SAFE MECHANICAL VENTILATION: WHAT YOU NEED TO KNOW AND DO.

Similar documents
WHAT IS SAFE VENTILATION? Steven Holets RRT Assistant Professor of Anesthesiology Mayo Clinic College of Medicine

INTRODUCTION TO BI-VENT (APRV) INTRODUCTION TO BI-VENT (APRV) PROGRAM OBJECTIVES

VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL

Lung recruitment maneuvers

Mechanical Ventilation of the Patient with ARDS

Mechanical Ventilation. Which of the following is true regarding ventilation? Basics of Ventilation

Mechanical Ventilation. Mechanical Ventilation is a Drug!!! is a drug. MV: Indications for use. MV as a Drug: Outline. MV: Indications for use

Selecting the Ventilator and the Mode. Chapter 6

Pressure Controlled Modes of Mechanical Ventilation

Respiratory Failure & Mechanical Ventilation. Denver Health Medical Center Department of Surgery and the University Of Colorado Denver

ONLINE DATA SUPPLEMENT. First 24 hours: All patients with ARDS criteria were ventilated during 24 hours with low V T (6-8 ml/kg

Basics of Mechanical Ventilation. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity

Driving Pressure. What is it, and why should you care?

Accumulation of EEV Barotrauma Affect hemodynamic Hypoxemia Hypercapnia Increase WOB Unable to trigger MV

Ventilating the Sick Lung Mike Dougherty RRT-NPS

Conflict of Interest Disclosure Robert M Kacmarek

Presentation Overview. Monitoring Strategies for the Mechanically Ventilated Patient. Early Monitoring Strategies. Early Attempts To Monitor WOB

The Basics of Ventilator Management. Overview. How we breath 3/23/2019

What is Lung Protective Ventilation? NBART 2016

RESPIRATORY PHYSIOLOGY, PHYSICS AND PATHOLOGY IN RELATION TO ANAESTHESIA AND INTENSIVE CARE

excellence in care Procedure Management of patients with difficult oxygenation. For Review Aug 2015

Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury *

Sumit Ray Senior Consultant & Vice-Chair Critical Care & Emergency Medicine Sir Ganga Ram Hospital

Initiation and Management of Airway Pressure Release Ventilation (APRV)

Disclosures. The Pediatric Challenge. Topics for Discussion. Traditional Anesthesia Machine. Tidal Volume = mls/kg 2/13/14

OPEN LUNG APPROACH CONCEPT OF MECHANICAL VENTILATION

NSQIP showed that the University of Utah was a high outlier in for patients receiving >48 cumulative hours of mechanical ventilation.

Difficult Oxygenation Distribution: Sydney X Illawarra X Orange X

Invasive Ventilation: State of the Art

APRV: Moving beyond ARDSnet

Why we should care (I)

What is an Optimal Paw Strategy?

Indications for Mechanical Ventilation. Mechanical Ventilation. Indications for Mechanical Ventilation. Modes. Modes: Volume cycled

Prof. Javier García Fernández MD, Ph.D, MBA.

High Frequency Ventilation. Neil MacIntyre MD Duke University Medical Center Durham NC USA

Objectives. Respiratory Failure : Challenging Cases in Mechanical Ventilation. EM Knows Respiratory Failure!

Underlying Principles of Mechanical Ventilation: An Evidence-Based Approach

Flight Medical presents the F60

Mechanical Ventilation

TESTCHEST RESPIRATORY FLIGHT SIMULATOR SIMULATION CENTER MAINZ

SUPPLEMENTARY APPENDIX. Ary Serpa Neto MD MSc, Fabienne D Simonis MD, Carmen SV Barbas MD PhD, Michelle Biehl MD, Rogier M Determann MD PhD, Jonathan

Volume Diffusion Respiration (VDR)

PERFORMANCE EVALUATION #34 NAME: 7200 Ventilator Set Up DATE: INSTRUCTOR:

Potential Conflicts of Interest Received research grants from Hamilton, Covidien, Drager, General lel Electric, Newport, and Cardinal Medical Received

Supplementary Appendix


Author: Thomas Sisson, MD, 2009

Mechanical Ventilation

NOTE: If not used, provider must document reason(s) for deferring mechanical ventilation in a patient with an advanced airway

Mechanical power and opening pressure. Fellowship training program Intensive Care Radboudumc, Nijmegen

The ARDSnet and Lung Protective Ventilation: Where Are We Today

Pressure -Volume curves in ARDS. G. Servillo

Mechanical Ventilation 2016

Mechanical Ventilation. Flow-Triggering. Flow-Triggering. Advanced Concepts. Advanced Concepts in Mechanical Ventilation

