Energy retrieval from sea currents and tides

Similar documents
SURFACE CURRENTS AND TIDES

Chapter 10 Lecture Outline. The Restless Oceans

Chapter 22, Section 1 - Ocean Currents. Section Objectives

The ocean water is dynamic. Its physical

Wednesday, September 27, 2017 Test Monday, about half-way through grading. No D2L Assessment this week, watch for one next week

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens

Earth s oceans covers 71 % _ of the planet s surface. In reality, Earth s ocean waters are all. interconnected as part of a single large global ocean.

GEOGRAPHY - STD 8 [ ] Q1.

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS

Chapter 11 Tides. A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks.

Lesson: Ocean Circulation

Ocean Motion Notes. Chapter 13 & 14

Air Pressure and Wind

What is an ocean current? 1. wind action: the force of the wind blowing over the top of the water 2. spin of Earth 3. shape of the continents

Chapter. Air Pressure and Wind

Duckies have been found in Hawaii, Alaska, S. America, Scotland, Washington state and Australia as of 2012.

Ocean Circulation. Si Hui Lee and Frances Wen. You can access ME at

Wind Movement and Global and Local Winds

The Movement of Ocean Water. Currents

10% water in the world is tied up in the surface ocean currents. (above the pycnocline) Primary source is wind: Westerlies, Trades, Polar Easterlies

The Coriolis force, geostrophy, Rossby waves and the westward intensification

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer

Chapter. The Dynamic Ocean

HYDROSPHERE, OCEANS AND TIDES

Winds and Ocean Circulations

Testing of a oil spill mathematical model contained in PISCES II simulator

Read each slide, some slides have information to record on your organizer. Some slides have numbers that go with the question or red and underlined

Appendix 5: Currents in Minas Basin. (Oceans Ltd. 2009)

Wednesday, September 20, 2017 Reminders. Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4

OCN201 Spring14 1. Name: Class: Date: True/False Indicate whether the statement is true or false.

Tides. 1. The dynamic theory of tides. The equilibrium theory is of limited practical value, even though certain of its predictions are correct:

Section 6. The Surface Circulation of the Ocean. What Do You See? Think About It. Investigate. Learning Outcomes

170 points. 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description.

The Causes of Ocean Circulation

page - Laboratory Exercise #5 Shoreline Processes

Assessment Schedule 2016 Earth and Space Science: Demonstrate understanding of processes in the ocean system (91413)

Meteorology. Circle the letter that corresponds to the correct answer

Analysis of hydro-meteorological conditions in the area of the Port of Świnoujście between

Monday, October 2, Watch for new assessment (Week 4/5 review) TA s have your tests, please see key (at course website)

Write about this. Have you ever experienced a very strong wind gust? What happened? Have you ever felt a gentle breeze? What did it feel like?

For Class Today How does ocean water circulate? Ocean currents, surface currents, gyres, currents & climate, upwelling, deep ocean circulation

What causes the tides in the ocean?

COASTAL UPWELLING - MONTEREY BAY CALIFORNIA (modified from The Maury Project, AMS)

What causes the tides in the ocean?

Role of the oceans in the climate system

Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams

Renewable and Alternative Energies

Agronomy 406 World Climates

Earth Science. Mark Lilly. 8th Period. Snow Packet 5

OECS Regional Engineering Workshop September 29 October 3, 2014

CHAPTER 8 WIND AND WEATHER MULTIPLE CHOICE QUESTIONS

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation

Currents & Gyres Notes

AOS 103. Week 4 Discussion

Small- and large-scale circulation

OCEANOGRAPHY STUDY GUIDE

Week 6-7: Wind-driven ocean circulation. Tally s book, chapter 7

McKnight's Physical Geography 11e

Lecture 22: Ageostrophic motion and Ekman layers

Approximate Method of Calculating Forces on Rudder During Ship Sailing on a Shipping Route

Lornshill Academy. Geography Department Higher Revision Physical Environments - Atmosphere

The influence of wind, wave and loading condition on total resistance and speed of the vessel

(20 points) 1. ENSO is a coupled climate phenomenon in the tropical Pacific that has both regional and global impacts.

