Supporting Information

Similar documents
Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Supporting Information

Supplementary Material

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Supplementary Information

Supporting Information

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Supporting Information

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Electronic Supplementary Information (ESI)

Supporting Information

Supporting information

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Supporting Information

Supporting Information for

Supplementary Information

Supporting Information for

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

noble-metal-free hetero-structural photocatalyst for efficient H 2

Supporting Information

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Supporting Information

Electronic Supplementary Information

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Supporting Information

state asymmetric supercapacitors

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Supplementary Information

Supporting Information

Supporting Information

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Electronic Supplementary Information (ESI)

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Electronic Supplementary Information

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Electronic Supplementary Information

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Supporting Information

Electronic Supporting Information (ESI)

Supporting Information

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Supporting information

Supporting Information

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Electronic Supplementary Information (ESI)

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Electronic Supplementary Information

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Highly enhanced performance of spongy graphene as oil sorbent

Supporting Information

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supplementary Information

Supporting Information

Electronic Supplementary Information

Electronic Supplementary Information for

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

Supporting Information

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Curriculum Vitae. Yu (Will) Wang

Supplementary Information

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Complex Systems and Applications

Supporting Information

Supporting information

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

3D CNTs/Graphene-S-Al 3 Ni 2 Cathodes for High-Sulfur-Loading and Long-Life Lithium Sulfur Batteries

Zhaohuai Li, Qiu He, Xu Xu,* Yan Zhao, Xiaowei Liu, Cheng Zhou, Dong Ai, Lixue Xia, and Liqiang Mai*

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

Applied Medical Parasitology By LI CHAO PIN, ZHANG JIN SHUN ZHU BIAN SUN XIN

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Flexible Nb 4 N 5 /rgo Electrode for High-Performance Solid State Supercapacitors. Huazhong University of Science and Technology Wuhan , China

Supporting Information. Highly simple and rapid synthesis of ultrathin gold nanowires with

Electronic Supplementary Information (ESI) for. MnOOH/Nitrogen-Doped Graphene Hybrid Nanowires. Sandwiched by Annealing Graphene Oxide Sheets for

2012 International Conference on Future Energy, Environment, and Materials

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Supplementary Information

An Ultrathin Flexible 2D Membrane Based on Single-Walled Nanotube MoS 2 Hybrid Film for High-Performance Solar Steam Generation

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

Electronic Supplementary Information (ESI)

Zhao Bao Tai Chi Kung Fu (English/Chinese Edition) (English And Chinese Edition) By Wayne Peng

(Agro-Geoinformatics 2014)

Transcription:

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information From ZIF-8 Polyhedron to Three-Dimensional Nitrogen Doped Hierarchical Porous Carbon: An Efficient Electrocatalyst for Oxygen Reduction Reaction Cuijuan Xuan a, Baoshan Hou a, Weiwei Xia b,c, Zongkai Peng a, Tao Shen a, Huolin L. Xin b, Guoan Zhang a, Deli Wang a, * a Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430073, China b Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA c SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China * E-mail: wangdl81125@hust.edu.cn S-1

Figure S1 XRD patterns of ZIF-8. S-2

Figure S2 SEM images of NC-900 (a, b) and the materials prepared at different NaCl/ZIF-8 ratio of 1:20 (c, d), 1:10 (e, f), 1:5 (g, h), 1:3 (i, j), 1:1 (k, l) when annealing at 900 C. S-3

Figure S3 XRD patterns of NC-900 and the materials obtained at different mass ratio of NaCl and ZIF-8 (1:20, 1:10, 1:5, 1:3, 1:1) when annealing at 900 C. S-4

Figure S4 SEM images of the materials synthesized at the NaCl/ZIF-8 ratio of 1:3 when calcining at 600 C (a, b), 700 C (c, d), 800 C (e, f), 900 C (g, h), and 1000 C (i, j). S-5

Figure S5 (a) XRD patterns of the materials synthesized at the NaCl/ZIF-8 ratio of 1:3 when calcining at different pyrolysis temperature (600, 700, 800, 900, 1000 C). Figure S6 Raman spectra of the samples synthesized at the NaCl/ZIF-8 ratio of 1:3 by annealing at different pyrolysis temperatures (700, 800, 900, 1000 C).. S-6

