Influence of effective stress on swelling pressure of expansive soils

Similar documents
Evaluation of suction measurement by the tensiometer and the axis translation technique

Time rate of swelling of compacted highly plastic clay soil from Sudan

Module 7 Lecture 1. Swelling and Collapse Behavior

Investigating soil water retention characteristics at high suctions using relative humidity control

Pore-Air Entrapment during Infiltration

Pressure Plate Drying and Wetting

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Hardware Triaxial and Consolidation Testing Systems Pressure Measurement and Control

Description of saturation curves and boiling process of dry air

Infiltration and Air Pressure Build-up

Application of Expansive Soil Geotechnical Procedures

INFLUENCE OF FLY ASH IN STRENGTH CHARACTERISTICS OF COHESIVE SOILS

4.1 Why is the Equilibrium Diameter Important?

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

Critical Pool Level and Stability of Slopes in Granular Soils

Accurate Measurement of Steam Flow Properties

Influence of Fly Ash Content on Compaction Characteristics of Fly Ash Clay Mixture

Theory of a vertically loaded Suction Pile in CLAY

Chem 110 General Principles of Chemistry

Saturated-Unsaturated Consolidation

Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand

Soil Water Characteristic Curve (SWCC) Using the WP4C

Tension Cracks. Topics Covered. Tension crack boundaries Tension crack depth Query slice data Thrust line Sensitivity analysis.

Development of Data Acquisition System for Consolidated Undrained Triaxial Test

CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS

Pressure Plate Drying and Wetting

Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

Chapter 2: Pure Substances a) Phase Change, Property Tables and Diagrams

EXPERIMENT 8 BUOYANT FORCES

EXPERIMENTAL INVESTIGATION ON OPTIMUM INSTALLATION DEPTH OF PVD UNDER VACUUM CONSOLIDATION ABSTRACT

Analysis of dilatometer test in calibration chamber

White Paper. Draft Variable Depth Root Zones for Golf Putting Greens. James Crum and Trey Rogers. Michigan State University.

Cubzac-les-Ponts Experimental Embankments on Soft Clay

CENGRS GEOTECHNICA PVT. LTD. Job No Sheet No. 1

Typical factors of safety for bearing capacity calculation in different situations

Mechanical behaviour of unsaturated marine sediments: experimental and theoretical approaches

Test on a Twin-Screw Compressor

Figure Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

Separating Load from Moisture Effects in Wet Hamburg Wheel-Track Test

A Study on the Punch Shape for Improving Tool Life in Shearing AHSS

The tensile capacity of suction caissons in sand under rapid loading

Paper 2.2. Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration

Effect of Coiled Capillary Tube Pitch on Vapour Compression Refrigeration System Performance

Chapter 3 Atmospheric Thermodynamics

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation

Desaturating sand deposit by air injection for reducing liquefaction potential

Unsaturated Testing of Soil (UNSAT)

Available online at ScienceDirect. The 2014 Conference of the International Sports Engineering Association

Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI

Vapour pressure of liquids SURFACE TENSION

Air Bubble Departure on a Superhydrophobic Surface

Proceedings of Meetings on Acoustics

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MEAN water vapor transport

A07 Surfactant Induced Solubilization and Transfer Resistance in Gas-Water and Gas-Oil Systems

AN EXPERIMENTAL STUDY OF IRREDUCIBLE WATER SATURATION ESTABILISHMENT

Analysis of Shear Lag in Steel Angle Connectors

SUPPORTING NOTES FOR THE EVALUATION OF UNBOUND ROAD BASE AND SUB-BASE AGGREGATES

Modelling of Tail Production by Optimizing Depressurization

Deformation parameters of soils determined by the cone penetration test

CHAPTER IV FINITE ELEMENT ANALYSIS OF THE KNEE JOINT WITHOUT A MEDICAL IMPLANT

Large olympic stadium expansion and development planning of surplus value

CRYSTALLIZATION FOULING IN PACKED COLUMNS

Laboratory studies of water column separation

An integrated three-dimensional model of wave-induced pore pressure and effective stresses in a porous seabed: II. Breaking waves