OCN 201 Tides. Tsunamis, Tides and other long waves

Equilibrium Model of Tides

Meteorology I Pre test for the Second Examination

La Rance tidal power plant in La Rance, France. Tidal and Wave Energy

Wind Energy. Definition of Wind Energy. Wind energy is energy from moving air.

consulting engineers and scientists

Introduction to Physical Oceanography STUDENT NOTES Date: 1. What do you know about solar radiation at different parts of the world?

Atmospheric Circulation

Air moves towards ITCZ in tropics because of rising air - convection. Horizontal extent of Hadley cell is modified by Friction Coriolis Force

Lesson: Atmospheric Dynamics

Chapter: Atmosphere Section 3: Air Movement

CHAPTER 7 Ocean Circulation

The Composition of Seawater

Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are.

PHSC 3033: Meteorology Air Forces

Theory and Application Introductory Oceanography Ray Rector: Instructor

Wave Setup at River and Inlet Entrances Due to an Extreme Event

Chapter - Oceans and Coasts

TIDES. Theory and Application

The movement of ocean water is a powerful thing. Waves created

Exploring Wind Energy

Introduction to Oceanography OCE 1001

13. TIDES Tidal waters

The Ocean is a Geophysical Fluid Like the Atmosphere. The Physical Ocean. Yet Not Like the Atmosphere. ATS 760 Global Carbon Cycle The Physical Ocean

ATOMOSPERIC PRESSURE, WIND & CIRCULATION

Factors that determine water movement. Morphometry Structure of stratification Wind patterns

Ocean Layers. Based on sunlight penetration: Based on water density: Sunlight (photosynthesis is possible) Twilight Midnight

SIXTH GRADE OCEANS 1 WEEK LESSON PLANS AND ACTIVITIES

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

OCN 201, Chemistry & Physics Section

Sustainable Energy Science and Engineering Center. Ocean Energy. Reference: Renewable Energy by Godfrey Boyle, Oxford University Press, 2004.

El Niño Lecture Notes

OCN-201 Chemistry and Physics section

Lecture 8: Pressure and Wind

WIND SPEED LENGTH OF TIME WIND BLOWS (Duration) DISTANCE OVER WHICH IT BLOWS (Fetch)

Activity: Because the Earth Turns

R E M I N D E R S. v Two required essays are due by April 9, v Extra Credit: Think Geographically Essays from any five of the textbook s

Transcription:

Scientific Journals of the Maritime University of Szczecin Zeszyty Naukowe Akademii Morskiej w Szczecinie 2015, 41 (113), 24 29 ISSN 1733-8670 (Printed) ISSN 2392-0378 (Online) retrieval from sea currents and tides Tadeusz Szelangiewicz, Katarzyna Żelazny West Pomeranian University of Technology, Faculty of Maritime Technology and Transport 71-065 Szczecin, al. Piastów 41, e-mail: {tadeusz.szelangiewicz; katarzyna.zelazny}@zut.edu.pl Key words: tides, sea currents, energy retrieval, tidal hydroelectric power plant, subwater turbine, single and double cycles of generating energy Abstract Seas and oceans show variations in water levels caused by tides and continuous flow of water in the form of sea and ocean currents. Tides are most visible close to the coastline tide parameters (water speed or change in sea level) allow construction of installations producing electric energy. Sea currents superficial and deep are characterized by means of constant speeds and directions. Therefore energy retrieval from these elements of sea environment looks very promising. The article presents basic information on tides and currents useful for designing hydroelectric power plants. The already constructed hydroelectric power stations are also presented here together with several design solutions of future such installations. Introduction Two basic elements of sea environment: air and water are in constant motion throughout a major part of the year. Air travels over the sea surface in the form of wind, and water in the form of sea currents and tides as well as waves (however the movement of water particles is here totally different than in sea currents or wind). The area covered by seas and oceans constitutes approx. 71% [1] of the surface of the Earth, it is therefore easily conceivable, that energy resources of wind, sea currents and waves are truly immense. However, there is mainly a technical problem of obtaining such energy, as well as the effectiveness and productivity of this process. Research into retrieving at least part of energy from sea environment has been carried out for a number of years. One of the most effective sources of renewable energy are sea tides and currents. The paper presents some (chosen) hydro installations and their efficiency. Tides Tides characteristic Tides are the largest and most regular periodic movement of ocean waters, which can be described as periodic rise and fall in sea level. This phenomenon is caused by attraction forces of the Sun and the Moon and also the inertia forces in the Earth- Moon-Sun system. Tidal-related changes in the water level are imperceptible in the open ocean, however they can be easily seen close to the shore [2]. There are two elements which can be distinguished in tidal phenomena: a vertical movement of water masses and a horizontal movement, called a tidal current. As a result of a periodic tidegenerating force action, a very long regular wave emerges on seas and oceans. It s period results from the exciting force period. Water particles of a tidal wave travel along elliptical, very much flattened orbits in the horizontal plane. Due to a very long period of a tidal wave the speed of a tidal current and changes of the water level can be separately determined, although both of them are interrelated. Tide observations across the globe show, that high and low tides behave differently in various regions. They can therefore be divided into: 1. Diurnal-tides occur when there is one high tide and one low tide during the day. Such tide is also referred to as tropical tide [2]. 2. Semi-diurnal tides emerge when there two tidal waves during one lunar day, which means 24 Scientific Journals of the Maritime University of Szczecin 41 (113)

Speed of a tidal current [m/s] retrieval from sea currents and tides that the tide period lasts 12 hours and 25 minutes. In such tide both high tides reach the same height, and at both ebb tides water falls to the similar levels [3]. 3. Mixed tides these are tides of different levels of low and high tidal waters, also with different time of high and low tide times during moon day. They emerge as a result of day and half-day tidal waves [3]. Tides can also be divided according to the position of the Earth in relations to the Moon and the Sun. Syzygian current occurs when the Earth- Moon-Sun form a straight line. Then tidal-forming forces of both the Moon and the Sun, sum up and the tide reaches its maximum, which means that the difference between the peak high and low tide is the largest [2]. This phenomenon can be observed twice a synodical month: at the time of highest Moon (full Moon the Earth is between the Moon and the Sun) and when the Moon reaches its lowest point (new Moon when the Moon is between the Earth and the Sun). When the Moon reaches the point, that (theoretical) lines joining the Moon and the Earth and the Sun and the Earth form the right angle, then the resulting tide is quadratorial (minimal). Tide parameters High and low tides are measured across the whole world. Maximum difference values in sea levels and tide periods on various open sea and coastal areas are given in special sea maps. An example of such map with maximum values of vertical water movement of syzygian tides is shown in figure 1. An example of graph showing changes in water speed at high and low tide at a given sea area is given in figure 2. 1.4 1.2 1 0.8 0.6 0.4 0.2 0 towards the shore (high tide) towards the open sea (low tide) Time [h] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 quadratorial tide syzygnian tide Fig. 2. Change in speed of a tidal current dependent on time Characteristic values of tide parameters are as follows: average velocity periodically (up to 2.0 m/s), changeable average direction, deterministic vertical tidal water parameters movement (period diurnal (up to 10 m; max. 18 m). or semi-diurnal) Sea currents Sea currents characteristics A sea current is a turbulent movement of water masses in seas and oceans, which can be characterized by a determined speed and direction. Due to very slow changes in both speed and direction in time, a sea current is treated as a determined phenomenon of quasistatic mean speed V C and direction C. Fig. 1. Map of maximum values high of syzygian tides [1] Zeszyty Naukowe Akademii Morskiej w Szczecinie 41 (113) 25

