Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here

Similar documents
Respiration (revised 2006) Pulmonary Mechanics

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning

660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%)

RESPIRATORY GAS EXCHANGE

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT

I Physical Principles of Gas Exchange

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Section Two Diffusion of gases

Respiratory physiology II.

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS

Lung Volumes and Capacities

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

Blood gas adventures at various altitudes. Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D.

Respiratory System Study Guide, Chapter 16

Pulmonary Circulation Linda Costanzo Ph.D.

PROBLEM SET 9. SOLUTIONS April 23, 2004

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD

Section Three Gas transport

Table of Contents. By Adam Hollingworth

Respiratory Physiology. Adeyomoye O.I

Rodney Shandukani 14/03/2012

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Lung Volumes and Ventilation

Alveolus and Respiratory Membrane

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi

Respiratory System Physiology. Dr. Vedat Evren

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi

OXYGEN PHYSIOLOGY AND PULSE OXIMETRY

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie

Collin County Community College. Lung Physiology

RESPIRATORY REGULATION DURING EXERCISE

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

Ch 16: Respiratory System

Respiration - Human 1

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood

PHTY 300 Wk 1 Lectures

Some major points on the Effects of Hypoxia

4. For external respiration to occur effectively, you need three parameters. They are:


Deborah Dewaay MD Division of General Internal Medicine and Geriatrics Hospital Medicine Acknowledgment: Antine Stenbit MD

exchange of carbon dioxide and of oxygen between the blood and the air in

Respiratory Signs: Tachypnea (RR>30/min), Desaturation, Shallow breathing, Use of accessory muscles Breathing sound: Wheezing, Rhonchi, Crepitation.

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

GAS EXCHANGE & PHYSIOLOGY

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

Gases and Respiration. Respiration Overview I

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES

82 Respiratory Tract NOTES

Gas exchange and ventilation perfusion relationships in the lung

medical physiology :: Pulmonary Physiology in a Nutshell by:

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan

Chapter 23. Gas Exchange and Transportation

Pulmonary Circulation

After having worked out this lecture, you will be able to describe the oxygen cascade and to calculate the inspiratory and the alveolar partial

49 Arterial Blood Gases

ALVEOLAR - BLOOD GAS EXCHANGE 1

Chapter 13 The Respiratory System

P215 Respiratory System, Part 2

The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility.

Circulatory And Respiration

Chapter 23. Gas Exchange and Transportation

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

Respiratory Anatomy and Physiology. Respiratory Anatomy. Function of the Respiratory System

Respiratory Physiology

Vienna, Austria May 2005 MONITORING GAS EXCHANGE: FROM THEORY TO CLINICAL APPLICATION

Recitation question # 05

DOWNLOAD OR READ : VENTILATION BLOOD FLOW AND DIFFUSION PDF EBOOK EPUB MOBI

Office. Hypoxia. Or this. Or even this. Hypoxia E-1. COL Brian W. Smalley DO, MSPH, CPE

For more information about how to cite these materials visit

CHAPTER 3: The cardio-respiratory system

Module Two. Objectives: Objectives cont. Objectives cont. Objectives cont.

Respiratory System. Part 2

Fysiologie van de ademhaling - gasuitwisseling

Respiratory Physiology Gaseous Exchange

Some Clinical Aspects on the Blood Gas Physiology

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

RESPIRATORY MONITORING AND OXIMETRY

Chapter 13 The Respiratory System

Respiratory Pulmonary Ventilation

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1

Respiratory Lecture Test Questions Set 3

A Dusky Hypoxic Woman. Craig Smollin MD Associate Medical Director California Poison Control Center - SF Div.

ROUTINE PREOXYGENATION

CHAPTER 3: The respiratory system

For more information about how to cite these materials visit

Regulation of Ventilation, Ventilation/ Perfusion Ratio, and Transport of Gases

Biology 212: Anatomy and Physiology II Lab #7: Exercise Physiology in Health and Disease

RESPIRATION III SEMESTER BOTANY MODULE II

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives

Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective

For more information about how to cite these materials visit

Transcription:

Respiratory Medicine A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics See online here Alveolar gas equation helps to calculate the partial pressure of oxygen in alveoli and A-a gradient is the difference between alveolar oxygen pressure and arterial oxygen pressure. Both of these concepts can be used to study various causes of hypoxemia. In this article, we will discuss, in brief, about the alveolar gas equation & A-a Gradient and their applications in therapeutics. Alveolar Gas Equation Alveolar gas equation helps to calculate the partial pressure of oxygen in alveoli. P A O 2 = P i O 2 (P a CO 2 /R) P A O 2 = Partial pressure of oxygen in alveoli P i O 2 = Partial pressure of oxygen in inspired air P a CO 2 = Partial pressure of CO 2 in arterial blood R = Respiratory quotient This is the simplest form of the alveolar gas equation by Rossier & Mean. Other versions

of the alveolar gas equation are: West: P A O 2 = P i O 2 (P a CO 2 /R) + K K = F i O 2 x P a CO 2 x [(1 R)/R] For most clinical conditions, the value of K is too small to make a difference in the value of P A O 2 and hence can be neglected. Riley: P A O 2 = P i O 2 (P a CO 2 /R) x [1 F i O 2 (1 R)] The difference between the values of P A O 2 calculated by the above two equations is only due to inert gas exchange; hence, they can be used to calculate the concentration effect. Selkurt: P A O 2 = P i O 2 P a CO 2 x [F i O 2 + (1 F i O 2 )/R] Filley, MacIntosh & Wright: P A O 2 = P i O 2 P a CO 2 x [(P i O 2 P Ē O 2 )/P Ē CO 2 ] This equation allows for the disequilibria of inert gasses, therefore, it can be used during induction or recovery from anesthesia. Important assumptions for the above equation: Metabolic minute production of carbon dioxide is constant. P A CO 2 = P a CO 2, as the alveolar membrane is thin and carbon dioxide is highly diffusible. Alveolar and inspired gasses follow the ideal gas law (PV = nrt). Inspired gas contains no CO 2 or water. All other gasses except oxygen in the inspired gas are in equilibrium with their dissolved states in the blood. The alveolar gas is saturated with water. Note that P i O 2 = (P atm PH 2 O) x F i O 2. P atm = Atmospheric pressure (760 mm Hg at sea level) PH 2 O = Water vapor pressure (47 mm Hg at body temperature) F i O 2 = Fraction of inspired oxygen (0.21 in room air) Thus, at normal body temperature, while breathing room air at sea level, P i O 2 = (760 47) x 0.21 = 149.7 mm Hg Respiratory quotient is the amount of CO 2 produced divided by the amount of oxygen consumed by tissue metabolism. Normally, R is 0.8, when cells are using both glucose and free fatty acids as fuel. R is 1.0 when the fuel is only glucose (for example, patient on intravenous glucose). R is 0.7 when the fuel is only free fatty acids (for example, a hypoglycemic or a diabetic patient) Alveolar-arterial Gradient A-a gradient is the difference between alveolar oxygen pressure and arterial oxygen pressure. A-a gradient can be used to study the different causes of hypoxemia. Hypoxemia is a decrease in arterial PO2, while hypoxia is decreased oxygen delivery to the tissues. PO 2 can be calculated using alveolar gas equation (discussed above). The patient may develop hypoxia in the presence of normal P a O2, as in cases of carbon-

monoxide poisoning or decreased hemoglobin (anemia). A-a O 2 gradient = P A O 2 P a O 2 Example For a patient with P a CO 2 = 40 mm Hg, P a O 2 = 97 mm Hg, P A O 2 can be derived from alveolar gas equation (Rossier & Mean) as follows: P A O 2 = P i O 2 (P a CO 2 /R) = 149.7 (40/0.8) if P a CO 2 is 40 mm Hg = 99.7 mm Hg Thus, A-a O 2 gradient = P A O 2 P a O 2 = 99.7 97 if P a O 2 is 97 mm Hg = 2.7 mm Hg Assuming that the patient is breathing room air at sea level, with normal body temperature: Normal A-a O 2 gradient suggests normal gas exchange between alveoli and blood. Values < 15 mm Hg are considered normal. Increased A-a O 2 gradient (> 15 mm Hg) suggests abnormal gas exchange between alveoli and blood, which may be due to V/Q mismatch, shunting, or thickened diffusion barrier. Factors Affecting A-a O 2 Gradient Age A-a O 2 gradient increases by 3 mm Hg for each decade over 30 years of age. Alveolar PO 2 As the shape of oxygen dissociation curve is non-linear, greater the P A O 2, greater the A-a O 2 gradient, provided rest factors are the same. Magnitude of venous admixture Venous admixture reduces arterial O 2 content and increases arterial CO 2 content. As P a O 2 is usually on hemoglobin dissociation curve, a small reduction in O 2 content causes a large reduction in P a O 2, therefore increasing A-a O 2 gradient. CO 2 dissociation curve being steep and more linear increased arterial CO 2 content does not cause a significant increase in P a CO 2. In clinical settings, compensatory hyperventilation is more than enough to offset the small increase in P a CO 2 ; therefore, P a CO 2 is often reduced, rather than increased. Cardiac output Provided the same venous admixture, cardiac output is inversely proportional to A-a O 2 gradient. However, a reduction in cardiac output is associated with a reduced venous admixture and reduced shunt fraction, therefore, P a O 2 and A-a O 2 gradient are almost unchanged.

