INTERNATIONAL LIFE SAVING FEDERATION MEDICAL POSITION STATEMENT - MPS 08 IN WATER RESUSCITATION

Similar documents
Other diseases or age process

COALINGA STATE HOSPITAL. Effective Date: August 31, 2006

Electrical Shock Survival

EMD CPR. The First First Responder. R. Darrell Nelson, MD, FACEP


Biology Paper, CSE Style (Martin)

EMD CPR. The First First Responder. R. Darrell Nelson, MD, FACEP. Emergency Medicine Wake Forest University Baptist Health

NHS. Blackpool Teaching Hospitals. NHS Foundation Trust. Basic Life Support. Page 1


Hypothermia, the Diving Reflex, and Survival. Briana Martin. Biology 281 Professor McMillan April 17, XXXX

Guide to Compression-only Bystander CPR

Bronze Medallion At-a-glance

U.S. Lifeguard Standards: A Lifeguarding Practice Research Synopsis Mike Espino

Primary assessment: hazards & ABCs Item 11

2005 Top Ten Major Changes in Treatment Recommendations *

ANZCOR Guideline 6 Compressions

United States Lifeguard Standards Coalition Evidence Review

2015 Guidelines Summary HeartSine samaritan PAD Automated External Defibrillators

Disclaimer This material is intended for use by trained family members and caregivers of children with tracheostomies who are patients at the Alberta

South Walton Fire District Junior Lifeguard Learning Objectives

R S A B C CPR. Basic Life Support Flow Chart Check for danger. Check Response. Send for Help. Check Airway. Check for Breathing.

AMERICAN HEART ASSOCIATION UPDATES:

PUA21012 CERTIFICATE II IN PUBLIC SAFETY (AQUATIC RESCUE) BRONZE MEDALLION

At the end of this course participants should be able to demonstrate:

Basic Life Support & Automated External Defibrillation Course. OBJECTIVES

Basic life support updates

Guarding for Organized Swim Groups

5/13/ National Drowning Prevention Symposium, Pittsburgh, April Linda Quan Monday Plenary Presentation 1

McHENRY WESTERN LAKE COUNTY EMS SYSTEM FALL 2014 CONTINUING EDUCATION MANDATORY FOR ALL PRIMARY AND PROBATIONARY ALS SYSTEM PROVIDERS.

POOL TEST ITEM WORKSHEETS

Basic Life Support. Based on UK Resuscitation Guidelines (2010)

Unit Assessment Sheet Award: SLSGB Surf Lifeguard

WATER SAFETY WATER SAFETY H F A O E Y H F S 2 E T E S O Y S H 2 A E Y 2 H F O T A

UTSW/BioTel EMS System Training Bulletin June 1, 2015 EMS TB Adult CPR Update: Change to Continuous Chest Compressions (CCC)

Effective First Aid. Keeps a victim calm and helps them recover faster.

Canadian Red Cross Summary First Aid Technical Changes for 2011 Implementation

Adult, Child and Infant Exam

Surf Life Saving Australia Circular

Lebanese Red Cross - Emergency Medical Services First Aid Training course Skills Summary Adult Airways Obstruction

Q: When was CPR invented? Was anyone credited with bringing CPR to life?

BLS. Compressions Airway Breaths. Basic Life Support Quick Reference. Critical Concepts

First Aid Lukáš Dadák, M.D. Dept. of Anesthesia &ICU FN USA

AVALANCHE RESUSCITATION. ALICIA PETERSON, MD Emergency and Wilderness Medicine

THEPOWER OFWATER. February THE SCARED STRAIGHT OF AQUATICS Thursday, February 7, 2013, 4:30 p.m. - 6:00 p.m. Session 1307 Gerald Dworkin

E C C. American Heart Association. BLS for Healthcare Providers. Written Exams. January 12, 2012

LIFESAVING RESOURCES INC.

