Na + AND Cl~ EFFLUXES AND IONIC REGULATION IN TILAPIA GRAHAMI, A FISH LIVING IN CONDITIONS OF EXTREME ALKALINITY

Similar documents
MIE KAMIYA Laboratory of Physiology, Ocean Research Institute, University of Tokyo, Nakano, Tokyo

(breed) Anadromous. wholly seawater

INTRODUCTION.

Harvest & Transport Best Management Practices

Estuaries fresh & salt meet. Tremendously Productive DETRITUS

2/4/2015. Cell or body volume regulation. Intracellular Osmotic Conditions. Water Content in Animals. Water Budgets

CHEM1901/3 Worksheet 8: The Ideal Gas Law: PV = nrt

(Received 16 January 1946)

Fish Eating Contest List and explain the meaning of morphology, anatomy, and physiology (LA , 2, 3, 4, 5; SC.912.L.14.7).

10/30/2018 DIFFUSION AND OSMOSIS IN EVERY DAY LIFE DIFFUSION AND OSMOSIS IN THE MEDICAL PRACTICE DIFFUSION AND OSMOSIS IN THE MEDICAL PRACTICE

THE EFFECTS OF SALINITY ON THE DEVELOPING EGGS AND LARVAE OF THE HERRING

VISUAL PIGMENTS IN A TROPICAL FRESHWATER FISH ETROPLUS MACULATUS (TELEOSTEI)

Before we can understand what dropsy is we must first understand two natural occurring scientific processes namely, Osmosis and Diffusion.

Features of osmotic and ionic regulation in Caspian Acipenserids

Biophysics I - Diffusion, osmosis 10/31/2018

Respiratory Lecture Test Questions Set 3

What does the % represent on the beakers?

GASEOUS EXCHANGE 17 JULY 2013

Structural changes in response to increased environmental salinity and calcium on ultimobranchial gland of teleost fish Tilapia (O.

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook

PROTEC GILL. The fine art of gill protection

William A. Wurts, Senior State Specialist for Aquaculture Kentucky State University Cooperative Extension Program

IT has been shown by Pampapathi Rao (1958) that the fresh-water teleost,

SHORT COMMUNICATION CONTINUOUS RECORDING OF ARTERIAL BLOOD P02 IN OCTOPUS VULGARIS DURING PROGRESSIVE HYPOXIA AND MOVEMENT

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Life 23 - Respiration in Air Raven & Johnson Ch. 53 (part)

A MICROPUNCTURE STUDY OF KIDNEY FUNCTION IN THE RIVER LAMPREY LAMPETRA FLUVIATILIS ADAPTED TO SEA WATER

OXYGEN UPTAKE IN A SPONTANEOUSLY VENTILATING, BLOOD-PERFUSED TROUT PREPARATION

Gas Exchange Respiratory Systems

Fish Farming Water Quality Test Kit

Effects of Environmental Cl - Levels on Cl - Uptake and Mitochondria-rich Cell Morphology in Gills of the Stenohaline Goldfish, Carassius auratus

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1

Acidification Issues in Coastal Waters of the SAML Region: Responses of Organisms

Introduction to Biological Science - BIOL Gas Exchange

RESPIRATION AND ACID-BASE PHYSIOLOGY OF THE SPOTTED GAR, A BIMODAL BREATHER

Effect of Trichloroisocyanuric Acid Disinfectant Filled in Swimming Pool Water

Worksheet: Solubility

AP Biology. Gas Exchange Respiratory Systems. Gas exchange. Why do we need a respiratory system? Optimizing gas exchange. Gas exchange in many forms

understanding of cell size and shape absorption of food substances in villi rate of diffusion gas exchange in air sacs

A COMPARISON OF THERMAL POLYGONS FOR BRITISH FRESHWATER TELEOSTS

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Collin County Community College. Lung Physiology

alveoli Chapter 42. Gas Exchange elephant seals gills AP Biology

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi

SHORT COMMUNICATION EFFECT OF EXPERIMENTAL VENTILATION OF THE SKIN ON CUTANEOUS GAS EXCHANGE IN THE BULLFROG

DISTINGUISHING METABOLIC HEAT FROM CONDENSATION HEAT DURING MUSCLE RECOVERY

STERILIZABLE DISSOLVED OXYGEN SENSORS

WATER BALANCE IN THE SALMON EGG

AP Biology. Chapter 42. Gas Exchange. Optimizing gas exchange. Gas exchange. Gas exchange in many forms. Evolution of gas exchange structures