Advanced Ventilator Modes. Shekhar T. Venkataraman M.D. Professor Critical Care Medicine and Pediatrics University of Pittsburgh School of Medicine

Neonatal tidal volume targeted ventilation

3100A Competency Exam

Organis TestChest. Flight Simulator for Intensive Care Clinicians

Principles of mechanical ventilation. Anton van Kaam, MD, PhD Emma Children s Hospital AMC Amsterdam, The Netherlands

Alveolar Recruiment for ARDS Trial

Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo

Physiological based management of hypoxaemic respiratory failure

Using Common Ventilator Graphics to Provide Optimal Ventilation

RESPIRATORY CARE POLICY AND PROCEDURE MANUAL. a) Persistent hypoxemia despite improved ventilatory pattern and elevated Fl02

Physiological Basis of Mechanical Ventilation

Managing Patient-Ventilator Interaction in Pediatrics

What s new and exciting for Pediatric Mechanical ventilation?

evolution 3e Ventilators

mechanical ventilation Arjun Srinivasan

4/2/2017. Sophisticated Modes of Mechanical Ventilation - When and How to Use Them. Case Study 1. Case Study 1. ph 7.17 PCO 2 55 PO 2 62 HCO 3

HAMILTON-G5. The modular high-end ventilation solution

Mechanical ven3la3on. Neonatal Mechanical Ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on 8/25/11. What we need to do"

Notes on BIPAP/CPAP. M.Berry Emergency physician St Vincent s Hospital, Sydney

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia and Critical Care Service Puerta de Hierro University Hospital Associate Professor.

EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES

MEDICAL EQUIPMENT IV MECHANICAL VENTILATORS. Prof. Yasser Mostafa Kadah

Average Volume Assured Pressure Support

CEEA 2015, Kosice Luciano Gattinoni, MD, FRCP Università di Milano Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico Milan, Italy

Supporting you in saving lives!

carefusion.com CareFusion Yorba Linda, CA CareFusion

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate

Inspiration 7i Ventilator

Bunnell LifePulse HFV Quick Reference Guide # Bunnell Incorporated

6 th Accredited Advanced Mechanical Ventilation Course for Anesthesiologists. Course Test Results for the accreditation of the acquired knowledge

Volume vs Pressure during Neonatal Ventilation

Operating Instructions for Microprocessor Controlled Ventilators

UNDERSTANDING NEONATAL WAVEFORM GRAPHICS. Brandon Kuehne, MBA, RRT-NPS, RPFT Director- Neonatal Respiratory Services

HAMILTON-C3 HAMILTON-C3. The compact high-end ventilator

Guide to Understand Mechanical Ventilation Waveforms

Key words: intrahospital transport; manual ventilation; patient-triggered ventilation; respiratory failure

INTELLiVENT -ASV. The world s first Ventilation Autopilot

Completed downloadable Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 5th Edition by Cairo

C - The Effects of Mechanical Ventilation on the Development of Acute Respiratory Distress Syndrome LIBRARIES ARCHIVES.

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

Chapter 3: Invasive mechanical ventilation Stephen Lo

Neonatal Assisted Ventilation. Haresh Modi, M.D. Aspirus Wausau Hospital, Wausau, WI.

VENTILATORS PURPOSE OBJECTIVES

NAVA Neurally Adjusted Ventilatory Assist In Neonates

New Frontiers in Anesthesia Ventilation. Brent Dunworth, MSN, CRNA. Anesthesia Ventilation. New Frontiers in. The amount of gas delivered can be

Transcription:

SAFE MECHANICAL VENTILATION: WHAT YOU NEED TO KNOW AND DO. Steven Holets RRT Assistant Professor of Anesthesiology Mayo Clinic College of Medicine holets.steven@mayo.edu

OBJECTIVES: Describe the physiology of patient (PILI) and/or ventilator induced lung injury (VILI) Discuss current evidence of potentially modifiable factors that may limit Lung injury. Describe a rational approach to providing safe ventilatory support.