Tadeusz Szelangiewicz, Katarzyna Żelazny Sea currents can be divided according to: their original cause tidal, wind, drift, gradient; the depth at which they occur surface, subsuface, undercurrent, and those closest to the seabed; directions vertical and horizontal; duration constant and temporary; thermal characteristics, in relation to surrounding waters warm and cold. With the view of an overall goal set for this paper, only superficial sea currents occurring on selected sea routes will be taken into account, irrespectively of the original cause giving rise to such current. Tidal currents horizontal movement of water caused by tides (tides result from the interaction between the Earth, the Moon and the Sun). In the open oceans they are imperceptible (average speeds are too small to be accounted for and can be ignored). Wind generated sea currents result from a friction of air against the water surface during a short wind action. Such winds disappear shortly after the wind has stopped blowing. Wind generated currents occur in the surfaces of water, and their direction is concurrent with the predominant wind direction. Average speed of such current due to a short-lasting wind action is very small, and therefore will not be taken into account further. Drift currents occur as a result of a long-lasting and constant in terms of direction wind action on the surface of the sea. Comparing to the windrelated currents, they reach deeper and affect larger masses of water. The Coriolis force, water mass inertia and friction cause that the two main parameters of drift currents: direction and speed change together with depth (Fig. 3). On the northern hemisphere, the drift current deflects from the wind direction to the right, while on the southern to the left. At the superficial level, such deflection stops when the Coriolis force is counterbalanced by the component of a friction force perpendicular to the wind speed vector, namely, at approx. 45 deflection. The speed of a superficial current, generated by a long-lasting wind action in the open ocean amounts to approx. ca. 0.01 0.02 of wind speed, measured at 10 m above the sea level. Drift currents in the open ocean can reach the speed of approx. 0.5 m/s. Gradient currents (density related) result from differences in water density between superficial and bottom levels of water. While lighter water masses move upwards, the heavier (more dense) move Wind Depth Wind Surface sea current Seen from above 45 o 90 o Surface sea current Resulting water movement Fig. 3. The influence of sea depth on the direction and speed of a drift current (The Ekman Spiral) down toward the sea bottom and vertical currents emerge. Changes in density are predominantly caused by temperature changes, and more rarely salinity variation. Large-scale superficial currents The currents so far discussed, have a defined place of occurrence as well as duration depending on the original factor giving rise to each of them. Surface current Under current Fig. 4. Large-scale surface and ocean under currents [1] 26 Scientific Journals of the Maritime University of Szczecin 41 (113)

retrieval from sea currents and tides There are, however, also large-scale superficial and deep currents which move in determined directions at determined speeds and depths in a continuous way. The movement of ocean waters in such currents is of a closed circulation in nature, and they result from trade winds. Due to closed circulation, such currents moving surface collect warm waters, and come back carrying cold water (either in the form of surface or under currents) Fig. 4. produced is still higher than in the case of a single cycle. Currents parameters Characteristic values of superficial currents parameters are as follows: average velocity deterministic (up to 2.5 m/s); average direction; parameters depth at which they occur superficial and deep of closed circulation. Power stations and technical devices for retrieving energy from sea currents and tides Tidal energy retrieval Tidal hydroelectric power plant. A hydroelectric power plant is the most popular technical solution using tidal energy to generate electric current: it is basically a dam across a canal (bay) with Kaplan turbines within it (Fig. 5 and 6). In hydroelectric power station of such type, energy can be retrieved from a single (e.g. only during high tide, Fig. 7) or double cycle (both high and low tides, Fig. 8). In order to use a double cycle of energy production (during high and low tides) reversible water turbines have to be installed in a dam. In a double cycle there can also be periods, when a turbine has to work as a pump for some time (using part of the generated energy), however the total sum of energy Fig. 5. Tidal power station in France [4] Inside water area Turbine Inflow air Compressors Open ocean Fig. 6. Dam joining the mouth of the river and water turbine [4] Using high tide energy only Weir closed Water flow at tank by turbine to ocean Weir closed Water level in tank Tide level in ocean Time Tankage (weir open) Weir closed Fig. 7. A single cycle of generating electric energy in a tidal hydroelectric power station [4] Zeszyty Naukowe Akademii Morskiej w Szczecinie 41 (113) 27