USE OF TENSIOMETERS FOR THE MEASUREMENT OF SOIL SUCTION UTILIZAÇÃO DE TENSIÓMETROS PARA MEDIÇÃO DA SUCÇÃO

OP CHECKLIST FOR 1D CONSOLIDATION LABORATORY TEST

STUDY ON UPWARD MOVEMENT OF FINES FROM SANDY SEABED UNDER CYCLIC WATER PRESSURE CHANGE DUE TO WAVES

Kinematic Differences between Set- and Jump-Shot Motions in Basketball

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii

Chapter 4: Single Vertical Arch

Influence of dry density and water content on the swelling of a compacted bentonite

International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September ISSN

A REAPPRAISAL OF THE EVIDENCE FOR DAMAGE CAUSED BY OVEN DRYING OF HYDROCARBON ZONE CORE

Reinforced Soil Retaining Walls-Design and Construction

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

Resistance and Stability Analysis for Catamaran Fishing Vessel with Solar Cell in Calm Water

Laboratory measurement of two-phase flow parameters in rock joints based on high pressure triaxial testing

3 1 PRESSURE. This is illustrated in Fig. 3 3.

Experimental Investigation of Clear-Water Local Scour at Pile Groups

International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

sensors ISSN

Development of High-speed Gas Dissolution Device

CONTROL VALVE WHAT YOU NEED TO LEARN?

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure

STIFFNESS INVESTIGATION OF PNEUMATIC CYLINDERS. A. Czmerk, A. Bojtos ABSTRACT

OPERATIONAL AMV PRODUCTS DERIVED WITH METEOSAT-6 RAPID SCAN DATA. Arthur de Smet. EUMETSAT, Am Kavalleriesand 31, D Darmstadt, Germany ABSTRACT

LEAP CO 2 Laboratory CO 2 mixtures test facility

Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters

Chapter 2 Hydrostatics and Control

Critical face pressure and backfill pressure in shield TBM tunneling on soft ground

Mechanical Stabilisation for Permanent Roads

IN-PLACE DENSITY WAQTC FOP AASHTO T 209 (16)

Methods of filling the heat pipes

EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF THE EFFECT OF BODY KIT USED WITH SALOON CARS IN BRUNEI DARUSSALAM

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS

ON THE EFFECT OF LIFT FORCES IN BUBBLE PLUMES

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

m v = 1.04 x 10-4 m 2 /kn, C v = 1.29 x 10-2 cm 2 /min

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision

Transcription:

ES Web of Conferences 9, 06 (06) DOI: 0.0/ esconf/060906 E-UNSAT 06 Influence of effective stress on swelling pressure of expansive soils,a Wiebke Baille, Linzhi Lang, Snehasis Tripathy and Tom Schanz Ruhr-Universität Bochum, Chair of Foundation Engineering, Soil and Rock Mechanics, 780 Bochum, Germany Geoenvironmental Research Centre, School of Engineering, Cardiff University, Newport Road, Cardiff, CF AA, Wales, UK Abstract. The volume change and shear strength behaviour of soils are controlled by the effective stress. Recent advances in unsaturated soil mechanics have shown that the effective stress as applicable to unsaturated soils is equal to the difference between the externally applied stress and the suction stress. The latter can be established based on the soil-water characteristic curve (SWCC) of the soil. In the present study, the evolution of swelling pressure in compacted bentonite-sand mixtures was investigated. Comparisons were made between magnitudes of applied suction, suction stress, and swelling pressure. Introduction The volume change and shear strength behaviour of soils are controlled by the effective stress. The excess pore water pressure is equal to the difference between the externally applied stress and the effective stress in case of saturated soils. However, the impact of the negative pore water (or soil suction) on the effective stress for unsaturated soils is not straight-forward since the distribution of external stress within unsaturated soil systems occurs either via the water phase, or via the air phase, or even via both water and air phases depending upon the range of suction under consideration. Recent advances in unsaturated soil mechanics have shown that the effective stress as applicable to unsaturated soils is equal to the difference between the externally applied stress and the suction stress []. The suction stress embraces the van der Waals attractive force, the double-layer repulsive force, the surface tension, and the solid-liquid interface forces due to pore water pressure. The suction stress of unsaturated soils either can be measured in the laboratory from tensile strength tests or can be calculated based on the shear strength tests, or even can be calculated based on theoretical considerations. The suction stress characteristic (SSCC) curve of a soil (i.e., the relationship between suction stress and degree of saturation or suction or water content) can be established based on the soil-water characteristic curve (SWCC) of the soil []. The suction stress approach has been applied to determining the shear strength behaviour of unsaturated soils [, ] and the volume change behaviour of soils during the drying process []. At this stage, very limited studies are available on the swelling pressure development of unsaturated soils as affected by the suction stress, particularly in the context of a change in a the suction stress on account of a change in suction and its influence on the effective stress of swelling soils. The main objective of the study was to explore the impact of changes in the effective stress for swelling soils during the wetting process based on the suction stress approach. Methods Laboratory tests were carried out on highly compacted bentonite-sand mixtures []. Compacted specimens were prepared by mixing bentonite and sand in equal proportions by dry mass (0% bentonite and 0% sand). The Material properties of the bentonite and the sand used in the mixtures are presented in Table and Table, respectively. The specimens were prepared at predetermined water contents and dry densities. The compacted bentonite/sand specimens (dia. = 0 mm and a height = 0 mm) had the following compaction conditions: (i) dry density =.06 Mg/m³, water content = 9.%, and suction =.7 MPa and (ii) dry density =.0 Mg/m³, water content = 9.%, and suction =.7 MPa. Three out of the five specimens were further oven dried prior to testing them in a specialised oedometer. Oven drying caused an increase in the dry density and suction of the specimens. The specimens were then step-wise wetted by decreasing suction. Both axis-translation and vapour equilibrium techniques were adopted for this purpose. The swelling pressure at each applied suction was mea sured. Table. Properties of Calcigel bentonite Specific gravity of soil solids (-) Liquid limit Plastic limit Plasticity index.6 0 97 Corresponding author: wiebke.baille@rub.de The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License.0 (http://creativecommons.org/licenses/by/.0/).

ES Web of Conferences 9, 06 (06) DOI: 0.0/ esconf/060906 E-UNSAT 06 Table. Properties of the sand Specific gravity of soil solids (-) D0 D0 D60.6 0. 0.0 0.70 (980) [7] model (eq. ). The air-entry fitting parameter (α) and the pore-size parameter (n) were obtained. The parameters α and n were used to calculate the suction stress as a function of the effective degree of saturation using the closed-form expression (eq. ) []. Equation () is applicable for Se between 0 and. The effective stress corresponding to any suction stress can be calculated from eq. (). For the bentonite/sand specimens, the applied stress during the isochoric swelling pressure tests was zero; however, a in suction caused a development of total stress (i.e., swelling pressure). In this case, at any applied suction, the suction stress is subtracted from the total stress (i.e., the measured swelling pressure) to obtain the effective stress. controlled tests on compacted bentonite specimens were carried out using several devices developed at the Technical University of Catalonia, Barcelona (or UPC), Spain [6]. The device used is also known as the UPC-isochoric cell. The device with an exchangeable pedestal (either a corrosion-resistant porous disk for vapour equilibrium technique or a high-air-entry ceramic disk (air-entry value =,00 kpa) for axistranslation technique), can be used to control suction of specimens during the wetting process under isochoric condition. Table shows details of the bentonite specimens tested (i.e., dry density, water content, suction, and the techniques used to control suction). Se Initial compaction conditions; b Specimen conditions before testing Dry Water density content (MPa) (Mg/m).06 a 9.0 a.06 b 9.0 b.7 b.08 a.08 b 9. a 9. b.7 b.0 a.07 b 9. a 000 b.00 a.07 b 9. a 000 b.0 a.07 b 9. a 000 b control technique step-wise used (Vapour equi-librium technique (VET) or Axis-translation technique (ATT)) 0.,.,.,. and. MPa and water circulation ATT for suctions 0., 0., 0. and 0.0 MPa and water circulation s S Se n /( n ) e () / n () ' u a ( s ) (). Discussion of results The swelling pressure (i.e., total stress) at each applied suction was measured. Fig. presents the measured swelling pressure vs. applied suction plots for the bentonite/sand specimens (0B-specimens) of this study. For comparison, the corresponding results of pure bentonite (00B specimens) are also shown. 0.,.,.,. and. MPa and water circulation 9., 0., and. MPa ATT for suctions 0.7, 0., and 0.0 MPa 6 Total stress or swelling pressure (MPa) a () n Se n Table. Details of the 0% bentonite/0% sand specimens (0B) tested Sp. No. S Sr 00 S r Results. Presentation of results The set of equations used for the calculation of effective stress is presented in the following paragraph. Based on the degree of saturation values of the soil specimens at various applied suctions, the effective degree of saturation values were calculated from eq. (). The suction degree of saturation SWCCs of the soils were then transformed into the suction effective degree of saturation SWCCs. The suction effective degree of saturation SWCCs were best-fitted using van Genuchten 00B-sp (Schanz et al.) 00B-sp, (Schanz et al.) 0B-sp, (present study) 0B-sp,, (present study) 0 0,00 0,0 0, 0 (MPa) 00 000 Figure. control swelling pressure test results of bentonite/sand specimens to of the present study (0B) and of pure bentonite specimens (00B) (for comparison).