A Comparison of American Red Cross- and YMCA-Preferred Approach Methods Used to Rescue Near-Drowning Victims

CHAPTER 3: TAKING ACTION AND CARING FOR BREATHING EMERGENCIES Multiple Choice

Pool Danger. Pediatric Drowning. Pediatric Drowning. Pediatric Drowning Objectives. Peter Antevy MD

Theory Paper Masters. Surf Life Saving Australia. Champion Lifesaver 2013

Avalanche Victim Resuscitation Checklist

INTERNATIONAL LIFE SAVING FEDERATION LIFESAVING POSITION STATEMENT - LPS 19 USE OF PERSONAL PROTECTIVE EQUIPMENT (PPE)

CPR Skills INTRODUCTION

2015 CPR and Resuscitation Guidelines Summary of Changes in Lifesaving Society Literature

BASIC LIFE SUPPORT C1

ISAF OFFSHORE SPECIAL REGULATIONS Appendix E

CPR + AED Topic 6 TECS TECS FIRE & SAFETY TRAINING PTE LTD

Aquatic Curriculum reviewed Basic Aquatic Skills Curriculum

THE AMERICAN SAFETY & HEALTH INSTITUTE ADULT CPR EXAM

ADVANCED FIRST AID. Bibiana Navarro Matillas. Andalusian School of Public Health Guillermo Cañadas de la Fuente. Universidad de Granada

Water Safety at Home

Talking about teaching CPR at schools

Surf Lifeguard. Award Workbook

County of Henrico Verification Originator Revised Issued Human Resources Initials Risk

K.M. Enterprises. American Red Cross Blended Learning Lifeguarding Course Outline 2 day course Day 1, Morning Classroom Sessions

SLSA Advanced Resuscitation Certificate Assessment Portfolio NAME OF CANDIDATE:

Basic Life Support (BLS)

BASIC KNOWLEDGE OF LABORATORY FIRST AID

European Resuscitation Council. Basic Life Support & Automated External Defibrillation Course

The National Aquatic Safety Company, LLC WATER SENTRY EXAM A

Frequently Asked Questions About AEDs updated 11/2/2015

Save a life CPR Practice. CPR and AED practice for general public

American Heart Association. Heartsaver CPR

Supplement Study Guide for. Basic Life Support (BLS) for Healthcare Providers

How to Perform CPR. The CABs of CPR are Circulation, Airway and Breathing. C - Circulation (Chest Compressions)

Clarification of first aid practices: Position Statement re Control of Bleeding and CPR and Rescue Breaths ASPA Medical Advisory Committee July 2013

Cardiac Arrest General

From a nation-wide sport and physical

อ.พญ. มนจ ฑา เอ ยมอ ดมกาล ภาคว ชาก มารเวชศาสตร ศ นย การแพทย สมเด จพระเทพร ตนราชส ดาฯ คณะแพทยศาสตร มหาว ทยาล ยศร นคร นทรว โรฒ

bls guidelines B42EFDD89A9AB6A33D869587D2D61D4E Bls Guidelines 1 / 6

The National Aquatic Safety Company, LLC WATER SENTRY EXAM B

Pomona College Automated External Defibrillator (AED) Program

K.M. Enterprises. American Red Cross Lifeguarding Course Outline 4 day course Day 1, Morning Classroom Sessions

Q: When was CPR invented? Was anyone credited with bringing CPR to life?

Resuscitation Council (UK) SUPERSEDED

live outside the body and can often be treaded by antibiotics. need other organisms to live and prevention of is critical.

eacls TM Skill Performance

Junior Lifeguards Lesson Plan

Save A Life: learn animal CPR by Dr. Feldman

1.0 Priorities of Casualty Management. 1.2 Turning a Casualty onto the Back. 1.3 Managing Regurgitation of Stomach Contents. 1.4 Recovery Position

The development of this workbook was undertaken by trainers and developers within SAMPLE

BASIC LIFE SUPPORT - PAEDIATRIC

Don t loose your cool! Cold Water Immerison SECTION 1

Drowning in Infants, Children, and Adolescents

RIIERR205A Apply Initial Response First Aid

K.M. Enterprises. American Red Cross Lifeguarding Review Course Outline 2 day course Day 1, Morning Classroom Sessions

Unit 1 ASSESSMENT MATRIX - Theory

Under 17 and Under 15 Competition Theory Paper

TAMALPAIS UNION HIGH SCHOOL DISTRICT Larkspur, California. Lifeguarding Certification and Swimming Instructor Training

K.M. Enterprises. American Red Cross Lifeguarding Course Outline 4 day course Day 1, Morning Classroom Sessions

Transcription:

World Water Safety INTERNATIONAL LIFE SAVING FEDERATION Gemeenteplein 26 3010 Leuven Belgium Tel: (32.16) 89.60.60 E-mail: ils.hq@telenet.be - Web: www.ilsf.org MEDICAL POSITION STATEMENT - MPS 08 IN WATER RESUSCITATION BACKGROUND Whenever an apparently non-breathing victim is found in the water, the rescuer is confronted with a difficult choice. Should the rescuer attempt resuscitation procedures in the water or should the rescuer bring the victim to shore first, then attempt resuscitation? The hypoxia (oxygen starvation) caused by prolonged submersion results first in cessation of breathing (1,3,4,5,6,7). If this hypoxia is not corrected quickly, respiratory arrest is followed by cardiac arrest at a variable but short time interval determined by physical condition of the victim, water temperature, previous hypoxia, emotional state, and associated diseases (1,3,5,8,10,11). When respiratory arrest is corrected prior to onset of cardiac arrest, the death rate is less (0% to 44%) than in those cases where full CPR (including chest compressions) is needed (33% to 93%) (1,3,5). For these reasons, in cases of respiratory arrest without cardiac arrest while the victim is still in the water, the time involved in rescue will be enough, in the majority of cases, to result in cardiac arrest. This will lead to an increase in the likelihood of death (1,3,5). If hypoxia can be corrected in the water, before cardiac arrest takes place, the victim s chance of survival increases significantly. Ventilation in deep water using a rescue board was demonstrated in Australia by Surf Life Saving New Zealand in 1975. Deep water ventilation using a rescue board subsequently became part of lifeguard training in Australia in 1976 (1). In 1978, during a World Lifesaving Association medical conference in California, it was agreed that artificial ventilation with the aid of a flotation device should be employed in any case in which there is a delay in removing the non-breathing victim from the water. No successful resuscitation in the water was reported until 1981, although several lifesaving organizations worldwide had been teaching the use of artificial ventilation in the water (2). Water temperature and known time of submersion, are the main factors in the chance of survival and will influence decisions on resuscitation. Small children have been known to survive submersion in icy water for more than one hour (22). Such certainty of knowledge is,

International Life Saving Federation Page 2 however, rare and if submersion time is uncertain in more temperate conditions, resuscitation should be commenced as early as possible. Further, pulse checks in the water are highly unreliable and waste time. Cardiac compressions in the water have been evaluated and the procedure is not effective. In most cases, the rescuer does not know all the circumstances related to the victim before the rescue is attempted, and the resuscitation window decreases with time. The proper training for different situations, with or without lifesaving equipment, will improve the rescuer s ability to make the right decision and select the right rescue equipment for the circumstances. By maintaining good physical conditioning and using the correct rescue techniques the rescuer can avoid unnecessary risks to both the rescuer and victim. In considering the best course of action in treating a non-breathing victim in the water, lifeguards and other in-water rescuers have raised several questions: What if the victim is actually breathing and the rescuer mistakenly gives ventilations? It can be difficult to determine whether an unconscious victim is breathing spontaneously while the rescuer and victim are still in the water. Even so, if the rescuer ventilates a breathing victim, it is very unlikely to have a negative impact. On the other hand, ventilating a victim who is not breathing may revive the victim, or at least maintain circulation. If the victim is in cardiac arrest, won t the time involved in giving ventilations in the water delay CPR, early defibrillation, and other critical interventions? There will indeed be a delay, but the brief time involved in trying to immediately restart breathing is the best approach. The higher death rate resulting from cardiac arrest (33% to 93%) versus respiratory arrest alone (0% to 44%) justifies the risk of attempting in-water resuscitation immediately. In the majority of these cases, breathing is usually restored by mouth-to-mouth ventilation in the first minute (1,8). Doesn t mouth-to-mouth place the rescuer at higher risk of contracting a communicable disease? Studies suggest that the chance of contracting a communicable disease via mouth-to-mouth resuscitation attempts is extremely small. On the other hand, the chance of saving a life in these cases is high. Rescuers should take this into account in deciding the best course of action. If the rescuer has a barrier device, it may be used, but these devices are usually very difficult to use in-water and attempts to use them may add further delays. What if the water conditions are such that the rescuer or victim are endangered (e.g. high surf, very cold water, etc.)? If the rescuer is to successfully assist the victim, the rescuer must maintain a reasonable degree of safety. If the rescuer cannot safely provide ventilation at the location where the victim is found, then the rescuer should immediately move to a position of safety. This may be elsewhere in the water (such as further offshore), on-shore, into a rescue boat, etc. STATEMENT Whenever possible, if a victim is found in the water, the rescuer should immediately establish whether spontaneous breathing is present and, if it is absent, initiate artificial ventilation. Exceptions include threats to the safety of the rescuer and victim if immediate