16. Studio ScaleChem Calculations

Adaptations of Flora and Fauna in Rhode Island s s Estuaries

GAS EXCHANGES AND BLOOD GAS CONCENTRATIONS IN THE FROG RAN A RIDIBUNDA

Hagfishes, Class Myxini, Order Myxiniformes. Hagfishes, Class Myxini, Order Myxiniformes. Hagfishes, Class Myxini, Order Myxiniformes

6I unstable compound with phosphoric acid, which disappears during fatigue. (From the Department of Physiology, The University, Sheffield.

Dissolved Oxygen Meter. ino2. Instruction Manual. Serial No..

P. TYTLER* AND J. IRELAND Department of Biological and Molecular Sciences, University of Stirling, Stirling FK9 4LA, UK

Section Three Gas transport

Gas Exchange & Circulation

Comparative Physiology 2007 First Midterm Exam. 1) 16 pts. 2) 12 pts. 3) 40 pts. 4) 10 pts. 5) 17 pts. 6) 5 pts. Total

DRINKING WATER - LAB EXPERIMENTS LAB EXPERIMENTS. Nanofiltration

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration.

THE EFFECTS OF REDUCED GILL AREA AND HYPEROXIA ON THE OXYGEN CONSUMPTION AND SWIMMING SPEED OF RAINBOW TROUT

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi

IASbaba ILP: Value Add Material - Matter MATTER. Iasbaba.com Page 1

Sandy Hook #1: Produced Water Volume Inversion

Characterizers for control loops

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

ADAPTATION TO CHANGES OF SALINITY IN THE POLYCHAETES

OXYGEN CONSUMPTION AND TEMPERATURE IN THE AQUATIC ENVIRONMENT

fish prefer intermediary salinities especially "how salinity influences growth?" Paper ID:

Ch. 11 Mass transfer principles

Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial


PMT. Smaller species of annelid do not have gills. Explain why these small worms do not need gills to obtain sufficient oxygen

RESPIRATORY REGULATION DURING EXERCISE

Transient Analyses In Relief Systems

Experimental and modelling study of the solubility of CO 2 in various CaCl 2 solutions at different temperatures and pressures

I. Gas Exchange Respiratory Surfaces Respiratory Surface:

Your Bonus. Steps for doing the Homework. Make sure you convert to the correct units of measure:

Inquiry Investigation: Factors Affecting Photosynthesis

STRUCTURED INQUIRY: Investigating Surface Area to Volume Ratio in Cells

RESPIRATION IN AN AIR-BREATHING FISH, THE CLIMBING PERCH, ANABAS TESTUDINEUS

REVISION: GASEOUS EXCHANGE & EXCRETION 11 SEPTEMBER 2013

Outline - Respiratory System. Function of the respiratory system Parts of the respiratory system Mechanics of breathing Regulation of breathing

I Physical Principles of Gas Exchange

CLASS COPY-DO NOT WRITE ON

Respiration - Human 1

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood

Experiment B-3 Respiration

Gaseous exchange. Grade 11

J. Physiol. (I941) I00, I98-21I 6I :6I2.825

Craig P. Seltenrich Pacific Gas & Electric Company 3400 Crow Canyon Road San Ramon, California Introduction

HAEMOLYMPH OXYGENATION AND OXYGEN CONSUMPTION IN A HIGH SHORE CRAB, LEPTOGRAPSUS VARIEGATUS, BREATHING IN AIR AND WATER

Commentary Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas,

B14 gas exchange note, reading and questions.notebook April 13, 2011

(a) (i) Describe how a large difference in oxygen concentration is maintained between a fish gill and the surrounding water.

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

REVISION: GASEOUS EXCHANGE 24 SEPTEMBER 2014 Lesson Description

system. and then into the tissues. Diffusion of wastes such as Carbon Dioxide from tissues into blood and out of blood into the lungs.