VENTILATORY SUPPORT GOALS 1. Maintain adequate gas exchange 2. Provide appropriate level of support a) Limit excessive work of breathing b) Pt comfort c) Pt/vent synchrony 3. Protect the lung a) Limit stress and strain

Critical Care Medicine. 38(10) Supplement, Thinking Outside the Box: Proceedings of a Round Table Conference in Brussels, Belgium, March 2010:S539-S548, October 2010. DOI: 10.1097/CCM.0b013e3181f1fcf7 What we are really trying to prevent? Stress: Distending Force developing within the alveolar structure (Pressure) Strain: Lung deformation ( volume,vt) relative to its resting position (functional residual capacity, FRC) Ventilator-induced lung injury: The anatomical and physiological framework. Gattinoni, Luciano; MD, FRCP; Protti, Alessandro; Caironi, Pietro; Carlesso, Eleonora

GOALS OF LUNG PROTECTIVE STRATEGY Upper Pflex Overdistention Best compliance Compliance Vt PEEP Lower Pflex Cyclic injury http://www.scielo.br/img/revistas/jped/v83n2s0/en_a12f04.gif R. Oeckler

(Median 7.61 ml/kg)

50 countries, 459 ICUs, 29144 patients receiving mechanical ventilation ARDS incidence 10.4 % (3022 patients) Recognition of ARDS 60% (40% under recognized) Less than 2/3 of ARDS pts received Vt 8ml/kg PBW or less (1/3 received Vt too high) 82.6% received PEEP of 12 cmh20 or less (PEEP too low) Plateau pressure only monitored in 40.1% (Driving pressure?) Mortality ranged from 34.9, 40.3, 46.1 % for mild, moderate, and severe ARDS respectively CONCLUSIONS AND RELEVANCE Among ICUs in 50 countries, prevalence of ARDS was 10.4% of ICU admissions. This syndrome appeared to be under recognized and undertreated and associated with a high mortality rate. These findings indicate the potential for improvement in the management of patients with ARDS.

TIDAL VOLIUME PER PREDICTED BODY WEIGHT

RADFORD NOMOGRAM N ENGL J MED 1954; 251:877-884

Critical Care Medicine. 45(5):843-850, May 2017. Spanish Initiative for Epidemiology, Stratification and Therapies of ARDS (SIESTA) Network Is driving pressure superior to its defining variables in predicting outcome? (PEEP, Vt, Pplt) Retrospective analysis from 778 pts with moderate to severe ARDS Lung protective strategy Vt 4-8ml/kg PBW, Pplt < 30cmH20, PEEP 10-15cmH20 (Sp02> 90%), PaC02 35-50mmHg Conclusion: Plateau pressure slightly better than driving pressure in predicting mortality

DRIVING PRESSURE Driving Pressure (DP) =Tidal volume/compliance or Plateau pressure minus PEEP (total) i.e. Pplt 30cmH20 20 cmh20 PEEP = DP 10cmH20

Driving Pressure = Pplat PEEP or Vt/ Compliance

Recruitable lung

METHODS TO SELECT PEEP PEEP/Fi02 table Stress Index PV Curve Inflation Limb: Deflation limb: Transpulmonary pressure Goals: Oxygenation, reduce cyclic sheer injury, improve compliance, reduce stress raisers Key point: PEEP alone may not be a sufficient recruiting pressure

STRESS RAISERS Lung Inhomogeneities increase with ARDS severity Dynamic junction pressure increase Multiplied by factors of 2:1 to 4.64:1 Pplt 30cmH20 x 2 = 60 cmh20, 30 cmh20 x 4 = 120 cmh20! Injures normal alveoli Decreasing inhomogeneity reduces stress raisers (Early lung recruitment) Pplt < 30cmH20

RECRUITMENT MANEUVERS Sustained inflation (insp hold) 40-45 cmh20 for 10-40 sec Incremental/decremental PEEP Best compliance Sp02 Pressure Control Modes Inverse I:E ratio (APRV,Bilevel) Slow pressure volume maneuver (super syringe)

DETERMINANTS OF RM SUCCESS ARDS category Intrapulmonary vs extrapulmonary ARDS Stage Early vs. late Diminishes over time Post maneuver PEEP Response duration Recruiting method

RECRUITMENT AND PEEP DETERMINATION Stepwise increase in PEEP fixed insp pressure of 15cmH20 (driving pressure) 40-50 cmh20 limit Decremental PEEP 3cmH20 PEEP selection based on: Oxygenation Compliance Deaspace Vd/Vt

Methods Control group: Vt 6ml/Kg PBW, Pplt 30cmH20 Intervention group: PC driving pressure 15cmH20 and incremental PEEP changes Decremental PEEP 23cmH20 decreased by 3cmH20 to best compliance Incremental PEEP 25 (1 min), 35 (1 min), 45 (2 min) = max Pplt 60cmH20! DSMB changed to PEEP 25, 30, 35 = max Pplt 50cmH20

