Deformation parameters of soils determined by the cone penetration test

Similar documents
Analysis of dilatometer test in calibration chamber

DEVELOPMENT OF A ROBUST PUSH-IN PRESSUREMETER

CONE PENETRATION TESTS

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Time rate of swelling of compacted highly plastic clay soil from Sudan

Pressuremeters in Geotechnical Design

EXPERIMENTAL INVESTIGATION ON OPTIMUM INSTALLATION DEPTH OF PVD UNDER VACUUM CONSOLIDATION ABSTRACT

Stability of slopes of municipal solid waste landfills with co-disposal of biosolids

SCHEDULE OF RATES FOR GEO-TECHNICAL INVESTIGATION WORKS FOR FAGMIL GRANULATED SINGLE SUPER PHOSPHATE PLANT AT CHITTORGARH, RAJASTHAN

Theory of a vertically loaded Suction Pile in CLAY

Suction anchor foundations for tension and taut leg floaters in deep waters. Tension Leg Platform. Taut Leg Platform. upper chain. risers.

Cubzac-les-Ponts Experimental Embankments on Soft Clay

SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES

Influence of Settlement on Bearing Capacity Analysis of Shallow Foundations on Sandy Clays in the Niger Delta, Nigeria

CHAPTER 3 PROJECT DESCRIPTION AND SITE CONDITION

Non-Linear Seismic Analysis of Multi-Storey Building

Learn more at

Hardware Triaxial and Consolidation Testing Systems Pressure Measurement and Control

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure

Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand

Bearing Capacity and Settlement Response of PMS Tanks on Cohesionless Soil Lithology in Lekki, Lagos of Nigeria

Development of Data Acquisition System for Consolidated Undrained Triaxial Test

Application of pushover analysis in estimating seismic demands for large-span spatial structure

Contribution to the snow protection solutions for pitched roofs

Elastic-Plastic Finite Element Analysis for Zhongwei--guiyang Natural Gas Pipeline Endangered by Collapse

ABSTRACT. The design of a temporary slope and excavation retaining wall system often is carried out

FRAMEWORK FOR THE ESTIMATION OF MSW UNIT WEIGHT PROFILE

Shallow foundations settlement

Application of Expansive Soil Geotechnical Procedures

Methods of filling the heat pipes

Strength Reduction Stability

CENGRS GEOTECHNICA PVT. LTD. Job No Sheet No. 1

382. Fellenius, B.H. and Terceros, M.H., Information on the single pile, static loading tests at B.E.S.T. Proceedings of the 3rd Bolivian

The Adequacy of Pushover Analysis to Evaluate Vulnerability of Masonry Infilled Steel Frames Subjected to Bi-Directional Earthquake Loading

Strength and Deformation Behavior of Soft Bangkok Clay

Licensed Copy: Puan Ms. Norhayati, Petroliam Nasional Berhad, 12 March 2003, Uncontrolled Copy, (c) BSI

UNIT-I SOIL EXPLORATION

REPORT GEO-TECHNICAL INVESTIGATION FOR THE PROPOSED BLOCK-7 SUB-STATION SY NO-225, NEAR RAYACHERLU VILLAGE

Full scale measurements and simulations of the wind speed in the close proximity of the building skin

Adaptive Pushover Analysis of Irregular RC Moment Resisting Frames

Desaturating sand deposit by air injection for reducing liquefaction potential

Influence of effective stress on swelling pressure of expansive soils

using Strength Ratios

REPORT GEO-TECHNICAL INVESTIGATION FOR THE PROPOSED BLOCK-1 SUB-STATION SY NO-44, NEAR KYATAGANACHERLU VILLAGE

V-H-M Yield Surface describing Soil Structure Interaction of Sub-sea Structures and Wind Turbines on Caisson Foundations in Soft Clays

SOIL IMPROVEMENT BY VACUUM PRELOADING FOR A POWER PLANT PROJECT IN VIETNAM

CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS

Hermetic Compressor Manifold Analysis With the Use of the Finite Element Method

Critical face pressure and backfill pressure in shield TBM tunneling on soft ground

Quantitative Risk of Linear Infrastructure on Permafrost Heather Brooks, PE. Arquluk Committee Meeting November 2015

Part 11: Flat dilatometer test

Effects of Sample Disturbance and Consolidation Procedures on Cyclic Strengths of Intermediate Soils

