H rules. {O 0 } is the base-frame and {O 6 } is the end- 3005 Fig. 2: Local frames linked to the biped robot Table : Geometric parameters of the biped robot Link i a i- α i- d i θ i L 0 0 d <0-90 2 L -90 d 2 = -2 L 0 θ 2 3 L 2-90 0 θ 3 4 L 3 0 0 θ 4 5 L 4 0 0 θ 5 6 L 5-90 0 θ 6 effector-frame. Geometric parameters are shown in Table. With this convention, reference frame i can be located relative to reference frame i- by executing a rotation through an angle α i about the x i- axis, a translation of distance a i along x i-, a rotation through an angle θ i about z i and a translation of distance along z i. The equivalent homogeneous transformation between two adjacent frames is: i i cθi sθi 0 ai sθ cα c c s s i i θ α i i αi di α i T = sθ sα c s c c i i θ α i i αi di α i 0 0 0 () where, cθ i, sθ i, cα i- and sα i- represent cosθ i, sinθ i, cosα i- and sinα i-, respectively. Through concatenation of these individual transformations, we get: T = T T T T T T nx ox ax Px ny oy ay P y R3 3 P = = nz oz az P z 0 0 0 0 0 0 2 3 4 5 6 2 3 4 5 6 (2) where, R 3 3 and P represent the rotation transformation matrix and the coordinate vector of foot relative to baseframe respectively and:

CoG move to left foot Right foot move forward Touch down CoG recover CoG recover Touch down Left foot move forward CoG move to right foot Fig. 3: The process of biped robot s static walk Left leg Trunk Right leg Fig. 4: Motion sequences of the biped robot with static walk Px = L + d + L sθ + L sθ + L sθ Q = L2 L3 cθ3 + L4 cθ34 L5 cθ345 Py = L+ Qcθ2 P = d + Qsθ 0 2 3 3 4 34 5 345 z 2 (3) Single surpport Double support where, θ 34 = θ 3 +θ 4 and θ 345 = θ 3 +θ 4 +θ 5. By solving the kinematical Eq. (2) with algebraic method, we can get each joint angle and then compute the length of cylinders with geometrical relationship. Gait planning: The CoG of the biped robot keeps staying in support convex hull all along while it is walking in static walk pattern. CoG keeps standing still in support convex hull when the robot is in single support phase and moves to new support leg by the action of force moment while entering into double support phase and then enters into next movement cycle. The whole motion process of static walk is shown in Fig. 3. Motion sequences of the biped robot with static walk are shown in Fig. 4. The change process of CoG s trajectory on ground while in static walk is shown in Fig. 5. However, the static walk pattern can only be used in small biped robots such as toys at present. On one hand, legs mass occupies a large proportion to the whole body in biped robot with human size; on the other hand, the foot size is too small compared to the height of robot s trunk, so it is hard to realize static walk on human-sized biped robot, as shown in Fig. 6. While making trajectory planning, we always treat trunk center as CoG approximately based on the assumption that the leg mass is negligible relative to the trunk weight, the consequence is CoG can t keep standing still in support convex hull when the robot is in single support phase. 3006 Pre-walk Walk period Fig. 5: The trajectory of CoG on ground while in static walk Fl dl (a) G Fs v ds dg T T Fs ds dg v G dl (b) Fl Fig. 6: An analysis about the biped robot while in static walk: (a) from double support phase to single support phase, (b) from single support phase to double support phase When the biped robot moves from double support phase to single support phase, in the beginning, we can conclude from moment balance theories: Fl dl + Fs ds = G dg (4)

where, F s = The force to the supporting foot d s = Distance of F s to the supporting point = The distance of gravity to supporting point d s Once enter into single double phase, it will have an impact force immediately, then: F d + F d > G d l l s s g (7) Fig. 7: The trajectory of CoG on ground while walking in the improved pattern where, F l = The support force to the foot which is going to liftoff F s = The support force to the support foot G = The gravity of the robot d l, d s & d g = The distances of each force to the support point, respectively Once enter into single support phase, F l will decrease into zero immediately, but CoG hasn t moved into support convex hull yet and at the moment: Fs ds < G dg (5) There is a torque T at the support foot ankle which makes the trunk move backward. When the biped robot moves from single support phase to double support phase, in the beginning, the robot is supported only by one leg, we can conclude from moment balance theories: F d = G d s s g (6) where, F l = The impact force to the foot which is going to touchdown d l = The distance of the force to supporting point Similarly, it will have a torque T which makes the trunk move backward. In addition, the static walk is introduced based on assumption that the robot moves very slowly, so the effect of inertia force produced by velocity and acceleration can be ignored. If the motion period is a little short or step length is a little long, the robot is easy to loss balance. All these reasons make the static walk easy to fall backward in human-sized biped robot, as shown in Fig. 9a. Against the above, we propose a trajectory planning method based on the static walk strategy. During the walk cycle, we add a section of CoG movements during single support phase. The trajectory of CoG on ground while walking in improved way is shown in Fig. 7. In single support phase, when the robot lifts its swing leg, CoG keeps standing still. While swing leg begins to drop, CoG moves forward at the same time. In double support phase, CoG moves to right above next support leg and enters into next locomotion cycle. As to the planning method, we also treat trunk center as CoG Gait plan Controller ADAMS/Controls Fig. 8: Coordinated simulation structure with MATALB and ADAMS 3007

