Harnessing Mengistu Geza techniques and work performance of draft horses in Ethiopia

Similar documents
A review of donkey use in Botswana over a ten-year period

DMU 008 Barry County Deer Management Unit

Performance and Welfare Status of Working Donkeys

Blz. 52 van de beurscatalogus: Het verhaal van Jelmer Albada.

Trip Report: Lesotho & South Africa Jan. 31, 2011 Feb. 22, Michael J. Mulvaney, Assistant Program Director SANREM CRSP, OIRED/Virginia Tech

DMU 361 Fremont Deer Management Unit Newaygo, Oceana, N. Muskegon Counties

NCERT SOLUTIONS OF Direct Proportion Exercise 2

from ocean to cloud HEAVY DUTY PLOUGH PERFORMANCE IN VERY SOFT COHESIVE SEDIMENTS

Response Peta A Jones to demand: meeting farmers need for donkeys in southern Africa

WMO LABORATORY INTERCOMPARISON OF RAIN INTENSITY GAUGES

Influence of Fly Ash Content on Compaction Characteristics of Fly Ash Clay Mixture

DMU 038 Jackson County

MSD RISK ASSESSMENT. Risk Factor "Potential Risk" "High Risk" Contact Stress Repetition Grip Force Lift/Lower Force Awkward Posture Vibration WSPS.

MICROPHONE WIND SPEED LIMITS DURING WIND FARM NOISE MEASUREMENTS

Level 2 Diploma in Assisting and Working with Agricultural and Land-Based Horses. Photo by Linda Swain

How to Do Flight Testing for TARC. Trip Barber NAR TARC Manager

ARE YOU A SLOW- OR A FAST-TWITCH RUNNER?

Sledge Hockey NatioNal team FitNeSS testing guidelines

DMU 046 Lenawee County Deer Management Unit

Economic Impact of the Michigan Equine Industry, 2006

News Release Northeastern Regional Field Office 4050 Crums Mill Road, Suite 203 Harrisburg, PA

Blue cod 5 (BCO5) pot mesh size review

Dick Bowdler Acoustic Consultant

IMPLEMENT GUIDANCE SYSTEMS

3 1 PRESSURE. This is illustrated in Fig. 3 3.

OP CHECKLIST FOR 1D CONSOLIDATION LABORATORY TEST

Variable Face Milling to Normalize Putter Ball Speed and Maximize Forgiveness

Equiculture Publishing. Chapter 1: Introduction

The Agribar Operator's Manual

DMU 056 Midland County Deer Management Unit

The Case for Change Horse Education

Donkey utilisation and management in Ethiopia

SAMPLE RH = P 1. where. P 1 = the partial pressure of the water vapor at the dew point temperature of the mixture of dry air and water vapor

Hitching Horses to Get the Most Work Done

Ecological Carrying Capacity

Gas Laws. Introduction

Restraining & Casting in Farm Animals

DMU 065 Ogemaw County Deer Management Unit

Simulation of Wind Variation for the WPI Kite-Powered Water Pump

SECTION 2 HYDROLOGY AND FLOW REGIMES

Rural Ontario s Hidden Sector: The Economic Importance of the Horse Industry Final Report

OXYGEN POWER By Jack Daniels, Jimmy Gilbert, 1979

Engineering Flettner Rotors to Increase Propulsion

Study questions for Gies & Gies The Not So Dark Ages

KS3 Science Practise Test

Goat Breeds SIROHI. a) ADULT MALE b) ADULT FEMALE. a) Distribution. Sirohi district of Rajasthan. The breed also extends to Palanpur in Gujarat.

Cariboo-Chilcotin (Region 5) Mule Deer: Frequently Asked Questions

Session 6 OPTIMISING PERFORMANCE IN A CHALLENGING CLIMATE

Effect of Altitude and Season on Rectal Temperature, Pulse Rate and Respiration Rate in Mithun (Bos frontalis)

KISSsoft 03/2016 Tutorial 9

Keywords: 7SI/Brown bear/harvest/harvest quota/hunting/malme/management/ mortality/population size/trend/ursus arctos

This sample test provides an indication of the format and structure of the live confirmatory tests that are available.

Old-Exam.Questions-Ch-14 T072 T071

Time Pressure Dispensing

Soil water retention determination using the Wetlab facility at CSIRO, Davies Laboratory

DMU 332 Huron, Sanilac and Tuscola Counties Deer Management Unit

Tioga ISD Athletic Department Heat Policy

Regulation of the Stud Book of the CAITPR- Italian Heavy Draft Horse (IHDH)

Code Name: Part 1: (71 points. Answer on this paper. 2.5 pts each unless noted.)