ES Web of Conferences 9, 06 (06) DOI: 0.0/ esconf/060906 E-UNSAT 06 For the bentonite/sand mixtures (0B-sp, and 0Bsp,,) swelling pressure was found to slightly increase due to a in suction to about MPa, whereas at suctions smaller than MPa, swelling pressure was found to significantly increase until reaching the maximum swelling pressure at zero suction corresponding to the saturated state. For the 00-B specimens, an increase in swelling pressure was observed over the full suction range. Figures and show the suction degree of saturation SWCCs (Figs. a and a), the suction effective degree of saturation SWCCs (Figs. b and b), the SSCCs in terms of the effective degree of saturation (Figs. c and c), and the SSCCs in terms of suction (Figs. d and d) for the combined results of specimens and and specimens, and of Calcigel bentonite/sand mixture (0B/0S), respectively. The fitting parameters obtained from the best-fit SWCCs are shown in Table. The results presented in Figs. (d) and (d) show that the suction stress increased (i.e., the magnitude of suction stress d) with a in suction for the bentonite/sand specimens. Table. SWCC fitting parameters for the bentonite/sand specimens. Parameter Specimen and Specimens, and Sr (-) 0.769 0.000 α (-).07 0. n (-)..6 Figure. SWCCs and SSCCs of Calcigel bentonite/sand (0Bspecimens, ): (a) suction degree of saturation SWCC, (b) effective degree of saturation SWCC, (c) SSCC in terms of effective degree of saturation, and (d) SSCC in terms of suction (log-scale)

ES Web of Conferences 9, 06 (06) DOI: 0.0/ esconf/060906 E-UNSAT 06 Figure. SWCCs and SSCCs of Calcigel bentonite/sand (0Bspecimens,, ): (a) suction degree of saturation SWCC, (b) effective degree of saturation SWCC, (c) SSCC in terms of effective degree of saturation, and (d) SSCC in terms of suction (log-scale) Baille et al. (0) stated that for bentonites, a in suction causing an increase of suction stress leads to decreasing the effective stress. Figures and show the combined plots of suction versus suction stress and effective stress versus swelling pressures (total stress) for compacted Calcigel bentonite/sand (0/0) specimens. The equivalent plot of results for pure bentonite is presented in Fig. 6. The results presented in Figs. and show that, at any applied suction the magnitude of suction stress is greater than the magnitude of swelling pressure. At saturation (i.e., at zero suction), the swelling pressure (i.e., the total stress) and effective stresses are equivalent since the excess pore water pressure was zero and the suction stress reduced to zero. 0 0 0, 0,0 0,00 0,00 0,0 0, 0B-specimens, (this study) stress (-MPa) (MPa) 0,00 0,0 0, 0 00 000 000 000 SSCC (based on best-fit SWCC) : line 00 00 Eff. stress vs. swelling press. 0,0 0,00 0, 0 00 000 Figure. Influence of a change in suction on suction stress and effective stress of Calcigel bentonite/sand mixture (0Bspecimens, ).