Transcription:

J. exp. Biol. (1981), 91, 349-33 349 Printed in Great Britain SHORT COMMUNICATIONS Na + AND Cl~ EFFLUXES AND IONIC REGULATION IN TILAPIA GRAHAMI, A FISH LIVING IN CONDITIONS OF EXTREME ALKALINITY F. B. EDDY, 1 O. S. BAMFORD 2 AND G. M. 0. MALOIY 2 department of Biological Sciences, The University, Dundee DDi 4HN, U.K. and ^Department of Animal Physiology, University of Nairobi, Nairobi, Kenya The osmoregularity ability of the cichlid Tilapia grahami enables this fish to live in conditions of extreme alkalinity (Reite, Maloiy & Aashaug, 1974; Maloiy et al. 1978). In this paper we describe the ionic balance of T. grahami from Lake Magadi (East African Rift Valley) which has a ph value of around 10, temperature in the range 30-40 C and an osmotic pressure of about 00 mosm, the principal inorganic ions being sodium carbonate and bicarbonate (Table 1). We also describe ionic balance of fish in water with a high NaCl concentration and in fresh water. Fish were netted in pools at the edge of the lake and that day the air temperature was 26 C, water temperature was 30 C and water ph estimated using BDH ph papers was between 9-10. The fish were transported to Nairobi and kept in tanks of constantly aerated Lake Magadi water at 20 C. After an initial high mortality the remaining fish survived for many months under laboratory conditions. One group of fish was used to determine body water and ions (Table 1) while others were injected with known amounts of 22 Na and M C1 to determine effluxes of these ions (Table 2). Whole fish, average weight 2-93 g, were homogenized in distilled water and after allowing two weeks for ion elution Na + and Cl~ were determined using an EEL 100 flame photometer and Cl~ using a Buchler Cotlove ampiometric titrator. Water content was determined by drying to constant weight in an oven at 100 C C. Two further groups of fish were injected with known amounts of 22 Na and 38 C1 to determine effluxes of these ions (Table 2). Samples of the media were analysed for y activity using a Packard 120 spectrometer, and for /? activity using a Tricarb Corumatic 200 liquid scintillation counter. One group (Table 2, experiment 1) were kept in 20 ml of 300 mm NaCl for 23 h and samples were taken at intervals. The medium was then changed to 00 mm NaCl+10 mm CaCl 2 and further samples were taken after 2 h. The second group were kept in 20 ml of Magadi water for 19 h and samples were taken as before. The medium was then changed to tap water (1 mm NaCl, ph 7-) and further samples taken at 3 h and h (Table 2, experiment 2). Average weight of the fish in these experiments was 2-29 g. Na+ and Cl~ turnovers were calculated using equations based on those of Motais (1967) and effluxes were calculated from ion space values (Table 1). Most experiments EXB 91

30 F. B. EDDY, 0. S. BAMFORD AND G. M. 0. MALOIY Table i. Ion and water content of Tilapia grahami whole body and tissues (Mean, standard error and number of determinations are indicated. Lake Magadi water also contains 116 min CO 2 2 - and 0-4 mm Ca' +. Ion spaces calculated according to Holmes & Donaldson (1969). References indicated by numbers in parentheses.) Water content Na+ Cl- K+ HCCV (%) Lake Magadi 314 (1) 91(1) 2-(1) 87(1) water (min) Blood plasma 217(1) «io(0 8(1) 6-9(1) (mm) iao±4'2(2) 1612-8(3) 126(2) i7s±s'3(3) 249±2o( 4 ) 186±12 (4) Whole body I4i-s±i8'4 66-6±i8-8 133-2 + 19 87-8 + 0-82 m-mole/kg n = 6 n n = 6 n = 6 Muscle "7(i) 46(1) m-mole/kg Ion space 62 8 (% wet wt.) (1) Maloiy, Lykkeboe, Johansen & Bamford (1978); (2) Leatherland, Hyder & Ensor (1974); (3) Maetz & de Renzis (1978); (4) Skadhauge, Lechene & Maloiy (1980). Table 2. Na+ and Cl~ turnover rates (K/h) effluxes (mm kg- 1 hr 1 ) of Tilapia grahami (Mean, number of determinations and standard error of the mean are indicated.) Experiment i Experiment 2 Sodium K/h mm kg" 1 h" 1 Chloride K/h mm kg" 1 h" 1 300 mm NaCl 23 h 0-07 + O-O22 6 804 ' 33 6 + 0-0041 2-2O 00 mm NaCl + iomm CaCl, 2 h 0-08 + O-O2 4 812 0-04 4 + 0-023 300 Magadi water i6-h 0-027 7 ±O'O2 3-8o OO2 ±0-017 1-67 A 19 h O-O2I ±0-008 2-96 0-024 ±0-008 i-6o 3 h Fresh water 0-0067 ±0-0072 094 0-008 S + 0-007 o-3 h 0-0043 + 0-0034 o-6i 00044 ±0-001 029 were carried out at 20 C, but a few at 30 C showed a marginal increase in ionic effluxes. Handling and isotope injection stressed the fish, and this was reflected in unusually high and variable ionic effluxes during the first 1 h of the experiment. Subsequent values were much more uniform and only these are shown in Table 2. Media were changed with minimum disturbance to the fish. After 24 h recovery from cannula insertion and anaesthesia (0 mg/1 benzocaine, P-aminobenzoate), fish were placed in Magadi water until the potential (measured by the method of Potts & Eddy, 1973) was constant, usually about min, and then the procedure was repeated in dilute Magadi water (Table 3). Twenty-two fish, average weight 3-3 g, were used.