Low-stress animal handling methods contribute to

Wind Directional Effect on a Single Storey House Using Educational Wind Tunnel

Agricultural Outlook: Rebalancing U.S. Agriculture

Feeding the Broodmare.

Qualification: /002 Level 3 Equine Management Theory exam (1) June 2018

DMU 072 Roscommon County Deer Management Unit

Technical Briefing Note

Annex P Water Well Modification Plan

Robert Jones Bandage Report

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine.

RE-CYCLING A CITY: EXAMINING THE GROWTH OF CYCLING IN DUBLIN

021 Deer Management Unit

Density of Granular Material by Modified Sand-Cone Method for Thin Layers

pren CEN standard-draft pr EN 12261

Donkeys and Mules: The International Symbol of Agriculture. Amy K. McLean Sowhatchet Mule Farm, Inc Madison, GA

PROVINCIAL AQUACULTURE DEVELOPMENT PROJECT LAO PDR SUPPORT FOR TECHNICAL SERVICES. Guidelines for Broodstock and Hatchery Management

BBSA/IFBBSA CRITERIA MEN S CLASSIC BODYBUILDING

Determination of the physical properties of different types of milk claws and air leaks in the claw according to rotameter-milk bucket methods

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C

Power Output Measurement on Draught Horses

Key Figures and Trends for the Agricultural Machinery Industry

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

RACECOURSE GUIDANCE DOCUMENTS VETERINARY ADVICE NOTE PREVENTION AND TREATMENT OF HEAT RELATED PROBLEMS IN HORSES

Technical change in agriculture :

The yokes used in Canada and Europe are primarily head yokes and are strapped directly to the animals horns.

HEAT ILLNESS PREVENTION

Angling in Manitoba Survey of Recreational Angling

Wade Reynolds 1 Frank Young 1,2 Peter Gibbings 1,2. University of Southern Queensland Toowoomba 4350 AUSTRALIA

Wind Resource Assessment for NOME (ANVIL MOUNTAIN), ALASKA Date last modified: 5/22/06 Compiled by: Cliff Dolchok

People killed and injured per million hours spent travelling, Motorcyclist Cyclist Driver Car / van passenger

CONTRIBUTION OF GENETIC IMPROVED STRAINS TO CHINESE TILAPIA INDUSTRY

DMU 082 Wayne County Deer Management Unit

Farm-scale winnower revised 12/2005c

Extension is almost done building a new website! Please take a sneak peek or read about our redesign process.

WATER USE AND EFFECTIVENESS OF A LOW PRESSURE MISTER SYSTEM FOR COOLING LACTATING DAIRY COWS DURING CHRONIC HEAT STRESS

Development of Scroll Compressors for R410A

Experiment 13: Make-Up Lab for 1408/1420

NERC GEOPHYSICAL EQUIPMENT FACILITY LOAN 904 SCIENTIFIC REPORT

Physics 2048 Test 2 Dr. Jeff Saul Spring 2001

What is Laminitis inflammation of the laminae of the hoof capsule

Transcription:

Harnessing Mengistu Geza techniques and work performance of draft horses in Ethiopia Harnessing techniques and work performance of draft horses in Ethiopia by Mengistu Geza Assistant Research Officer, Institute of Agricultural Research, Nazareth Research Center PO Box 436, Nazareth, Ethiopia Abstract A study was carried out to select suitable harnesses for horses and to generate indicative data on draft performance of horses. Three types of harness were used: collar harness, breastband harness and local neck yoke modified for a single horse. The weight of the horse used was 275 kg. A sledge-type loading device was used to apply three levels of pull: 25%, 30% and 35% of the body weight of the horse. The study was carried out on an oval test track. Data were collected on pull exerted, speed of work and on changes in body temperature, pulse rate and respiration rate of the horse. The collar harness was found to be the most suitable. It offered more contact area for efficient utilisation of the strength of the horse and performed better in terms of speed, energy and power output compared to breastband and yoke harnesses. The average working speed of the horse was 5 to.07 m/s for the collar harness,which is higher than that of Ethiopian oxen (0.4 to 0.5 m/s). With this range of speed the horse was able to generate up to 25 to 35% of its body weight (275 kg),which is 68 to 96 kgf. The working speed of the horse while pulling a maresha ard plow was 6 m/s and the actual field capacity was 0. ha/h. Introduction Despite the great progress of motorised agriculture, manual workers and draft animals will still continue to provide the main source of power for the farmers of many regions where the use of tractors and tractor equipment does not yet pay for itself. Different draft animals such as oxen, male buffaloes, camels, donkeys, mules and horses are used for draft purposes (Hopfen, 969) Oxen are the main source of draft animal power in Ethiopia. Of the 60 million hectares that are cultivable, only 6 million hectares are cultivated in any one year. Ninety-five percent of this is cultivated by small-scale farmers with five million oxen. The distribution of the oxen is not uniform: less than one third of the farmers own two or more oxen, about one third of them own only one ox and the rest do not own oxen. Thus farmers face acute lack of draft power for tillage which has limited the area of land cultivated and crop management practices. There are.6 million horses,.5 million mules and 3.9 million donkeys in the country (Fielding and Pearson, 99). These mules and donkeys are used mostly for pack work. Only a small percentage of horses are utilised for draft, mainly in the Northern parts of the country: Gojjam, Wello, Gondar and Northern Shoa (Pathak, 988). In Inewari area (Northern Shoa), the use of horses is becoming very important. This shift from oxen to horses is attributed to the fact that horses can be grazed on herbage types which are not grazable by cattle, horses are multipurpose animals, on flat plots power output of horses is considerably higher than that of oxen and the cost of acquiring or replacing a horse is less than that required for an ox. Oxen are harnessed in pairs using a yoke that is known locally as kenber. The yokes are made of light wood and are 40 cm long with a diameter of about 7.5 8 cm. Horses are commonly hitched with the same yoke using an artificial hump. Yokes are used on horses for convenience and simplicity as equine harnesses are not easily obtainable and yokes for oxen are already available (Starkey, 989). However, yokes are unsuitable for horses, mules and donkeys since these animals are built differently from cattle. Their main strength is in their shoulders and chests. To improve their work output it is necessary to improve or select the harness and thereby improve the work efficiency of the animals. The design of the harness can help Meeting the challenges of animal traction 43