ES Web of Conferences 9, 06 (06) DOI: 0.0/ esconf/060906 E-UNSAT 06, in Fig.. The dashed lines in Figs., and 6 indicate the effective stress-swelling pressure path during suction. For the pure bentonite (Fig. 6), a continuous increase in swelling pressure was manifest by a in effective stress. For the bentonite/sand mixtures, a different effective stress-swelling pressure path was observed. In Fig. an increase in swelling pressure was accompanied by a significant in effective stress for a suction stress smaller than. MPa. For a suction stress greater than. MPa, both the swelling pressure and the effective stress increased, which is not consistent. In Fig., after an initial increase in swelling pressure, it slightly increased at suction stresses between and.8 MPa accompanied by a in effective stress. Again, for suction stress greater than.8 MPa, an inconsistency was observed; both the swelling pressure and effective stress increased. Considering the global behaviour of the bentonite/sand mixtures from the initial to the final point of the swelling pressure-effective stress path (i.e., ignoring the intermediate points), a in effective stress manifest by an increase in swelling pressure was observed, which is concurrent with the behaviour observed for the pure bentonite. However, the interpretation of the various stages between initial and final state need further consideration. (MPa) 0 000 000 00 stress (-MPa) 0,00 0,0 0, 0 00 000 SSCC (experimental) SSCC (based on best-fit SWCC) 00 Effective stress vs. swelling pressure 0 0B-specimens,, (this study) 0, 0, 0,0 0,00 0,00 0,0 0, 0 0,0 00 0,00 000 Figure. Influence of a change in suction on suction stress and effective stress of Calcigel bentonite/sand mixture (0Bspecimens,, ). (MPa) stress (-MPa) 000 0 00 000 0000 SSCC (00B-sp-exp) 00B-sp-eff. stress vs. meas. total stress 00B-sp,-eff. stress vs. meas. total stress 0 00 0 0, 0,00 0,00 0,0 0, 0,0 0, 0 The investigation clearly showed that, at high suctions, the swelling pressures developed were smaller than the corresponding applied suctions. However, at smaller suctions, the swelling pressure and the magnitude of suction stress were found to be similar indicating that at zero water pressure the effective stress is equivalent to the swelling pressure for highly plastic clays. 000 00 00% Bentonite specimens (Schanz et al., in prep.) Conclusions 0,00 0,0 0, 0000 SSCC (00B-sp.,-exp) References. 0,0 00. 0,00 000. Figure 6. Influence of a change in suction on suction stress and effective stress of pure Calcigel bentonite (00B-specimen and 00B-specimens, ) from Schanz et al., submitted... This observation is similar for the pure bentonite (00B) and the 0/0 bentonite/sand mixture. The effective stress of the pure bentonite d continuously upon wetting which was manifested on the development of swelling pressure (see Fig. 6). It is also visible in Fig. 6 that for similar scaling of the suction stress axis and the swelling pressure axis, the final swelling pressure at saturated state reached the suction stress line at the point where the latter deviates from the : line, corresponding to the air-entry value. This was also found for the specimens,, shown in Fig., whereas the final measured swelling pressure was found to be greater than suction stress at air-entry for specimens 6. 7. 8. N. Lu, W.J. Likos, J. Geotech. and Geoenviron. Eng. ASCE,, -, (006). N. Lu, J.W. Godt, D.T. Wu, Water Resources Research, 6, W0 (00). S. Oh, N. Lu, Y.K. Kim, S.J. Lee, S.R. Lee, J. Geotech. Geoenviron. Eng. ASCE 8, 7-7 (0). W. Baille, S. Tripathy, T. Schanz, Vadose Zone Journal., doi:0.6/vzj0.06.0, (0). S.S. Agus, Y.F. Arifin, S. Tripathy, T. Schanz, Acta Geotechnica, DOI 0.007/s0-0-089-0, (0) E. Romero, Characterisation and thermo-hydromechanical behaviour of unsaturated Boom clay: an experimental study, PhD thesis, Universitat Polytècnica de Catalunya (999). M. T. van Genuchten, Soil Sci. Soc. Am. J., 89 898 (980). T. Schanz, S. Tripathy, W. Baille, Consequences of effective stress changes on the volumetric behaviour of unsaturated soil. In prep.