Ionic regulation in Tilapia grahami 31 Table 3. Potential measurement for T. grahami in Lake Magadi water and in dilution of Magadi water (Polarity refers to the inside of the fish with respect to the external medium. Equilibrium potentials were calculated using the Nernst equation and plasma ion values in Table i and a blood ph value of 8-0 was used (Johansen, Maloiy & Lykkeboe, 197). Mean potential (mv), standard error and number of determinations are indicated.) Equilibrium potential Medium Magadi water 7 % Magadi water 0% Magadi water 2 % Magadi water Fresh water ^*^I A noil I>A ^J IVlCaS U It U potential 1-8 ±02 16-0-3 + 1-17 -1-9 ±i-34 22 2-I6±I-34 22 II-Q+I-I3 Na+ 93 2-1 8-1 -2-6 -13 14 23 27 129 HCO," -60-3 -41-2 2 ci- OH- -116-68 -99-81 8 The ionic composition of whole body reflects the composition of Lake Magadi water, i.e. a high Na + content with a lower Cl~ content (Table 1). However, blood plasma Na + and Cl~ concentrations are of similar magnitude and the blood bicarbonate concentration is not usually high (Table 1). Ionic balance in T. grahami is unusual because ionic concentration differences between blood and the medium dictate that the fish will gain Na + while there is a tendency to lose Cl~. The equilibrium potential for Cl~ is around 14 mv while that for Na* is 9-3 mv, both removed from the measured potential of i-8 rriv (Table 3), suggesting that both ions are actively regulated. Sodium and chloride turnover rates in Lake Magadi water are about 2%/h (Table 2) and these are very low when compared to values for marine fish. Lake Magadi water corresponds to approximately 0% sea water in having an osmotic pressure of 39 mosm (Maloiy et al. 1978) and Na + turnover rates for fish in halfstrength sea water have been measured at 2%/h for sea-water adapted flounders (Motais, 1967), 14%/h for cod (Fletcher, 1978) and 10%/h for T. mossambicus (Potts et al. 1967). Even in 00 mm NaCl the Na + turnover rate for T. grahami is only about 6%/h (Table 2, experiment 1). Thus this fish is adapted to the Lake Magadi medium in having low branchial permeability to both Na+ and Cl~, which is far more characteristic of a freshwater fish than a marine one. The Cl~ efflux of 1-6 mm kg" 1 h"" 1 is only about half the Na + value (Table 2), reflecting much higher Na + body content of this ion (Table 1). The data allow a limited analysis of the ionic effluxes; if they are potential-dependent and if external and internal (blood plasma) ionic concentrations are known then it is possible to predict the potential using the Goldman equation, assuming it describes at least some of the gill's electrical properties (Potts & Eddy, 1973; Maetz & Bornancin, 197). The potential predicted in Lake Magadi water is about 8 mv compared with the measured value of i-8mv (Table 3), indicating the effluxes are likely to be substantially independent of potential.

