Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm:CLNGG laser with MoS 2 saturable absorber mirror

Similar documents
Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Electronic Supplementary Information (ESI)

Supporting Information

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Supporting Information

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Supporting information

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Supporting Information

Supplementary Material

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Electronic Supplementary Information

Supporting Information

2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics

state asymmetric supercapacitors

Electronic Supplementary Information (ESI)

Supporting Information for

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Supplementary Information

General Information. Department of Physics, Kansas State University, 116 Cardwell Hall Manhattan, KS 66506, USA. Education

Supporting Information

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

noble-metal-free hetero-structural photocatalyst for efficient H 2

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [Invited]

Supplementary Information

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Supporting Information for

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Highly enhanced performance of spongy graphene as oil sorbent

Supporting Information

Supporting Information

Electronic Supplementary Information

Supplementary Information

Electronic Supporting Information (ESI)

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Electronic Supplementary Information

Supporting Information

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Supporting Information

Supporting Information

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

High-Sensitivity Gas Pressure Sensor Based on Fabry Pérot Interferometer With a Side-Opened Channel in Hollow-Core Photonic Bandgap Fiber

Module 5 : Pulse propagation through third order nonlinear optical medium. Lecture 38 : Long distance soliton transmission system.

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

A Coal Mine Multi-Point Fiber Ethylene Gas Concentration Sensor

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

RSC Advances.

Curriculum Vitae. Yu (Will) Wang

Supporting Information

Laser-Induced Bubbles in Glycerol-Water Mixtures

Supporting Information

Optical-Polymer and Polymer-Clad- Silica-Fiber Data Buses for Vehicles and Airplanes Principles, Limits and New Trends

Supporting Information

Transformation Optics and Experiments

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Electronic Supplementary Information (ESI)

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Supplementary Information

Supporting information

Optical measurement in carbon nanotubes formation by pulsed laser ablation

Complex Systems and Applications

Supporting Information

DESIGN OF REMOTE CONTROL SYSTEM FOR FAR-INFRARED LASER INTERFEROMETER

Soliton interaction in a fiber ring laser

Electronic Supplementary Information for

INVESTOR PRESENTATION

Supporting Information

Identification of a Large Amount of Excess Fe in Superconducting Single- Layer FeSe/SrTiO 3 Films

Modal Analysis of Propulsion Shafting of a 48,000 tons Bulk Carrier

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

Compressible fiber optic micro-fabry-pérot cavity with ultra-high pressure sensitivity

Supplementary Information

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

A study of advection of short wind waves by long waves from surface slope images

Mid-IR Lasers Market Review and Forecast 2010

Room 399 College of Technology Building University of Houston Work ; Fax

Zhao Bao Tai Chi Kung Fu (English/Chinese Edition) (English And Chinese Edition) By Wayne Peng

Applied Medical Parasitology By LI CHAO PIN, ZHANG JIN SHUN ZHU BIAN SUN XIN

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Cheng ZHANG Education. Selected Honors and Awards

The study of 3-strand PP/PE composite monofilament Rope

Aggregation modeling of large wind farms using an improved K-means. algorithm

Transcription:

Kong et al. Vol. 3, No. 2 / April 2015 / Photon. Res. A47 Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm:CLNGG laser with MoS 2 saturable absorber mirror L. C. Kong, 1 G. Q. Xie, 1, * P. Yuan, 1 L. J. Qian, 1 S. X. Wang, 2 H. H. Yu, 2 and H. J. Zhang 2 1 Key Laboratory for Laser Plasmas (Ministry of Education), IFSA Collaborative Innovation Center, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 2 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China *Corresponding author: xiegq@sjtu.edu.cn Received January 6, 2015; revised February 11, 2015; accepted February 12, 2015; posted February 27, 2015 (Doc. ID 231881); published March 26, 2015 With MoS 2 as saturable absorber, passive Q-switching and Q-switched mode-locking operations of a Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) laser were experimentally demonstrated. The Q-switched laser emitted a maximum average output power of 62 mw and highest pulse energy of 0.72 μj. Q-switched mode locking was also obtained in the experiment. The research results will open up applications of MoS 2 at the mid-infrared wavelength. 2015 Chinese Laser Press OCIS codes: (140.3540) Lasers, Q-switched; (140.3580) Lasers, solid-state. http://dx.doi.org/10.1364/prj.3.000a47 1. INTRODUCTION Q-switched solid-state lasers have been attractive, as they can provide high peak power and pulse energy which can be used in material processing, medical treatment, scientific research, etc. Eye-safe 2 μm Q-switched solid-state lasers will be especially promising in surgery, ranging, and nonlinear optical frequency conversion. Among the Q-switching techniques, passive Q switching with a saturable absorber (SA) is a convenient and low-cost way to achieve Q-switching operation. Ultra-broadband SAs in particular can extend Q-switch operation wavelength to the mid-infrared band. So far, SAs such as semiconductor saturable absorber mirrors (SESAMs) [1 3], carbon nanotubes [4 7], graphene [8 17], and topological insulators [18,19] have been adopted for passive Q-switching and mode-locking operations. An excellent SA should possess the properties of moderate saturation intensity, high damage threshold, ultrafast recovery time, and broadband saturable absorption. However, SESAMs have the drawback of narrow operation bandwidth and complex fabrication process. Thus, there is great motivation to explore SAs with broadband saturable absorption and low-cost fabrication. Typically graphene, a two-dimensional zero-bandgap material, has been confirmed as an excellent broadband SA, but its weak absorption limits its modulation ability for light. Recently, a new type of twodimensional material, transition metal dichalcogenides [20,21] have attracted extensive attention due to their characteristics of large modulation depth, broadband saturable absorption, and high nonlinear effects. Monolayer or few-layer MoS 2 is one of the representative two-dimensional transition metal dichalcogenides, with a hexagonal structure of molybdenum atoms sandwiched between two layers of chalcogen atoms (S) [22]. MoS 2 has a thicknessdependent electronic band structure, which endows it with some new optical properties such as strong enhancement of photoluminescence in monolayer [23 25]. Few-layer MoS 2 as a broadband SA has been reported. First, the saturable absorption of MoS 2 dispersions with large population of single- and few-layer MoS 2 were measured at 800 nm [26]. Then, a mode-locked Yb-fiber laser with MoS 2 was realized by Zhang et al. [27]. Luo et al. demonstrated passively Q-switched fiber lasers at 1, 1.5, and 2 μm, respectively, by exploiting a few-layer MoS 2 polymer composite as SA [28]. Inspired by the introduction of quantum dots in semiconductor, Wang et al. developed a broadband MoS 2 SA by introducing suitable defects in the process of few-layer MoS 2 fabrication [29], which has broadband saturable absorption extending to 2.4 μm wavelength. Tm-doped calcium lithium niobium gallium garnet (Tm: CLNGG) is a type of disordered crystal with significant inhomogeneous spectrum line broadening. Continuous wave (CW) mode-locking operations of Tm:CLNGG lasers with SESAM [2] and graphene [30] have been realized before. In this letter, we demonstrate the diode-pumped passive Q-switching and Q- switched mode-locking operations of a Tm:CLNGG laser by adopting a MoS 2 golden mirror as saturable absorber mirror (SAM). In the stable Q-switching state, the maximum pulse energy reached 720 nj. In the Q-switched mode-locking state, the laser operated in harmonic mode locking with a repetition rate of 187 MHz. 2. EXPERIMENT SETUP The schematic of a passively Q-switched and Q-switched mode-locked Tm:CLNGG laser was shown in Fig. 1. An X- folded cavity was adopted in the experiment. The Tm:CLNGG crystal employed had a length of 9 mm and a cross-section of 4 mm 4 mm, with a Tm doping of 6%. The crystal was 2327-9125/15/020A47-04 2015 Chinese Laser Press

A48 Photon. Res. / Vol. 3, No. 2 / April 2015 Kong et al. Fig. 1. Schematic of Tm:CLNGG laser setup with MoS 2 as SA. Inset: picture of the MoS 2 on golden-film mirror. wrapped with indium foil and mounted in a water-cooled copper block. During the laser operation, the circulating water temperature was kept at 13 C. A single-emitter AlGaAs laser diode at about 790 nm was used as the pump source. The pump light was collimated by a doublet lens (L1) and then focused into the Tm:CLNGG crystal by another doublet lens (L2). Both lenses have the same focal length of 100 mm. The three plano-concave mirrors M1, M2, and M3 have the same radius of curvature of 100 mm, and were all highly reflectively coated for laser wavelength and antireflectively coated for pumping wavelength. A plano plano mirror with 2% transmission was used as the output coupler. The MoS 2 SA was grown on a golden mirror with the pulsed laser deposition method as described in Ref. [23]. The laser mode size was 40 μm in radius on the MoS 2 SA mirror. The inset of Fig. 1 shows the picture of the MoS 2 golden mirror. The large-area, few-layer MoS 2 can be clearly seen in the middle part of the golden mirror, and the modulation depth and nonsaturable loss were measured at 2 μm wavelength to be 7.2% and 10.0%, respectively. Fig. 3. Optical spectrum of the Q-switched Tm:CLNGG laser. mode. With a high-speed detector (EOT, ET-5000) and a 500 MHz bandwidth oscilloscope (Tektronix, DPO3054), the typical Q-switched pulse train was recorded in 400 μs and 10 ms time scales, as shown in Fig. 2. It shows a clear and stable Q-switching operation. The optical spectrum of the Q-switched laser was measured with a mid-infrared optical spectrum analyzer (Ocean Optics, SIR5000) with a resolution of 0.22 nm, as shown in Fig. 3. The spectrum was centered at 1979 nm with a bandwidth of 2.5 nm. In the stable Q-switching operation, the dependence of repetition rate, pulse duration, average output power, and pulse 3. RESULTS AND DISCUSSION While the absorbed pumped power rose up to 2.19 W, the Q switching was initiated with a MoS 2 gold mirror as an end mirror. In the Q-switching operation, the maximum average output power was 62 mw with an absorbed pump power of 2.57 W. This low output power was attributed to a large linear loss of the MoS 2 mirror. The output laser had a round TM 00 Fig. 2. Q-switching pulse train in 400 μs and 10 ms timescales, respectively. Fig. 4. (a) Q-switched pulse repetition rate and pulse duration versus the absorbed pump power. (b) Average output power and pulse energy versus the absorbed pump power.