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

Department of Civil & Geological Engineering GEOE Engineering Geology

CPT and MiHpt Programs Bayou Corne 8 AUG 2013

[Barve, 4(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

SHAKING TABLE TESTS AND EFFECTIVE STRESS ANALYSES ON THE DYNAMIC BEHAVIOR OF WEDGED CAISSONS

OP CHECKLIST FOR 1D CONSOLIDATION LABORATORY TEST

Displacement-based calculation method on soil-pile interaction of PHC pipe-piles

SUPPORTING NOTES FOR THE EVALUATION OF UNBOUND ROAD BASE AND SUB-BASE AGGREGATES

CIVE 554/650. Geotechnical Engineering. Rock. Soil. Water. Site Investigation Techniques. CIVE Knight 1. 1/8/2006 CIVE Knight 1

Mechanical Stabilisation for Permanent Roads

An Introduction to Deep Foundations

Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils 1

Residual Stresses in Railway Axles

Developing FE-Tire Model Library for Durability and Crash Simulations

Analysis of Pressure Rise During Internal Arc Faults in Switchgear

Turfgrass and Environmental Research Online

WCA gas trap results and ebullition modeling: testing an ebullition model shows the importance of pore structure

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Ground Failure Mechanism of Micoropiled-raft

EDEXCEL NATIONALS UNIT 6 MECHANICAL PRINCIPLES and APPLICATIONS. ASSIGNMENT No. 4

E.2 CAP SETTLEMENT RA D AND OUTBOARD

International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

Using sea bed roughness as a wave energy dissipater

Geotechnical investigation and testing Field testing Part 4: Ménard pressuremeter test

W I L D W E L L C O N T R O L PRESSURE BASICS AND CONCEPTS

Operating instructions Pitot Static Tube

2 FUSION FITTINGS FOR USE WITH POLYETHYLENE PRESSURE PIPES DESIGN FOR DYNAMIC STRESSES

THE EFFECT OF EMBEDMENT DEPTH ON BEARING CAPACITY OF STRIP FOOTING IN COHESIVE FRICTIONAL MEDIUM

The 9th International Symposium on Automation and Robotic in Construction June 3-5,1992 Tokyo, Japan

m v = 1.04 x 10-4 m 2 /kn, C v = 1.29 x 10-2 cm 2 /min

Influence of Fly Ash Content on Compaction Characteristics of Fly Ash Clay Mixture

Reinforced Soil Retaining Walls-Design and Construction

1. A proper preparation of the cone and other material is inevitable prior to a CPTU test.

Available online at ScienceDirect. Procedia Engineering 84 (2014 )

Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA , United States.

AUTOMATED MONITORING EQUIPMENT FOR ACIP AND DD PILES

BURIED PIPE RESPONSE SUBJECTED TO TRAFFIC LOAD EXPERIMENTAL AND NUMERICAL INVESTIGATIONS

Risk Assessment and Mitigating Measures Regarding Pile Installation at EBS Biohub Jetty

4-3 Rate of Change and Slope. Warm Up. 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2.

Soil Stabilization using Fly Ash and Rice Husk Ash

Experimental investigation of the check valve behaviour when the flow is reversing

Atmospheric air density analysis with Meteo- 40S wind monitoring system

Numerical simulation of radial compressor stages with seals and technological holes

computed using Equation 3-18 by setting the 2nd term equal to 0 and K A equal to K o and using the pressure distribution as shown in Figure 3-23.

The tensile capacity of suction caissons in sand under rapid loading

Stress and deformation of offshore piles under structural and wave loading

Fail-Safe Design by Outer Cover of High Pressure Vessel for Food Processing

Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils

Transcription:

MATEC Web of Conferences 117, 0002 (2017) DOI: 10.101/ matecconf/20171170002 Deformation parameters of soils determined by the cone penetration test Roman Bulko 1*, Filip Gago 2 1 University of Žilina, Faculty of Civil Engineering, Department of Geotechnics, Univerzitná 821/1, 010 26, Slovakia 2 University of Žilina, Faculty of Civil Engineering, Department of Geotechnics, Univerzitná 821/1, 010 26, Slovakia Abstract. The article deals with the derivation of correlation relations from the cone penetration test, which are applied as input parameters in the calculations of advanced constitutive soil models. Numerical modelling has become important part of geotechnical calculation. Hand in hand there is a big demand for accurately determined input parameters for constitutional models, that are not usually determined by IG surveys. On the model area we applied fieldworks as cone penetration tests and boreholes to obtain detailed parameters. Soil samples were examined in laboratory to create own database of values. Derived correlations include compression index C c and recompression index C r. 1 The principle of a cone penetration test The cone penetration test (Fig.1) is one of the geotechnical field methods used to determine the geotechnical properties of soils. The measuring cone is statically pushed through a set of steel rods into the soil by a constant speed of 20 mm.s -1. During penetration, number of variables are recorded at the cone head or along the sleeve. Values as cone resistance q c, friction on sleeve f s and pore pressure u 1 /u 2 are continuously recorded. At the cone the cone resistance is recorded, which expresses the resistance of the soil to penetration. The total resistance of the penetrated system q t is then summation of the cone resistance q c and the friction on sleeve f s. Changing the penetration probe from the mechanical tip to the piezocone, enables to measure the pore pressures u 1 (measurement at the cone) or u 2 (measurement just behind the cone). * Corresponding author: roman.bulko@fstav.uniza.sk The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 117, 0002 (2017) DOI: 10.101/ matecconf/20171170002 Fig. 1 Demonstration of cone penetration test Cone Penetration Tests are divided according to used type of the measuring cone on: CPTm Cone Penetration Test with mechanical Begemann cone, CPTu Cone Penetration Test with piezocone, SCPTu Seismic Cone Penetration Test. 2 The fieldwork on the model area Various programs using finite element methods have been used as Plaxis, Midas, Adina and others to analyse some geotechnical tasks. Constitutional models of soils and their input parameters are base data to be entered into the different programs. In our research we have focused on the development of new correlations for the input parameters of advanced constitutional models derived from the cone penetration test. Input data for derivation of correlation were obtained by Engineering Geological (EG) survey on model area (Fig.2). The EG survey was performed by six core boreholes m long. Four cone penetration probes (CPTm) each of the length of.6 m were allocated to each core borehole. Representative soil samples were taken from the core boreholes from the depths of 1.0 m to.0 m at intervals of 0.2 m. Soil samples were tested in the Geotechnical Laboratory of the University of Žilina. Laboratory tests were done as follows: Granulometric analysis, humidity test, evaluation of plasticity and fluid limits; Shear box test; Determining the apparent density of solid particles; Oedometric test. 2

MATEC Web of Conferences 117, 0002 (2017) DOI: 10.101/ matecconf/20171170002 Fig. 2 Deployment of CPT probes and core boreholes on model area The soils were classified in the graph (Fig.3) depending on the normalized penetration resistance q (1) and the friction ratio Fr (2) based on the continual recording of cone penetration tests. This classification was introduced by Robertson, who described each area of the graph. q qc.cq qc cone resistance pa reference stress σv geostatic vertical stress Cq stress normalization factor ak Cq [MPa], [0.1MPa], [MPa], [MPa]. Fig. 3 Clasification of soils from model area 3 1.7 v pa 0.7 (1)

MATEC Web of Conferences 117, 0002 (2017) DOI: 10.101/ matecconf/20171170002 f s sleeve friction q c cone resistance σ v geostatic vertical stress F r 100. fs q c [MPa], [MPa], [MPa]. v (2) 3 Constitutive models As it has been already mentioned, various FEM programs are used to analyse complex geotechnical tasks. The more complex the geotechnical tasks are, the better understanding of the situation is required. This is the case of more advanced constitutive soil models. An important question in numerical modelling in geotechnics is therefore the question, how to use the constitutive model for proper calculations and how to determine model input parameters. Another question is the degree of precision of the description of soil behaviour using individual models versus widely known facts. Soil models - also called constitutional models - can be divided into two basic groups, linear and nonlinear. Linear models give a fairly fast, but none too accurate estimation of actual soil behaviour. They can be used in cases where we are only interested in stress or deformation of the massif. They are not well applicable for the method of plane of possible failure. However, if we try to do a credible description of the behaviour of the earth construction, or when we are interested in the distribution of possible areas of failure, it is necessary to use non-linear models. We chose an advanced Soft soil model for our work. One of the input parameters is the modified compression index λ* (3). This parameter is obtained from a triaxial test and entered into the Soft soil model. If the modified compressibility index λ* is not known from a triaxial test, it can be roughly determined from the compression index C c, determined by the oedometric test: C * c 2,3.(1 e) (3) C c compression index, e void ratio. Another input parameter is the modified swelling index κ* (4). This parameter is entered into the Soft soil model and retrieved again from the triaxial test. If the modified swelling index κ* is not known from the triaxial measurement, it can be approximated by the C r recompression index, which is determined by the oedometric test: C * r 2,3.(1 e) (4) C r recompression index. If results from laboratory tests or in-situ tests are not available, we can use the following relationship to determine the C r recompression index: () 1 1 C r ~ C c 10 4