Animal study comparing effects of rate of increase in Paw and duration of RM on intrapulmonary vs. extrapulmonary ARDS RM Methods: 30cmH20/30 seconds, Stepwise of 5 cmh20 for 8.5s to 30cmH20 (step51), Stepwise of 5 cmh20 to 30cmH20 sustained inflation for 30 seconds (STEP 30/30) Measured biological markers of apoptosis, fibrogenesis, and cell damage Results: Sustained RM 30cmH20/30 seconds resulted in worse endothelial injury. Both RM of 30/30 and stepwise 30/30 increased markers of endothelial injury in extra-pulmonary ARDS Stepwise RM Stepwise 5cmH20 for 8.5 seconds without sustained pressure resulted in least adverse biological impact Key point: Both rate and duration of RM matter: Slower rise and shorter duration least harmful.

50 pts early onset ARDS Slow inflation (5cmH20/sec) sustained inflation of 40cmH20 for 30 seconds Measured HR, BP, Sp02 and recruited volume at 10 sec intervals Results: 98% of volume recruited within first 10 seconds No significant decrease in BP at 10 seconds

BUT WHAT ABOUT THE SPONTANEOUS BREATHING PATIENT?

Conclusion: Development of diaphragm atrophy during the early course of mechanical ventilation predicts prolonged ventilation and an increased risk of complications. Similar but weaker results were found for increased diaphragm thickness. Targeting an inspiratory effort level similar to that of healthy subjects at rest might accelerate liberation from ventilation.

Assisted ventilation may minimize VALI by: Recruitment of dependent lung regions More homogenous distribution of pleural pressure Assisted modes may exacerbate VALI: Increased asynchrony Allows inappropriate tidal volumes and transpulmonary pressures Conclusions: Assisted pressure limited time cycled modes that allow spontaneous ventilation may be used in patients with mild to moderate ARDS: P/F >150 (APRV, ACPC). The following parameters should be monitored: Inspiratory drive (driving pressure) Transpulmonary pressure Stress and Strain Tidal volume (6ml/kg PBW) Assisted modes should not be used in severe ARDS.

SPONTANEOUS BREATHING DURING VENTILATORY SUPPORT

Pressure DEFINING VENTILATOR PRESSURES Ventilator Circuit Pressures Resistance Peak Paw Respiratory System Pressures Lung, chest wall, abdomen Alveolar Distending Pressure Plateau Pplt Respiratory System Pressures Lung,chest wall, abdomen Alveolar Distending Pressure Transpulmonary Ptp Alveolar Distending Pressure

Determination of better PEEP Tailor tidal volume to lung size Differentiate between chest wall and lung compliance Estimate true driving pressure Assess work of breathing Improve patient ventilator synchrony

Pressure cmh20 30 Airway pressure Transpulmonary pressure 0 CMV High PS Medium PS Low PS Pt Effort None Low Medium High Level of Support Adapted from Bellani

SPONTANEOUS BREATHING DURING VENTILATORY SUPPORT

BERLIN DEFINITION

Non-invasive Ventilation (NIV) of Patients with ARDS: Insights from the LUNG SAFE Study AJRCCM 2016 Oct 436/2813 (15.5%) of ARDS patients were initially managed with NIV regardless of severity NIV use independently associated with under recognition of ARDS 23.2% NIV Vt too large 8.46 + 2.77 ml/kg vs. 7.53 + 1.75 ml/kg invasive MV (p<<.001) NIV PEEP inadequate NIV 7cmH20 + 2 vs. 8 cmh20 + 3.1 invasive MV (p <.001) NIV failure occurred in 22.2% of mild, 42.3% moderate, 47.1% severe ARDS ICU mortality 10.6% NIV success vs. 42.7% NIV failure (p <.001) Hospital mortality 16.1% NIV success vs. 45.4 % NIV failure (p <.001) ICU Mortality P/F <150: NIV 36.2% vs. 24.7% Invasive MV (p = 0.033)

NIV Pts had Vt and therefore driving pressure P 0.05

Crit Care Med. 2016 Jan;44(1):120-9 Prospective observational study of 457 pts meeting ARDS criteria 106 non-intubated at time of meeting criteria Results: 36/106 required late intubation (within 3 days) 55% mortality in NPPV pts who required intubation. Conclusions: A substantial proportion of pts with ARDS were not intubated in their initial days of intensive care, and many were never intubated. Late intubation was associated with increased mortality. Criteria defining the ARDS prior to need for positive pressure ventilation are required so that these patients can studied and to facilitate early recognition and treatment of ARDS.