Kong et al. Vol. 3, No. 2 / April 2015 / Photon. Res. A49 By carefully optimizing the laser spot position on the MoS 2 SAM and aligning the laser cavity, Q-switched mode-locking operation was realized at the average output power of 60 mw. The Q-switched envelope and the mode-locked pulse train within the envelope were shown in Figs. 5(a) and 5(b), respectively. The mode-locked pulses have a period of 5.35 ns, which is exactly half of the cavity roundtrip time of 10.7 ns. This means there was harmonic mode-locking operation, induced by the high nonlinear effects of MoS 2, as reported in mode-locked fiber lasers with MoS 2 [31]. The output spectrum of the Q-switched mode-locked laser was shown in Fig. 6. The spectrum was centered at 1977 nm with a width of 4.4 nm. Compared to the spectrum in the Q- switching state in Fig. 4, the spectrum width in the Q-switched mode-locking state became broader. It can be understood that the Q-switched mode-locked pulses have higher peak power and thus induced larger nonlinear phase, which results in spectrum broadening. However, CW mode locking in the laser was not obtained due to too large modulation depth of MoS 2. Fig. 5. (a) Envelope of Q-switched mode locking in 100 μs time scale. (b) Mode-locking pulse train within the Q-switching envelope in 200 ns time scale. energy of the laser on absorbed pump power was shown in Fig. 4. The maximum average output power was 62 mw and the highest repetition rate was 110 khz under the maximum absorbed pump power of 2.57 W. While the absorbed pump power was beyond 2.42 W, the output laser tended to saturate [Fig. 4(b)]. However, the repetition rate continuously increased with pump power, and thus the pulse energy began to decrease beyond 2.42 W of absorber pump power. The maximum single-pulse energy was 720 nj at the absorbed pump power of 2.38 W, and the shortest pulse duration was 4.84 μs. When the pump power was beyond 2.57 W, the Q- switching state disappeared. However, after the pump power decreased to 2.57 W, the Q-switching state recovered. During the experiment, no damage of MoS 2 was observed. Fig. 6. Spectrum of the Q-switched mode-locked laser. 4. CONCLUSION In conclusion, we have experimentally demonstrated passive Q-switching and Q-switched mode-locking operations in a Tm:CLNGG laser with a MoS 2 golden mirror as the SAM. In the stable Q-switching operation, the maximum pulse energy reached 720 nj. In the Q-switched mode-locking state, harmonic mode-locked pulses with a repetition rate of 187 MHz were observed. These results indicate that few-layer MoS 2 is a potential SA at the mid-infrared wavelength. ACKNOWLEDGMENTS This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 61008018 and 11421064) and the National Basic Research Program of China (Grant No. 2013CBA01505). REFERENCES 1. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, Semiconductor saturable absorber mirrors (SESAM s) for femtosecond to nanosecond pulse generation in solid-state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435 453 (1996). 2. J. Ma, G. Q. Xie, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, and J. Y. Wang, Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser, Opt. Lett. 37, 1376 1378 (2012). 3. J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser, Laser Phys. Lett. 11, 065102 (2014). 4. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers, Opt. Lett. 29, 1581 1583 (2004). 5. J. Liu, Y. Q. Li, L. H. Zheng, L. B. Su, J. Xu, and Y. G. Wang, Passive Q-switched mode locking of a diode-pumped Tm:SSO laser near 2 μm, Laser Phys. Lett. 10, 105812 (2013). 6. X. T. Chen, S. Z. Zhao, J. Zhao, K. J. Yang, G. Q. Li, D. C. Li, W. C. Qiao, T. Li, H. J. Zhang, T. L. Feng, X. D. Xu, L. H. Zheng, J. Xu, Y. G. Wang, and Y. S. Wang, Sub-100 ns passively Q-switched Nd:LuAG laser with multi-walled carbon nanotube, Opt. Laser Technol. 64, 7 10 (2014). 7. Y. Q. Li, J. Liu, H. T. Zhu, L. H. Zheng, L. B. Su, J. Xu, and Y. G. Wang, Performance of diode-pumped Tm 3+ :Sc 2SiO 5 crystal