MATEC Web of Conferences 117, 0002 (2017) DOI: 10.101/ matecconf/20171170002 4 New correlations depending on cone penetration test Thirty one oedometric tests were carried out in the geotechnical laboratory, with a load of 0-100-10-200-10-100-0-100-10-200 kpa. Such load patterns also provided a branch of unloading and re-strain, from which it was later possible to determine the compression index C c and the recompression index C r. The compression index C c was obtained from the oedometric test, which describes the dependence of the porosity change e on the change of the effective stress σ ef plotted in the logarithmic scale. It is therefore the deformation characteristic of the overconsolidated soil, which is given by the relation (6): C c e log Δe void ratio, Δlogσ ef logarithmic effective stress. (6) ef Fig. 4 The oedometric test and the dependance of the change of the void ratio on the change of the effective stress The recompression index C r is obtained from the oedometric test, the unloading/reloading curve and the dependence of the porosity change e on the change in the effective stress σ ef plotted on the logarithmic scale. It is a deformation characteristic of overconsolidated soil. The determination of the recompression index C r is given by the relation (7): C r e log (7) Δe changing void ratio for curve unloaded reloaded, Δlogσ ef changing effective stress for curve unloaded - reloaded. ef

MATEC Web of Conferences 117, 0002 (2017) DOI: 10.101/ matecconf/20171170002 Fig. The oedometric test and the dependance of the change of void ratio on the change of the effective stress for curve unloaded - reloaded On the base of the tests, having a sufficiently large database of values of compression index C c and the C r recompression index, we deduced the dependence between these values and the measured values of the normalized penetration resistance q. The correlation relation refers to the medium plasticity clays F6 (CI) classified according to STN 73 1001. On the figure (Fig. 8) we can see the distribution of 31 measured values of the compression index. We have to point out that the measured compression index values ranged from 0.07 to 0.24. The compression index C c is given by the relation (8): 3 2 C 0.0077. q 0.0776. q 0.291. q 0.1863 (8) c Based on the determination of the standard deviation, no extreme values were found. To 100 % of the results, we can derive the compression index C c with 77% accuracy based on the relationship (8) Fig. 6 Compression index C c derived from normalized penetration resistance q 6

MATEC Web of Conferences 117, 0002 (2017) DOI: 10.101/ matecconf/20171170002 Recompression index C r (9) is derived from normalized cone resistance and is given by the relation: 3 2 C 0.0008. q 0.01. q 0.042. q 0.038 (9) r Fig. 7 Recompression index C r derived normalized penetration resistance q Conclusion The ability to determine the advanced geotechnical parameters from Cone Penetration Tests is an indisputable asset. It is promising and providing possibilities for their extended usage. New correlations need to be verified in practice and, of course, they need to be refined or improved by feedback. In the future, the authors plan to deal with the correlation of the presented parameters in relation to the assessment of geotechnical structures, or for their direct usage for numerical analyses. From the engineering and geological point of view, it is evident that the knowledge of the local properties of fine-grained soils obtained by penetration probing is unique. But their extend usage should be examined for certain conditions. They can be used for similar problems to contribute to the discovery of hazards and pitfalls in the rock environment, as potential liquefaction during seismic shaking, overconsolidation, etc. References 1 M. Decký, M. Drusa, Navrhovanie a kontrola kvality zemných konštrukcií inžinierskych stavieb. Krupa Print ISBN 978-80-970139-1-2. 2 M. Drusa, Proceedings of SGEM, 2, 11-18 (2012) 3 P. W. Mayne, Cone Penetration Testing State of Practice, Final Report NCHRP Project 20-0, Transportation Research Board, Washington (2007) 4 Research project VEGA No. 1/421/07 Evaluation of penetrating methods for determining the deformation properties of subsoil of transport constructions and their verification in geotechnical practice (2009) P. K. Robertson, Canadian Geotechnical Journal, 27/1, 11-18 (1990) 6 J. Vlček, R. Bulko, WMESS world multidisciplinary earth sciences symposium CD- ROM, s. 104 (201) 7

MATEC Web of Conferences 117, 0002 (2017) DOI: 10.101/ matecconf/20171170002 7 R. Bulko, L. Kais, J. Vlček,: Použitie statickej penetračnej skúšky pre určovanie geotechnických parametrov. Nové poznatky v geotechnickom inžinierstve Bratislava (2014) 8 R. Bulko, Drusa, J. Vlček, M.Mečár, Civil and environmental 11/2, 12-17 (201) 9 STN 72 1001 : 2010 : Klasifikácia zemín a skalných hornín. 10 STN 72 1027 : 1983 : Laboratorní stanovení stlačiteľnosti zemin v edometru 8