(a) The simulation of static walk: cycle time set to 2s, step length set to 80 mm, step height set to 30 mm (b) The simulation of improved walk: cycle time set to 2s, step length set to 80 mm, step height set to 30 mm Fig. 9: The biped robot motion simulations with MATALB and ADAMS and adopt cubic spline way by selecting typical discrete positions of the swing foot and the trunk; the simulation result with our improved walk pattern is shown in Fig. 9b. The result proves that the walk pattern is effective. simulation result proves that static walk on human-sized biped robot is not stable and the improved walk mode is effective to improve the stability of biped robot. CONCLUSION COORDINATED SIMULATION The simulation is conducted with ADAMS and MATLAB. ADAMS provides 3-D model, kinematics and dynamic models for virtual prototype and MTALAB provides trajectory and control algorithms. With the interface of ADAMS/Controls, MATLAB can control the length of cylinder in real time. The whole control system is shown in Fig. 8. All the gait plan work is done in the left part, which contains foot trajectories of time to base-frame. The controller converts the gait coordinate values to joint angles with inverse kinematics model and then transforms them into the length of each cylinder with geometrical relationship. ADAMS/Controller part is an interface between MATLAB and ADAMS. Through ADAMS, we can monitor the motion state of the biped robot. The simulation results are shown in Fig. 9. To check the gait plan effect, we adopt the same parameter settings in both simulations. The cycle time of locomotion is 2s, step length is 80 mm and step height is 30 mm. Figure 9a is the simulation result of static walk. We can see that the robot begins to tilt at.5s and falls at 2s. Figure 9b is the result of improved walk pattern. We can see that the robot is still walk stably at 5.6s. The 3008 The static walk pattern can only be used in small biped robots such as toys at present because of the small size of foot compared with body height, the difficulty of ignoring the leg mass and the impact of inertia moment. We propose a trajectory planning method based on static walk by adding a section of CoG movement during single support phase. The gait planning is realized by cubic spline method and the application effect is confirmed by the coordinated simulation experiment based on ADAMS and MATLAB. The simulation results show that the gait planning method proposed in this study is effective for improving the stability walking of the hydraulic biped robot. ACKNOWLEDGMENT This study is supported by the Independent Innovation Foundation of Shandong University under grant No. 20JC0. REFERENCES Hemami, H., F. Weimer and S. Koozekanani, 973. Some aspects of the inverted pendulum problem for modeling of locomotion systems. IEEE T. Automat. Cont., 8(6): 658-66.

Kato, I. and H. Tsuiki, 972. The hydraulically powered biped walking machine with a high carrying capacity. Proceeding of the International Symposium on External Control of Human Extremities, Dubrovnik, Yugoslavia, pp: 40-42. Raibert, M., K. Blankespoor, G. Nelson, R. Playter and the BigDog Team, 2008. BigDog, the rough-terrain quadruped Robot. Proceedings of the 7th World Congress the International Federation of Automation Control, Seoul, Korea. Sakagami, Y., R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki and K. Fujimura, 2002. The intelligent ASIMO: System overview and integration. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, pp: 2478-2483, Retrieved from: http://www.bostondynamics.com/robot_ petman.html. Vukobratovic, M., 983. Walking Robot and Power- Prosthetic. Translated By Pei-Sun, M.A. and S. Naidong (Eds.), Science Press, Beijing, pp: 359-362, (In Chinese). Vukobratovic, M. and J.Stepanenbo, 972. On the stability of anthropomorphic systems. Math. Biosci., 5: -37. Yibin, L., L. Bin, R. Jiuhong and R. Xuewen, 20. Research of mammal bionic quadruped robots: A review. IEEE Conference on Robotics, Automation and Mechatronics (RAM), 7-9 Sept., Jinan, China, pp: 66-7. Yokoi, K., 2007. Humanoid robotics. International Conference on Control, Automation and Systems ICCAS 07, Seoul, pp: 74-79. 3009