32 F. B. EDDY, O. S. BAMFORD AND G. M. O. MALOIY The unusually high blood ph values, 7-6-8-4 (Maloiy et al. 1978; JohanSUP, Maloiy & Lykkeboe, 197), might arise from efficient removal of metabolic CO 2 from the gills into a virtually CO 2 -free medium. It might also arise from imbibed HCO 3 ~ and CO ~ which may amount to about 1 mm kg" 1 h" 1 (Potts et al. 1967), but Skadhauge, Lechene & Maloiy (1980) suggest that these salts do not interfere with Na+, Cl~ and water absorption, but are probably neutralized in the gut, although CO 2 released would need to be buffered. A further possibility is that the gills are permeable to HCO 3 "~ and/or OH~, which could diffuse inwards along their concentration gradients. However, when NaHCO 3 was added to the medium (1/10 sea water) a more positive potential resulted, indicating greater branchial permeability to Na+ than to HCO3- or OH~ (Maetz & de Renzis, 1978). Na+ and Cl~ turnovers in fresh water (Table 2) are similar to those reported for freshwater fish (Maetz, 1971). However, Na+ efflux is about twice the Cl~ value, and electrical neutrality would need to be achieved by Na+/H+ (NH 4 + ) and Cl~/ HCO 3 "~ exchanges proposed for freshwater fish (Maetz, 1971). As well as showing adaptation to its unusual environment, Tilapia grahami showed effective ionic regulation after several hours at around ph 7 in either tap water or a solution similar to sea water (Table 2), achieving euryhalinity in a different way from other fish so far studied; for example flounders, which are characterized by high salt effluxes in sea water and low effluxes in fresh water (Motais, 1967; Potts & Eddy, 1973). T. grahami achieves euryhalinity by possessing gills which remain relatively impermeable to Na+ and Cl~ in a wide variety of media containing different salt concentrations. Financial support from the Royal Society of London and the Leverhulme Trust Funds (London) is acknowledged. REFERENCES FLETCHER, C. R (1978). Osmotic and ionic regulation in the cod (Gadus callarias L.). J. comp. Physiol. 124, 17-168. HOLMES, W. N. & DONALDSON, E. M. (1969). The body compartment and the distribution of electrolytes. In Fish Physiology, vol. i (ed. W. S. Hoar and D. J. Randall). London: Academic Press. JOHANSEN, K., MALOIY, G. M. O. & LYKKEBOE, G. (197). A fish in extreme alkalinity. Respir. Physiol 24, 19-162. LEATHERLAND, J. F., HYDER, M. & ENSOR, D. M. (1974). Regulation of plasma Na + and K + concentrations infiveafrican species of Tilapia fishes. Comp. Biochem. Physiol. 48 A, 699-710. MALOIY, G. M. O., LYKKEBOE, G., JOHANSEN, K. & BAMFORD, O. S. (1978). Osmoregulation in Tilapia grahami: a fish in extreme alkalinity. In Comparative Physiology of Water, Ions and Fluid Mechanics (ed. K. Schmidt-Nielsen, L. Bolis and S. P. H. Maddrell, pp. 229-238. Cambridge University Press. MAETZ, J. (1971). Fish gills: mechanisms of salt transfer in freshwater and seawater. Phil. Trans. B 262, 209-249. MAETZ, J. & BORNANCIN, M. (197). Biochemical and biophysical aspects of salt excretion by chloride cells in teleosts. Fortsch. Zool. 23, 322-362. MAETZ, J. & DE RENZIS, G. (1978). Aspects of the adaptation of fish to high external alkalinity: comparison of Tilapia grahami and T. mossambica. In Comparative Physiology of Water, Ions and Fluid Mechanics (ed. K.Schmidt-Nielsen, L. Bolis and S. P. H. Maddrell, pp. 213-228. Cambridge University Press. MOTAIS, R. (1967). Les mecanismes d'echanges ioniques branchiaux chez les teleosteens. Anttls Inst. ocianogr., Monaco 4, 1-84.

Ionic regulation in Tilapia grahami 33 S, W. T. W., FORSTER, M. A., RUDY, P. P. & HOWELLS, G. P. (1967). Sodium and water balance in the cichlid teleost Tilapia tnossambica. J. exp. Biol. 47, 461-470. POTTS, W. T. W. & EDDY, F. B. (1973). Gill potentials and sodium fluxes in the flounder Platichthys flesus. J. comp. Physiol. 87, 29-48. REITE, C. B., MALOIY, G. M. O. & AASEHAUG, B. (1974). ph, salinity and temperature tolerance in Lake Magadi Tilapia. Nature, Land. 247, 31. SKADHAUGE, E., LECHENE, C. P. & MALOIY, G. M. O. (1980). Tilapia grahami role of intestine in osmoregulation under conditions of extreme alkalinity. In Epithelial Transport in the Lower Vertebrates (ed. B. Lahlou). Cambridge University Press.