AARC Sept 2017 Conclusions: When used before MV, HFNC can improve the prognosis of patients compared both with the COT and NIPPV.

Compared : Biomarkers of NHF and MV pts with bilateral infiltrates and hypoxemia to normal nonhypoxemic controls. In conclusion, acute hypoxemic patients with bilateral infiltrates treated with HFNC may present a similar pattern of biomarkers of inflammation and injury to ARDS patients who undergo direct MV. This suggests that HFNC patients who otherwise meet the Berlin definition criteria may be considered as mild ARDS patients and biomarker analysis may help identify patients who will fail on HFNC and will need to be intubated.

Observational study of 175 pts who failed NHF Classified as early intubation < 48 hrs vs. late intubation > 48 hrs Results: ICU Mortality: early 39.2 vs. 66.7 % late (P 0.006) Also significant: longer weaning, less vent free days, longer ICU LOS in late extubation group Conclusions: NHF may cause delayed intubation and worse clinical outcomes.

SUMMARY Understanding the interrelationship between Vt, Pplt, PEEP, and driving pressure is crucial to the prevention of lung injury. Patient induced lung injury results when spontaneous breathing generates excessive tidal volumes and pressures. Delayed implementation of lung protective ventilatory support strategies results in poor outcomes.

WHAT WE NEED TO DO AT THE BEDSIDE. CASE STUDIES

WHAT S THE MOST IMPORTANT FACTOR IN ENSURING SAFE VENTILATORY SUPPORT? You RRT

TIMING IS EVERYTHING

Ventilator/Patient induced lung injury Appropriate intervention The golden hours of critical care resuscitation. Delays of even a few hours in the treatment of critical care syndromes can result in irreversibly large physiologic changes that become increasingly difficult to overcome.

NIV/NHF IN RESPIRATORY FAILURE 1. Careful patient selection (hypercapnic vs. hypoxemic) 2. NIV settings to target a) IPAP: tidal volume (Vt) 6-8 ml/kg PBW b) EPAP: Sp02 88-95% with lowest Fi02 3. NHF setting: Highest flow lowest Fi02 4. Recognize ARDS! 5. Closely monitor for 1-4 hours! a) Work of breathing: a) Accessory muscles b) Respiratory rate b) High likelihood of failure: a) P/F < 175 after 1 hr b) Vt > 9.5 ml/kg PBW

WHAT MODE SHOULD I USE? There are currently 200+ Modes

RT VENTILATOR MANAGEMENT Therapists will manage Vent settings after physician specified starting point (Mode). If Provider managed, order would be required for each vent change. All ventilator changes MUST be documented and communicated with the care team.

CURRENT VENTILATION GUIDELINES LUNG PROTECTION FOR ALL PATIENTS Maintain Sp02 target ( 92-96%), Fi02 <.60 Target tidal volume 6 (4-8) ml/kg PBW (all pts unless MD directed) Plateau pressure (Pplt) < 30 cmh20 Respiratory rate PaC02 35-45 mmhg (COPD exception) PEEP/Fi02 table Driving pressure < 15 cmh20

Within 2 hours

PV CURVE AND RECRUITMENT Lower inflection point (LIP) Alveolar opening Point of derecruitment (PDR) Alveolar derecruitment Upper inflection point (UIP) Lung over distention Recruitable volume

Improves outcomes Within 6 hours No decrese in mortality

TRANSPULMONARY PRESSURE MONITORING Respiratory system pressures Peak, plateau <30, PEEP Driving pressure (DP) < 15 cmh20 (respiratory system) Esophageal pressure (pleural pressure) Transpulmonary pressures Inspiratory <20 Expiratory 0-5 True DP trans <15 ( 10-12)

PRONE POSITION New (old) protocol 2017 No Rotoprone initially 16 consecutive hours per day (at least) Discontinue when: Resolution of underlying processes P/F >150 mmhg PEEP < 10cmH20 Fi02 <.60

CASE 1 OPTIMIZING VENTILATOR SETTINGS 62yo male with multiple comorbidities bilateral pneumonia worsening hypoxia Pa02 63, PaC02 53, ph 7.41

CASE 1 PEEP TITRATION End expiratory transpulmonary pressure (PtransE) 3.5 cmh20 Driving pressure 15-16 cmh20 (resp system) Intervention: Increase PEEP

CASE 1 DRIVING PRESSURE High Plateau pressure (Pplt) 40cmH20 Driving pressure airway (DPaw) 24cmH20 Driving pressure Transpulmonary (DPtp) 24cmH20 Why is driving pressure increasing so much?

