Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Similar documents
Fabrication of Novel Lamellar Alternating Nitrogen-Doped

noble-metal-free hetero-structural photocatalyst for efficient H 2

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Supporting information

Supporting Information

Supporting Information

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Electronic Supplementary Information (ESI)

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Supporting Information

Supporting Information

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Electronic Supplementary Information

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Supporting information

Supplementary Material

Electronic Supplementary Information (ESI)

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Supplementary Information

Supplementary Information

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Supporting Information

Supporting Information

Supporting Information

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Supporting Information for

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Electronic Supplementary Information (ESI)

Electronic Supplementary Information

Supporting Information

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Supporting Information

Supporting Information for

Supporting Information

Supporting Information

Electronic Supplementary Information

Supplementary Information

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Electronic Supporting Information (ESI)

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

state asymmetric supercapacitors

Supporting Information

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Supporting Information

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Electronic Supplementary Information

Supporting Information

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

Supplementary Information

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Measurements of the Cross Section for e 1 e 2! Hadrons at Center-of-Mass Energies from 2 to 5 GeV

Supporting Information

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Highly enhanced performance of spongy graphene as oil sorbent

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Electronic Supplementary Information for

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supplementary Information

Complex Systems and Applications

Supporting Information

Imaging Spectrometer. Technologies and Applications PROCEEDINGS OF SPIE. International Symposium. Detection and Imaging on Photoelectronic

Curriculum Vitae. Yu (Will) Wang

Electronic Supplementary Information

Publication List: ( 华中科技大学 ): <2017>

Supporting Information. High-performance nonfullerene polymer solar cells based on fluorinated wide

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

RSC Advances.

Supporting Information

Supporting Information

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

Supporting Information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information

Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%

A tribute to Guosen Yan

General Information. Department of Physics, Kansas State University, 116 Cardwell Hall Manhattan, KS 66506, USA. Education

Supplementary Information

Transformation Optics and Experiments

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

2012 International Conference on Future Energy, Environment, and Materials

Transcription:

Electronic Supplementary Material (ESI) for Chemical Society Reviews. This journal is The Royal Society of Chemistry 215 Electronic supplementary information Recent advances in energy transfer in ulk and nanoscale luminescent materials: From spectroscopy to applications Xiaofeng Liu a* and Jianrong Qiu a,* a School of Materials Science and Engineering, Zhejiang University, Hangzhou 3127, P. R. China. E-mail: xfliu@zju.edu.cn. College of Materials Science and Engineering, South China University of Technology, Guangzhou, 516, P. R. China. E-mail: qjr@zju.edu.cn. a R L R Fig. S1 Resonance ET y (a) dipole and multipole interaction, and () exchange interaction. It shows that the exchange interaction requires the overlap of wavefunctions of the two centers while the dipole or multipole interactions do not.

a 1. R =.5R =.985 Intensity (a. u.) D excitation A excitation D emission A emission.5 R = R =.5 R = 2R =.15 Wavelength (nm) 1 2 c R/R I D A (t)d t η E T = 1 I D (t)d t Intensity (a. u.) Donor only Donor+acceptor Time Fig. S2 Experimental oservation of sensitized luminescence in donor-acceptor pair. (a) Typical experimental spectra for donor (D) and acceptor (A). The overlap in the excitation spectra of D and A is regarded as a direct evidence of sensitized emission, ecause the excitation of D leads to the emission of A. () Dependence on ET efficiency ( ) on D-A separation. R is the critical distance where ET rate equals radiative rate of D. (c) Fluorescence decay curves for the donor in the asence and presence of acceptor. The energy transfer efficiency can e calculated from the curves. Conduction and 5 Dj 7 Fj Valence and Fig. S3 Representative mechanism for host sensitized luminescence of Eu 3+ emission y the transition of 5 D j 7 F j. UV excitation promote an electron from the valence and to the conduction and. Followed y energy migration (mediated y excitons), the excitation energy is then transferred to f levels of Eu 3+ ions, finally giving the reddish emission.