Tadeusz Szelangiewicz, Katarzyna Żelazny Using both high and low tide energy Tide level in ocean Pumping water to tank Water flow at tank by turbine to ocean Pumping water to ocean Pumping water to tank Water level in tank Time Fig. 8. A double cycle of generating electric energy in a tidal hydroelectric power station [4] Fig. 10. SesGen hydroelectric power station a design [5] Fig. 9. Hydroelectric power station Seaflow in Dovon [5] Fig. 11. Sabella at the mouth of the Odet river in Bretany [6] Fig. 12. Sabella hydroelectric power station a design of HydroHelix company [6] 28 Scientific Journals of the Maritime University of Szczecin 41 (113)

retrieval from sea currents and tides Subwater turbines Where it is not possible to build a dam or sea is too deep, Kaplan s turbines with (electric current) generator can be installed. Such hydrogenerators are similar in function to wind turbines. They can be mounted on supporting columns seating on seabed (Fig. 9 and 10) or seated directly on seabed (Fig. 11 and 12). retrieval from sea currents from sea currents can be retrieved in a similar way and using similar devices as from the tides. Subwater turbines can be: located in a subwater dam; free standing (freely located) when the speed of the current is sufficient, or when dam construction is unprofitable. In case of sea currents, due to a constant mean value of sea current speed as well as its direction in the long run, turbines are simpler and generated energy is also characterized by a constant mean value over a long time. Conclusions The power of a tidal hydroelectric power station changes with speed changes in tide, and also in tide direction. In an electric power station such power is constant. Tidal hydroelectric power stations are usually installed shore (in a bay, at the mouth of a river). Electric power stations, due to the required speed of a sea current, can be installed in fewer places close to the land.new designs of electric power stations are mostly located in sea areas further offshore (with sea depth increasing there are also more problems with mooring anchoring of such turbines). There are no limits as to the size of sea current turbines and their rotational speeds, and hence energy retrieved (turbine power).effectiveness of water turbines (tidal or sea current) can be higher than in the case of wind turbines, however the investment costs are still very high. Water turbines, due to water density (over 800 times higher than that of air) reach the same power as the wind turbines at far smaller dimensions and speeds even 100 times smaller than the wind speed. References 1. DUXBURY A.C., DUXBURY A.B., SVERDRUP K.A.: Oceany świata. Wydawnictwo Naukowe PWN, Warszawa 2002 (in Polish). 2. MARSEL S. (Red.): Poradnik hydrotechnika obciążanie budowli hydrotechnicznych wywołane przez środowisko morskie. Wydawnictwo Morskie, Gdańsk 1992 (in Polish). 3. SKÓRA K., WIŚNIEWSKI B.: Pływy i prądy pływowe. Akademia Morska w Szczecinie, Szczecin 2006 (in Polish). 4. OZIEMSKI A.: Energetyka a Środowisko. Politechnika Łódzka, Wydział Elektroenergetyki, Wykład 4 (in Polish). 5. www.marineturbines.com Marine Current Turbine Ldt. [access 12.06.2014] 6. www.hydrohelix.fr HydroHelix [access 12.06.2014] Others 7. PUSKARZ J. (Red.): Encyklopedia Szkolna PWN. Geografia. Wydawnictwo Naukowe PWN, Warszawa 2003 (in Polish). Zeszyty Naukowe Akademii Morskiej w Szczecinie 41 (113) 29