Mengistu Geza Figure : Breast band harness in tapping the full power of the animals, making them more economical and useful to the farmers. On this basis a study was carried out at Agricultural Implements Research and Improvement Center to select suitable horse harnesses and to generate indicative data on draft performance of horses and the permissible draft requirement of horse-drawn implements. Methodology Three types of harnesses: collar harness, breast band harness and local neck yoke modified for single horse with an artificial hump Embineger (Figures, 2 and 3) were used. A horse weighing 275 kg was used to test the three harnesses. The study was carried out on an oval test track. Prior to testing, the horse was trained with each harness on the test track. Observations made prior to testing indicated that pull levels below 25% of body weight allowed the horse to move faster than needed for work animals, whilst at pull levels above 35% of body weight the speed of the horse was too low and the horse showed signs of fatigue in a short time. Therefore three levels of pull: 25%, 30% and 35% of the horse s bodyweight (68, 82 and 96 kgf) were applied using a sledge-type loading device. For each of the three pull levels each harness was used for three consecutive days in a week. The horse was allowed to rest for the remaining four days. During the non-work days the horse was allowed free grazing. On the working days supplementary feed (grain) was given to the horse. Figure 2: Collar harness Figure 3: Yoke with embineger artificial hump The horse was made to work continuously for three hours. An electrical load cell of 0 5 KN capacity was used to measure the pull. The variation of friction between the sledge and the track from one point to another was negligible. The angles of pull for all the harnesses were measured and were kept constant for the three levels of pull. of the horse was measured by recording the time taken to complete five rounds of the track throughout the working period. Body temperature was measured using a rectal thermometer before starting work, every hour during work and at the end of work. Pulse rate was measured at the throat latch of the animal at the same time as temperature was measured. Respiration rate was also measured at the same time by keeping the flat of the palm on the animal s flank. Data on ambient atmospheric 44 An ATNESA Resource Book

.. 0.5 0.5 0.4 25 30 35 Pull level (% body weight) Figure 4: at different pull levels for the three harnesses 0.4 25 30 35 Pull level (% body weight) Figure 5: output at different pull levels for the three harnesses conditions during the study period were obtained from the Nazareth Research Center weather station. The mean temperature and relative humidity for the test duration were 25ºC and 49.5% respectively. Results and discussion The results are shown in Table and Figures 4 to 6. Figures 4 and 5 show the relationship between draft, speed and power for each of the harnesses. As the draft was increased, the speed of the horse decreased for all types of harness. Although the differences in the speed and power output of the horse at different levels of pull were not significant among the three harness, the collar harness performed relatively better followed by the breast band harness. As the draft was increased there was frequent stoppage and so continuous Harnessing techniques and work performance of draft horses in Ethiopia beating was required to move the horse while working with the yoke harness. The yoke harness had poor stability against the animal s neck and was found to cause sores at higher pull levels, despite the padding. The breast band harness needed accurate positioning, otherwise it interfered with the movement of the animal resulting in sores around its chest. The power output increased up to a pull level of 82 kgf, 30% of body weight of the horse, after which it started to decline as shown in Figure 5. The average speed of the horse at the lighter load, 64 kgf, was. m/s using the collar harness. With an increase in draft the average speed decreased to 5 m/s at a load of 9 kgf. Because of the decrease in speed, the power output started to decline as the draft was increased. The change in speed during the work is shown in Figure 6. The horse s body temperature, respiration rate and pulse rate increased considerably during the first hour of work and then tended to stabilise. After the st and 2nd hour of work the respiration rate and pulse rate in most cases started to decrease slightly for all the harnesses. This can be attributed to the decrease in the speed of the horse, especially after the st and 2nd hour, indicating that the physiological responses are more dependent on the speed of the horse than the pull exerted. Implement modification and testing The results of the study have shown that the draft power output of a horse is sufficient to perform tillage operations, provided appropriate implements are available. In addition, the collar harness was found to be the most suitable harness for the horse. Therefore the local plow was modified for a single horse as shown in Figure 7 Meeting the challenges of animal traction 45