Tale S1 Selected examples of host sensitized luminescence in practical luminescence materials activated with RE or TM metal ions*. Phosphor Host asorption Emission color/position nm YVO :Eu < 2 nm Red / 62 nm CaMoO :Eu < 35 nm Red/ 6 nm, 61 nm Y 2 O 2 S:Eu < nm Orange/Multiple peaks from 5 to 65 nm PWO ----- Blue / 2 nm Bi Ge 3 O 12 < 32 nm Blue / 85 nm ZnS:Cu +,Al 3+ <2 nm Blue/ 52 nm ZnS:Mn 2+ < nm Orange-yellow / 59 nm ZnSe:Cu +,Cl < nm Red / 65 nm CdSe:Y 3+2 < 6 nm NIR / 985 nm *Spectra data are adapted from Ref. 1 unless otherwise indicated. Tale S2 Selected examples of ET in ion pairs of RE or non-re ions for enhanced Stocks emission Sensit Transition/position* Activator: resonance energy level Transition/position Ref. izer Ce 3+ f( 2 FJ) 5d(A1g) / T 3+ : 5 Dj (j=, 1, 2, 3,..) 5 D 7 F5,,3 / 55 nm 3 32 nm (in most oxides) Nd 3+ : 2 Hj (j=9/2, 11/2), Dj (j=1/2, 3/2, F3/2 I11/2 / 888 nm 5 nm (in YAG) 5/2) or higher F3/2 I9/2 / 162 nm 25 nm, 35 nm (in CaF2) Er 3+ : 3 P3/2, 2 Gj (j=7/2, 9/2) I13/2 I15/2 / 155 nm 5 Mn 2+ : T2, A1 T1 6 A1 / 5-57 nm 1,6 Eu 2+ Eu 2+ in Sr3MgSi2O8 Mn 2+ : T2, A1 T1 6 A1 / 68 nm 7 f-5d transition / nm Y 3+ 2 F7/2 2 F5/2 / 98 nm Er 3+ : I11/2 I13/2 I15/2 / 155 nm 8 Tm 3+ : 3 H5 3 H 3 F / 1 nm 3 F 3 H6 / 18 nm 8 Pr 3+ : 1 G 1 G 3 H5 / 13 nm 9 Bi-center Center: 125 nm 1 Ni 2+ : 3 T2( 3 F) 3 T2 3 A2 / 13 nm 11 Cu 2+ 2 B1g 2 B2g / 6 8 nm Y 3+ : 2 F5/2 Nd 3+ I9/2 2 H9/2, F7/2 / 8 nm Y 3+ : 2 F5/2 2 F5/2 2 F7/2 / 15 nm 12 2 F5/2 2 F7/2 / 12 nm 9 Nd 3+ I9/2 2 H9/2, F7/2 / 8 nm Er 3+ : I9/2 I11/2 I13/2 / 27 nm 13 Tm 3+ 3 F / 175 nm Dy 3+ : 6 H11/2 *f-f transition energies are almost independent of the types of host. 6 H11/2 6 H13/2/3 nm 6 H13/2 6 H15/2 29 nm 1