Hemoglobin Hemoglobin concentration does not influence the arterial oxygen content, but increased hemoglobin concentration would slightly reduce the arterial oxygen tension. Alveolar ventilation Increased alveolar ventilation increases both P A O 2 and A-a O 2 gradient. Different Causes of Hypoxemia Hypoxemia is a decrease in arterial PO 2, while hypoxia is decreased oxygen delivery to the tissues.there are five important pathophysiological causes of hypoxemia and respiratory failure, which are as follows: Hypoventilation The minute ventilation depends on the respiratory rate and the tidal volume, which is the amount of inspired air during each normal breath at rest. Minute ventilation = Respiratory rate x Tidal volume

The normal respiratory rate is about 12 breaths per minute and the normal tidal volume is about 500 ml. Therefore, the minute respiratory volume normally averages about 6 L/min. Hypoventilation occurs when there is a decrease in the respiratory rate and/or tidal volume so that the decreased amount of air is exchanged per minute. There will be a decreased oxygen entry within the alveoli and the arteries leading to decreased P a O 2. As already described, the P a CO 2 is inversely proportional to the ventilation; hence, the hypoventilation will lead to increased P a CO 2. The alveolar-arterial gradient will be normal and less than 10 mmhg as there is no defect in the diffusion of gasses. In these cases, increasing the ventilation and/or increasing the oxygen concentration will correct the deranged blood gasses. Diffusion impairment Overview of Diffusion in the lung In diffusion impairment, there is a structural problem within the lung. There may be decreased surface area (as in emphysema), or increased thickness of alveolar membranes (as in fibrosis and restrictive lung diseases) that impairs the diffusion of gasses across the alveoli leading to increased alveolar-arterial gradient. In increased A-a gradient, the alveolar PO 2 will be normal or increased, but arterial PO 2 will be decreased. The greater the structural problem is present, the greater the alveolar-arterial gradient will be.

Calculating Diffusion Since the diffusion of gasses is directly proportional to the concentration of gasses, therefore increasing the concentration of inhaled oxygen will correct P a O 2 but the increased A-a gradient will be present as long as the structural problem is present. Diffusion and Perfusion Limited Gases

Diffusional Impairment Right to left shunt In a pulmonary shunt, also known as a right-to-left shunt, the venous deoxygenated blood from the right side enters the left side of the heart and systemic circulation without getting oxygenated within the alveoli. In simple words, a shunt refers to normal perfusion, poor ventilation. The lungs are having a normal blood supply, but ventilation is decreased or absent that fails to exchange gasses with the incoming deoxygenated blood. The ventilation/perfusion ratio is or near to zero. This happens, for example, in atelectasis and cyanotic heart diseases. In atelectasis, the collapsed lung is not ventilated and blood within that segment fails to oxygenate. In cyanotic heart diseases, the blood from the right side bypasses (shunts) the lungs and enters the left side, causing hypoxemia and cyanosis.

Image: Atelectasis by BruceBlaus. License: CC BY-SA 4.0 The A-a gradient is increased as deoxygenated blood enters the arterial (systemic) circulation decreasing the arterial oxygen tension, P a O 2. Since venous blood does not oxygenate in the pulmonary shunt, therefore increasing the oxygen concentration does not correct the hypoxemia. The blood will bypass the lungs, no matter how much-increased oxygen concentration is used. This failure to increase P a O 2 after oxygen administration is a very important point and helps to differentiate from the impaired diffusion and other causes of hypoxemia that correct with the supplemental oxygen. Ventilation perfusion (V/Q) mismatch It is the ratio of alveolar ventilation (V) to pulmonary blood flow (Q). The matching of ventilation and perfusion is essential to achieve the adequate exchange of oxygen and carbon-dioxide within the alveoli. The V/Q ratio in normal individuals is around 0.8, but this ratio alters in the presence of significant ventilation or perfusion defects.

Ventilation to Perfusion Inequality Theoretical Examples Within the lungs, all the alveoli do not have uniform ventilation and perfusion; they tend to vary due to the effects of gravity. At the apex of the lung, alveoli are large and completely inflated, while they are small at the bases. Similarly, the blood supply is more at the base of the lung, than at the apex. This creates physiological ventilation (V) perfusion (Q) mismatch between different alveoli.