A50 Photon. Res. / Vol. 3, No. 2 / April 2015 Kong et al. passively Q-switched 2 μm laser, Opt. Commun. 330, 151 154 (2014). 8. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loch, and D. Y. Tang, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater. 19, 3077 3083 (2009). 9. X. L. Zhang, X. Zhao, Z. B. Liu, Y. S. Liu, Y. S. Chen, and J. G. Tian, Enhanced nonlinear optical properties of grapheneoligothiophene hybrid material, Opt. Express 17, 23959 23964 (2009). 10. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, Graphene modelocked ultrafast laser, ACS Nano 4, 803 810 (2010). 11. X. L. Li, J. L. Xu, Y. Z. Wu, J. L. He, and X. P. Hao, Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser, Opt. Express 19, 9950 9955 (2011). 12. C. Feng, D. H. Liu, and J. Liu, Graphene oxide saturable absorber on golden reflective film for Tm:YAP Q-switched mode-locking laser at 2 mum, J. Mod. Opt. 59, 1825 1828 (2012). 13. V. R. Sorochenko, E. D. Obraztsova, P. S. Rusakov, and M. G. Rybin, Nonlinear transmission of CO 2 laser radiation by graphene, Quantum Electron. 42, 907 912 (2012). 14. G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength [Invited], Opt. Mater. Express 2, 878 883 (2012). 15. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, U. Griebner, V. Petrov, H. H. Yu, H. J. Zhang, and J. Y. Wang, Wavelengthversatile graphene-gold film saturable absorber mirror for ultrabroadband mode-locking of bulk lasers, Sci. Rep. 4, 5016 (2014). 16. H. W. Chu, S. Z. Zhao, T. Li, K. J. Yang, G. Q. Li, D. Li, J. Zhao, W. C. Qiao, J. Q. Xu, and Y. Hang, Dual-wavelength passively Q-switched Nd, Mg:LiTaO 3 laser with a monolayer graphene as saturable absorber, IEEE J. Sel. Top. Quantum Electron. 21, 1600705 (2015). 17. C. J. Jin, Y. Bai, L. F. Li, T. Jiang, Z. Y. Ren, and J. T. Bai, A single-frequency, graphene-based passively Q-switched Tm:YAP laser, Laser Phys. 25, 015001 (2015). 18. H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, Topological insulator as an optical modulator for pulsed solid-state lasers, Laser Photon. Rev. 7, L77 L83 (2013). 19. Z. Q. Luo, C. Liu, Y. Z. Huang, D. D. Wu, J. Y. Wu, H. Y. Xu, Z. P. Cai, Z. Q. Lin, L. P. Sun, and J. Weng, Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength, IEEE J. Sel. Top. Quantum Electron. 20, 0902708 (2014). 20. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 699 712 (2012). 21. C. Ataca, H. Şahin, and S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomblike structure, J. Phys. Chem. C 116, 8983 8999 (2012). 22. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS 2 transistors, Nat. Nanotechnol. 6, 147 150 (2011). 23. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS 2: a new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010). 24. A. Carvalho, R. M. Ribeiro, and A. H. C. Neto, Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides, Phys. Rev. B 88, 115205 (2013). 25. A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS 2, Nano Lett. 10, 1271 1275 (2010). 26. K. P. Wang, J. Wang, J. T. Fan, M. Lotya, A. O Neill, D. Fox, Y. Y. Feng, X. Y. Zhang, B. X. Jiang, Q. Z. Zhao, H. Z. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, Ultrafast saturable absorption of two-dimensional MoS 2 nanosheets, ACS Nano 7, 9260 9267 (2013). 27. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, Molybdenum disulfide (MoS 2) as a broadband saturable absorber for ultra-fast photonics, Opt. Express 22, 7249 7260 (2014). 28. Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber, J. Lightwave Technol. 32, 4077 4084 (2014). 29. S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, Z. M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, Broadband few-layer MoS 2 saturable absorbers, Adv. Mater. 26, 3538 3544 (2014). 30. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, Graphene mode-locked femtosecond laser at 2 μm wavelength, Opt. Lett. 37, 2085 2087 (2012). 31. M. Liu, X. W. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, Microfiber-based few-layer MoS 2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser, Opt. Express 22, 22841 22846 (2014).