Tale S3 Selected examples of sensitizer ions for the NIR emission of Y 3+ for QC in NIR range. (remove to SI) ion host Excitation / emission wavelength (transition) Mechanism a. Coop.: cooperative energy transfer; CR: cross relaxation energy transfer.. The assignment of a cooperative has een questioned y other authors. c. Both cooperative and CR have een proposed to explain the ET to Y 3+. d. High possiility of a one-to-one ET, not QC. Coop. / CR a YAG 7 nm / 55 nm (f-5d transition) Coop. 15 Ce 3+ Y 2 SiO 5 36 nm / 31 nm Coop. 16 Pr 3+ oxide 2 nm, 89 nm ( 3 H 3 P 2,1, ) / 67 nm ( 3 P 3 H 6 ) Both c 17-19 Nd 3+ YF 3 35 nm ( D 1/2 ), 52 ( G 11/2 ) / 88 nm ( F 3/2 I 9/2 ) 133 nm ( F 3/2 I 13/2 ) Eu 3+ CR 2 Oxyfluoride 39 nm (5 D ) / 59 nm, 615 nm (5 L 6 /5 D F 2,1,) Coop. 21 GC, ZrO 2 T 3+ LaPO 89 nm ( 7 F 6 5 D ) /5, 57, 62 nm ( 5 D 7 F j ) Coop. 22 Ho 3+ Tellurite GC 36 nm ( 5 G 5 ), 9 nm ( 5 G 6 ) / 55 nm, 66 nm ( 5 S 2 5 I 8, 5 F 5 5 I 8 ) Er 3+ La 2 O 2 S 523 nm ( 2 H 11/2 ) / 5 nm, 65 nm ( S 3/2, F 9/2 I 15/2 ), 155 nm ( I 13/2 I 15/2 ) CR 23 CR 2 Tm 3+ 67-75 nm ( 1 G ) / 65 nm ( 1 G 3 F ), 78 nm ( 1 G 3 H 5 ) Both c 18 Eu 2+ Borate glass 32nm / nm (f7-f65d transition) Coop. 25 Cr 3+ YAG 5 nm ( T 1 ), 59 nm ( T 2 ) / 2 E A 2 688 nm Coop. d 26 Mn 2+ Zn 2 GeO 37 nm ( A 1 (G), T 2 (G))/ 535 nm ( T 1 6 A 1 ) Coop. d 27 MoO 2+ CaMO Charge transfer transition at 35 nm Coop. 28 Bi 3+ Gd 2 O 3 35 nm / 5 nm ( 3 P 1 1 S ) Coop. 29 YVO 35 nm/ 5-55 nm ( 3 P 1 1 S ) Coop. 3 Ref. References: 1 W. M. Yen, M. J. Weer, Inorganic phosphors: compositions, preparation, and optical properties, CRC Press, Boca Raton, Florida, 2. 2 R. Martín-Rodríguez, R. Geiteneek and A. Meijerink, J. Am. Chem. Soc., 213, 135, 13668 13671. 3 J. C. Bourcet and F. K. Fong, J. Chem. Phys., 197, 6, 3 39. J. X. Meng, J. Q. Li, Z. P. Shi, K. W. Cheah, Appl. Phys. Lett., 28, 93, 22198/1-3. 5 J. X. Meng, K. W. Cheah, Z. P. Shi and J. Q. Li, Appl. Phys. Lett., 27, 91, 15117/1-3. 6 R. J. Ginther, J. Electrochem. Soc., 195, 11, 28-257. 7 J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho and G. C. Kim, Appl. Phys. Lett., 2, 8, 2931-2933. 8 Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon and J. S. Lee, Appl. Phys. Lett., 26, 89, 23199/1-3. 9 S. Tanae, T. Kouda and T. Hanada, Opt. Mater., 1999, 12, 35-. 1 J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana and J. R. Qiu, Appl. Phys. Lett., 28, 92, 11121/1-3. 11 B. T. Wu, J. Ruan, J. J. Ren, D. P. Chen, C. S. Zhu, S. F. Zhou and J. R. Qiu, Appl. Phys. Lett., 28, 92, 111/1-3. 12 Y. X. Zhuang and S. Tanae, J. Appl. Phys., 212, 112, 93521/1-6. 13 H. Y. Zhong, B. J. Chen, G. Z. Ren, L. H. Cheng, L. Yao and J. S. Sun, J. Appl. Phys., 29, 16, 8311. 1 H. T. Guo, L. Liu, Y. Q. Wang, C. Q. Hou, W. N. Li, M. Lu, K. S. Zou and B. Peng, Opt. Express, 29, 17, 1535-15358. 15 X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. B. Qiao, G. P. Dong, D. P. Chen and J. R. Qiu, Opt. Lett., 29, 3, 3565-3567. 16 W. L. Zhou, Y. Li, R. H. Zhang, J. Wang, R. Zou and H. B. Liang, Opt. Lett., 212, 37, 37-39. 17 Q. Y. Zhang, G. F. Yang and Z. H. Jiang, Appl. Phys. Lett., 27, 91, 5193/1-3. 18 X. F. Liu, Y. B. Qiao, G. P. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. P. Chen and J. R. Qiu, Opt. Lett., 28, 33, 2858-286. 19 B. M. van der Ende, L. Aarts and A. Meijerink, Adv. Mater., 29, 21, 373-377. 2 J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt and A. Meijerink, Phys. Rev. B, 21, 81, 3517/1-9. 21 Q. Luo, X. S. Qiao, X. P. Fan, H. Y. Fu, J. L. Huang, Y. J. Zhang, B. Fan and X. H. Zhang, J. Am. Ceram. Soc., 212, 95, 12-17.

22 P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden and A. Meijerink, Phys. Rev. B, 25, 71, 1119/1-6. 23 X. J. Zhou, Y. J. Wang, X. Q. Zhao, L. Li, Z. Q. Wang and Q. X. Li, J. Am. Ceram. Soc., 21, 97, 179-18. 2 B. Fan, C. Chlique, O. Merdrignac-Conanec, X. H. Zhang and X. P. Fan, J. Phys. Chem. C, 212, 116, 11652 11657. 25 J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie and J. R. Qiu, Appl. Phys. Lett., 29, 95, 1111/1-3. 26 S. Ye, J. J. Zhou, S. T. Wang, R. X. Hu, D. P. Wang and J. R. Qiu, Opt. Express, 213, 21, 167-173. 27 G. J. Gao and L. Wondraczek, J. Mater. Chem. C, 213, 1, 1952-1958. 28 X. Q. Cao, L. Li, X. T. Wei, Y. H. Chen, W. P. Zhang and M. Yin, J. Nanosci. Nanotechno., 211, 11, 953-959. 29 X. Y. Huang and Q. Y. Zhang, J. Appl. Phys., 21, 17, 6355/1-. 3 U. Ramau, S. D. Han, J. Lumin., 213, 39, 163-1612.