The decreased V/Q ratio (< 0.8) may occur either from decreased ventilation (airway or interstitial lung disease) or from over-perfusion. The blood is wasted in these cases and fails to properly oxygenate. In extreme conditions, when ventilation is significantly decreased and V/Q approaches to zero, it will behave as a pulmonary shunt. The increased V/Q ratio (> 0.8) usually occurs when perfusion is decreased (pulmonary embolism preventing the blood flow distal to obstruction) or over-ventilation. The air is wasted in these cases and is unable to diffuse within the blood. In extreme conditions, when perfusion is significantly decreased and V/Q approaches to 1, the alveoli will act as dead space and no diffusion of gasses occur. Therefore, the increased mismatch in ventilation and perfusion within the lung impairs the gas exchange processes and ultimately will lead to hypoxemia and respiratory failure. High altitude At high altitudes, the barometric pressure (PB) is decreased, which will lead to decreased alveolar PO 2 as in the equation: P A O 2 = FIO 2 (PB PH 2 O) P A CO 2 /R The decreased alveolar P A O 2 will lead to decreased arterial P a O 2 and hypoxemia but the A a gradient remains normal as there is no defect within the gas exchange processes. In these conditions, supplementing with additional oxygen (increasing the FIO 2 ) increases the P A O 2 and corrects the hypoxemia.

When a person suddenly ascends to high attitude, the body responds to the hypoxemia by hyperventilation causing respiratory alkalosis. The concentrations of 2, 3- diphosphoglycerate (DPG) are increased, shifting the oxygen-hemoglobin dissociation curve to the right. Chronically, the acclimatization takes place and the body responds by increasing the oxygen-carrying capacity of the blood (polycythemia). The kidneys excrete bicarbonates and maintain the ph within normal limits. Causes of Hypoxemia Cause P a O 2 A-a gradient Response of P a O 2 to supplemental oxygen Hypoventilation Decreased Normal Increases Diffusion Impairment Decreased Increased Increases Shunt Decreased Increased Does not increase V/Q Mismatch Decreased Increased Increases usually (depends on V/Q mismatch type) High Altitude Decreased Normal Increases Conditions Associated with Increased A-a O 2 Gradient Pulmonary atelectasis Pulmonary consolidation/infection/neoplasm Alveolar destruction Extrapulmonary shunting Drugs such as vasodilators and volatile anesthetics Hepatic failure Pregnancy Popular Exam questions The correct answers can be found below the references. 1. Which of the following alveolar gas equations allows for disequilibria of inert gasses? A. B. C. D. E. P A O 2 = P i O 2 (P a CO 2 /R) P A O 2 = P i O 2 (P a CO 2 /R) + K K = F i O 2 x P a CO 2 x [(1 R)/R] P A O 2 = P i O 2 (P a CO 2 /R) x [1 F i O 2 (1 R)] P A O 2 = P i O 2 P a CO 2 x [F i O 2 + (1 F i O 2 )/R] P A O 2 = P i O 2 P a CO 2 x [(P i O 2 P Ē O 2 )/P Ē CO 2 ] 2. Which of the following best describes the effects of venous admixture on arterial blood gasses and A-a O 2 gradient in clinical settings? A. B. C. D. E. O 2 content, P a O2, CO 2 content, P a CO 2, A-a O 2 gradient O 2 content, P a O2, CO 2 content, P a CO 2, A-a O 2 gradient O 2 content, P a O2, CO 2 content, P a CO 2, A-a O 2 gradient O 2 content, P a O2, CO 2 content, P a CO 2, A-a O 2 gradient O 2 content, P a O2, CO 2 content, P a CO 2, A-a O 2 gradient 3. Which of the following is least commonly associated with an increased A-a O 2

gradient? A. B. C. D. E. Lobar pneumonia Liver failure Renal failure Pregnancy Use of vasodilators References Cruickshank S, Hirschauer N. The alveolar gas equation. Continuing Education in Anaesthesia, Critical Care & Pain 2004; 4(1): 24-27. doi: 10.1093/bjaceaccp/mkh008. Martin L. The Four Most Important Equations in Clinical Practice. Karius DR. Respiratory Adaptations in Health and Disease: Calculating the Alveolar Oxygen & the A-a O2 gradient. Walker BR, Colledge NR, Ralston SH, Penman ID. Davidsons Principles and Practice of Medicine. 22nd edition. Elsevier. pp 191-192. Kaynar AM. Respiratory Failure. Feller-Kopman DJ. The Evaluation, Diagnosis, and Treatment of the Adult Patient with Acute Hypercapnic Respiratory Failure. Costanzo LS. Physiology. Fifth Edition. Broad Review Series. pp 127-128 Linda, S. C. (2007). BRS Physiology; 4th edition. pp 138. Lippincott Williams & Wilkins. Correct answers: 1E, 2B, 3C Legal Note: Unless otherwise stated, all rights reserved by Lecturio GmbH. For further legal regulations see our legal information page. Notes