International Life Saving Federation Page 3 rescue is not initiated and cases of known submersion over 15 minutes (12,13). Initiating artificial ventilation while still in the water in cases of isolated respiratory arrest may improve chances of survival of the non-breathing victim by more than 50% (1,3). The rescuer s ability to perform this procedure will depend on factors such as water conditions at the location of the incident (surf, currents, etc.), the availability of a rescue flotation device (rescue buoy, rescue tube, rescue board, etc.), rescuer training, physical conditioning of the rescuer, and the techniques used. Specific recommendations for different water depths are as follows in cases where the submersion time is unknown or is known to be less than 15 minutes: Shallow Water (if the rescuer can stand on the bottom) Open the victim s airway by extending the victim s neck, evaluate the victim s breathing, and, if the victim is not breathing, begin one minute of mouth-to-mouth ventilation (12 to 16 ventilations). If ventilations are restored at any time during the first minute of ventilation, proceed towards shore and stop to check from time to time that the victim is still breathing. If breathing is not restored after one minute of ventilation, the rescuer should rescue the victim while ventilations are continued or stop every one or two minutes to ventilate again for approximately one minute (12 to 16 ventilations). This may be done without great difficulty and without lifesaving equipment. Attempt to prevent unnecessary neck movement if there is a suspicion of head or neck trauma. Deep water Note: In general, only trained lifeguards have the skills to perform rescue breathing in deep water. Position the victim face up, extending the neck to open the airway. This can be accomplished by a single trained rescuer with the aid of appropriate lifesaving equipment (a rescue tube, rescue can, rescue board, bodyboard, etc.) or by two or more trained rescuers without lifesaving equipment. In either case, swim fins are highly recommended and will greatly facilitate these procedures. If there is no spontaneous breathing, the rescuer should attempt to ventilate for approximately one minute (12 to 16 ventilations), and then proceed depending on circumstances. If ventilation is restored, proceed toward shore intermittently stopping to check that the victim is still breathing. If breathing is not restored after one minute of ventilation, the rescuer should consider if it is a long (over five minutes) or a short swim to a dry or shallow place. If a short swim, rescue the victim while ventilations are continued or stop every one or two minutes to ventilate again for approximately one minute (12 to 16 ventilations). If a long swim, continue ventilation one additional minute in place and check for movement or reaction to ventilation. If present, use the same procedures as with the short swim. If movement or reaction to ventilation is absent, the rescuer should bring the victim to shore without further ventilations. When performed in deep water, this is a difficult procedure, requiring extreme fitness, swimming ability, a flotation device and prior training. Do not check victim s pulse or attempt

International Life Saving Federation Page 4 compressions while in the water (21). These are difficult and inefficient, and will slow the rescue process. In case of a suspected back or neck injury the rescuer should check breathing before extending the victim s neck, then if there is no breathing, tilt the victim s neck backwards to check for breathing again. If there is no spontaneous breathing the rescuer should immediately start ventilations (1,21) consistent with the rescuer s training protocol. Suspicions of back/neck injury should be greater in shallow water. The rescuer should always keep the victim under observation during the rescue, even if the victim is breathing spontaneously, since during the first 5 to 10 minutes the victim could again cease breathing (1).