DRIVING PRESSURE Upper Pflex Compliance Vt PEEP PEEP FRC Baby lung Lower Pflex Driving pressure http://www.scielo.br/img/revistas/jped/v83n2s0/en_a12f04.gif

CASE 1 WHAT IS SAFE TIDAL VOLUME Vt decreased to 380ml (5ml/kg) Ptrans E 0-2 cmh20 Ptrans I < 20 cmh20 Driving pressure: < 15cmH20 Fi02 >.60, marginal Sp02, Now what?

CASE 1 PRONE POSITION Less cardiac oscillations Significant improvement in respiratory mechanics DPtp 11cmH20 Fi02.50, Pa02 > 153mmHg Pt proned for 2 days (16 hrs) Returned supine and successfully weaned 3 days later.

CASE 2 UNDERSTANDING CHEST WALL MECHANICS Patient: 59 year old morbidly obese female admitted with respiratory failure and sepsis. Initial settings: ACV, PEEPs of 10-15 cmh2o. (Pplt >30) FiO2.60 -.80 with low Sp02 83 91% Transpulmonary monitoring initiated

CASE 2 Extremely high Paw and Pplt Driving pressure 20cmH20 (resp system) Ptrans I < 20cmH20 DPtrans 23 cmh20

NORMAL CHEST WALL VS. INCREASED CHEST WALL 63

CASE 2 CONT. Increased PEEP 25 cmh20 Paw decreasing Lung recruitment

CASE 2 FINAL SETTINGS PEEP 22 Fi02.40 Pplt 42 cmh20 Respiratory system driving pressure (DPrs) 20 cmh20 Transpulmonary driving pressure (DPtp) = 15 cmh20 Total time to implement 30 minutes!

WEANING Day 2 transitioned to spontaneous mode Day 3 Extubated to BiPAP IPAP 18 EPAP 12cmH20 Key point: Utilize transpulmonary to optimize lung mechanics NOT just achieving SP02 target

WHAT ABOUT CARDIAC OUTPUT?

EFFECT OF MECHANICAL VENTILATION ON HEMODYNAMICS PEEP + Vt

WHAT IS OPTIMAL PEEP? The best PEEP does not exist. To pretend and claim that we may find a PEEP level that avoids intratidal recruitment derecruitment, providing in the meantime the best compliance, best oxygenation and lowest dead space, without causing hyperinflation and affecting hemodynamics, reflects a wishful dream that has nothing to do with the reality.

CASE 3 RH PROTOCOL RESCUE 37 yo from OSH at 03:30 severe ARDS Sp02 during transport low 70s Rescue therapies initiated: Fi02.80 Bilevel (APRV) 30/15 cmh20 Nitric oxide 20 PPM HFOV on standby ECMO consult P Bilevel Ventilation T Nitric Oxide HFOV 07:00 Sp02 low 90s

Within 6 hours

RECRUITMENT MANEUVER Slow inflation with 10 second inspiratory hold at 40 cmh20 Recruitable lung Large hysteresis Recruited volume > 400ml

CASE 3 08:30 TRANPULMONARY MONITORING Within 2 hrs Fi02.60 PEEP 20 cmh20 DPtp 7-8 cmh20 NO off Sp02 94% ECMO consult cancelled EARLY intervention is Key!

CASE 3 DAY 3 SBT PS 8 cmh20 PEEP 10 cmh20 2 hrs later emergent call to room Vt > 12 ml/kg! Driving pressure (DPtp) 30 cmh20! Temp 39.9 C Fi02 1.0, PEEP 18, paralytic, prone position, 2 week recovery Patient-Self Induced Lung Injury 401

SPONTANEOUS BREATHING TRIALS AVOID ICEBERGS! Have a plan! 1. Define: failure vs. success RR, Vt, WOB 2. When to reinstitute sedation and resume lung protective strategy

REFRACTORY HYPOXEMIA GUIDELINES PRELIMINARY (UNPUBLISHED) DATA 50+ catheters so far 2017 Decreased: ECMO Nitric oxide usage Driving pressures Ventilator time? Mortality?

What s Next? What the?

SUMMARY Our knowledge of how best to protect the lung continues to evolve rapidly. What YOU do makes a difference! It s exciting time to be an RT!

IT S TIME TO GET ONBOARD # RT Practitioner Knobo-sauras Rex