Mengistu Geza Table : Work performance of a horse with three different harnesses Pull level (% body weight) and it was tested at Inewari (central Ethiopia) on heavy soil with a moisture content of 3% and bulk density. g/cm 3. The test results are shown in Table 2. The working speed of the horse while pulling the maresha ard plow was 6 m/s and the actual field capacity was 0. ha/h. Collar harness Breastband harness Neck yoke Conclusions The results of the comparative test among the three harnesses indicate that the collar harness shown in Figure 2 is the most suitable. It provides more contact area for efficient utilisation of the strength of the horse compared to the breast band and yoke harness. It performed better in terms of speed, energy and power output compared to the breast band and yoke harnesses. Yoking is the most common practice in parts of Ethiopia where horse are used for draft purpose. However, yokes have a higher angle of pull, and are 25 64. 65.0 57.0 30 78.0.0 78.0 70 35 9 9 82 Average speed over hour 2 3 Time since start of work Figure 6: Change of speed with time since start of work. The figures for each harness are averaged over the three levels of pull unsuitable and inefficient for horses, mules and donkeys. Therefore, for heavy draft it is advisable that the collar harness is used. For lighter work the breast band harness should be used since it is relatively cheap. In addition, no physical injury was observed using the collar harness, unlike the breast band and yoke. Figure 7: The maresha ard plow modified for use with a single horse 46 An ATNESA Resource Book

Harnessing techniques and work performance of draft horses in Ethiopia Table 2: Tests of a maresha ard plow modified for a single horse Plot Soil bulk density (g/cm 3 ) Soil moisture content (%) Depth of work (cm) Cross sectional area of work (cm 2 ) Capacity (ha/h) Forward speed. 4 75 0. 5 2. 4 3 79 0. 49 3. 2 3 83 0. 58 Mean. 3 2 79 0. 53 The average working speeds of the horse were 5 to.07 m/s for the collar harness, which is significantly higher than that of Ethiopian oxen which range from 0.4 to 0.5 m/s. With this range of speed the horse was found to generate pull from 25 to 35% of its body weight (275 kg), which is 68 to 96 kgf.this is adequate to perform secondary tillage operations and to pull moderate loads under most soil and surface conditions provided appropriate implements are available. This range of draft output is also adequate to meet the draft requirement of primary tillage implements on light soils. Performance tests of the maresha ard plow for primary tillage on light soil using a pair of oxen has shown the working speed of the oxen to be 6 m/s with an actual field capacity of 0.05 ha/h. Therefore, a single horse can work more area per unit time (0. ha/h) than a pair of oxen. However, a horse can work for a shorter duration per day compared to an ox. In areas where there is a shortage of draft animal power and where horses are available, it could be a good option to the farmer to use this implement modified for a single horse along with the collar harness. References Campbell J K, 990. Dibble sticks, donkeys, and diesels. Philippines. Fielding D and Pearson R A, 99. Donkeys, mules and horses in tropical agricultural development. Proceedings of a colloquium held by the Edinburgh School of Agriculture and the Centre for Tropical Veterinary Medicine of the University of Edinburgh. Hopfen H J, 969. Farm implements for arid and tropical regions. Food and Agriculture Organisation of the United Nations (FAO), Rome, Italy. Ministry of Agriculture,986. Agricultural Statistics (Amharic version). Ministry of Agriculture, Addis Ababa, Ethiopia. Pathak B S, 988. Survey of agricultural implements and crop production techniques. Pathak B S, 988. performance of indigenous and cross bred oxen. Starkey P, 989. Harnessing and implements for animal traction. Vieweg for German Appropriate Technology Exchange, GTZ, Eschborn, Germany. 244p. ISBN 3-528-02034-2 Meeting the challenges of animal traction 47