International Life Saving Federation Page 5 ALGORITHM - IN-WATER RESUSCITATION PROCEDURES Conscious? (speaking and/or moving) Check VICTIM S RESPONSE STILL IN-WATER Warning if any suspicion of cervical spine injury - Deep Place the victim s face, out of water and extend the neck to open the airway Unconscious? (No movement) How deep is the water? Shallow Cervical Spine Injury? In case of suspected back / neck injury, check breathing first. If lacking, proceed to extend victim s neck and. Without equipment 1 rescuer 2 or more rescuers With equipment Immobilize the cervical spine during rescue if possible. Check for breathing. If no spontaneous breathing, ventilate for approximately one minute (12 to 16 ventilations). Rescue the victim to the shore or pool side as soon as possible. Yes Ventilation restored? No Long swim (> 5 min) continuing ventilation 1 additional min. in place and check movement or reaction to ventilation. If present, proceed with the same as short swim protocols. If absent (cardiac arrest), the rescuer should bring the victim to shore without further ventilations. Consider if it is a long (over 5 min) or a short swim back. short swim (< 5 min) rescue while ventilations are continued or by stopping every 1 or 2 min. to ventilate again for one minute. In-Water Basic Life Support Szpilman 2001 (references below). Note: recommendations for in-water resuscitation are for cases where the submersion time is unknown or is known to be less than 15 minutes. If breathing is not restored after one minute of ventilation in shallow water, proceed with short swim procedure.

International Life Saving Federation Page 6 REFERENCES 1 Manolios N, Mackie IJ: drowning and near drowning on Australian beaches patrolled by life-savers: a 10 year study (1973-1983). M J Aust vol 148:165-171, 1988 2 Ghaphery JC. In-Water resuscitation. JAMA 1981; 245:821. 3 Szpilman D. Near-Drowning and Drowning: A Proposal to Stratify Mortality Based on the Analysis of 1,831 cases: CHEST 1997; 112, p 660-665. 4 Pearn JH,Bart RD Jr,Yamaoka R (1979);Neurologic sequelae after childhood near-drowning: A total population study from Hawaii; Pediatrics 64:187-191. 5 Bierens JJLM, Velde EAV, Berkel M, Zanten JJ. Submersion in the Netherlands: Prognostic- Indicator and results of resuscitation. Annals of Emergency Medicine 19:1390-1395. 6 Modell JH, Graves SA, Ketover A: Clinical course of 91 consecutive near-drowning victims. Chest 1976, 70::231-238. 7 Dziukas Linas. Near-drowning: Australian Family Physician. Vol 18, 10, October 1989: 1242-6. 8 Orlowski JP, Abulleil MM,Phillips JM; The homodynamic and cardiovascular effects of near-drowning in hypotonic, isotonic, or hypertonic solutions; Annals of emergency medicine, October 1989;18:1044-1049. 9 Quan L, Gore EJ, Wentz K, et al: Ten-year study of pediatric drowning and near-drowning in king county, Washington: Lessons in Injury Prevention. Pediatrics 83:1035-40, 1989. 10 Orlowski JP, et al: Effects of tonicities of saline solutions on pulmonary injury in drowning. Crit Care Med 15, 2:126, 1987 11 Gooden BA: Drowning and the diving reflex in man. Department of human Physiology and Pharmacology University of Adelaide; The Medical Journal of Australia, vol2:583-587, 1972 12 Orlowski JP: Adolescent Drowning: Swimming, Boating, Diving, and Scuba Accidents. Pediatric Annals 17: 2/Feb 1987. 13 Haynes, Bruce E. Citation: Near-drowning: Rescuing victims effectively; The Physician and Sportsmedicine, June 1991, V19, n6, P31(3). 14 Allman FD, Nelson WD, Pacentine GA, et al: Outcome following cardiopulmonary resuscitation in severe pediatric neardrowning. Am J Dis Child 1986; 140: 571. 15 Peterson B: Morbidity of childhood near-drowning. Pediatrics 1977, 59:364. 16 Jacobsen WK, Mason LJ, Briggs BA, et al: Correlation of spontaneous respiration and neurologic damage in neardrowning. Crit. Care Med 1983; 11:487. 17 Nichter MA, Everett PB: Childhood near-drowning: Is Cardiopulmonary resuscitation always indicated?. Crit Care Med 1989; 17: 993-5. 18 Modell JH: Treatment of Near-drowning: Is There a role of H.Y.P.E.R Therapy?. Crit Care Med 14: 583-584, 1986. 19 Model JH: Drowning: To treat or not to treat - an unanswerable question?. Cit Care Med 21:313-5, 1993. 20 Bolte RG, Block PG, et al: The use of extracorporeal rewarming in a child submerged for 66 minutes. JAMA 260: 260-377, 1988. 21 Orlowski JP: Drowning, near-drowning, and ice water submersion. Pediatrics Clin North Am, 34:92, 1987 Policy Statement approved by the ILS Board of Directors on 04/09/2001 and 02/11/2015.