Figure S7 SEM-EDX spectrum of NHPC 1:3-900 materials. Before measurements, the NHPC 1:3-900 powder was glued to an electrically grounded sample holder using a double-face conducting tape and then was sputter-coated with platinum, leading to the observation of Pt in Figure S7. Figure S8 Pore size distribution of NHPC 1:3-900 and NC-900. S-7

Figure S9 XPS survey spectra of NC-900 and the NHPCs materials obtained at different pyrolysis temperatures. Figure S10 High-resolution C1s XPS spectra of NHPC 1:3-900. S-8

Figure S11 (a) High-resolution N1s XPS spectra of NHPCs obtained at different pyrolysis temperatures, and (b) the corresponding relative content of nitrogen. Figure S12 (a) ORR polarization curves of NHPCs obtained at different mass ratio of NaCl and ZIF-8 at a scan rate of 5 mv s -1, and (b) the corresponding half-wave potential. S-9

Figure S13 (a) ORR polarization curves of NHPCs obtained at different pyrolysis temperatures at a scan rate of 5 mv s -1, and (b) the corresponding half-wave potential. Figure S14 (a) ORR polarization curves of NC-900 at various rotating speeds with a scan rate of 5 mv s -1, and (b) the corresponding Koutecky-Levich plots of under potentials of 0.6 V, 0.625 V, 0.65 V, 0.675 V, and 0.7 V. (c)the electron-transfer number n and H 2 O 2 yield and (d) RRDE voltammograms for NC-900. S-10

Table S1 Comparison of the ORR electrocatalytic performance of NHPC 1:3-900 and other metal-free nitrogen-doped carbon electrocatalysts. Catalysts Nitrogen-Doped Porous Carbon Nanosheets Nitrogen containing mesoporous carbon Nitrogen-doped carbon nanofiber (N-CNF) aerogel Nitrogen containing mesoporous carbon Nitro Lignin-Derived Nitrogen-Doped Carbon Nitrogen-doped hierarchical porous carbons N-doped carbon nanoplatelets Hybrids of nitrogendoped graphitic porous carbon and carbon nanotube Nitrogen doped carbon nanoribbons Nitrogen-doped Graphene-Wrapped Carbon Nanoparticles N-doped porous carbon@graphene Hierarchically tubular nitrogen-doped carbon N doped three dimensional few-layer porous carbon nanosheets N,P-doped porous carbon Nitrogen-doped carbon nanoscale networks Loading (mg cm -2 ) NHPC 1:3-900 0.42 Electrolyte 0.2 0.1 M 0.245 0.1 M 0.1 0.1 M 0.245 0.1 M 0.29 0.1 M 0.42 0.1 M 0.4 0.1 M 0.102 0.1 M 0.191 0.1 M 0.15 0.1 M 0.408 0.1 M 0.137 0.1 M 0.3 0.1 M 0.306 0.1 M 0.425 0.1 M 0.1 M Half-wave potential (E 1/2 ) -0.210 V vs. Ag/AgCl 0.75 V vs. 0.80 V vs. 0.75 V vs. 0.85 V vs. 0.83 V vs. -0.15 V vs. SCE -0.171 V vs. Ag/AgCl 0.864 V vs. E 1/2 - E 1/2 (Pt/C) (mv) j L (ma cm -2 ) Refs. -3 5.79 [1] ~4.3 [2] -50 ~5.35 [3] ~4.3 [4] ~5.4 [5] 0 ~4.6 [6] 30 6.50 [7] 1 ~5.1 [8] -39 ~3.5 [9] -131 ~5.1 [10] 0.80 V vs. 0.76 V vs. -0.17 V vs. SCE ~ -0.20 V vs. Ag/AgCl -0.0.171 V vs. Ag/AgCl 0.87 V vs. 20 [11] ~4.9 [12] 30 ~5.4 [13] ~5.4 [14] -10 5.8 [15] 50 5.7 This work S-11

Table S2 Comparison of the Zn-air battery performance of non-precious metal based electrocatalysts extracted from literature. Catalysts Loading Peak power (mg cm -2 ) density (mw cm -2 ) Electrolyte Refs NCNF-1000 2.0 185 6 M + 0.2 M zinc acetate [16] MnO 2-2h/KB 1.0 133.17 6 M [17] FeCo@NC-750 1.0 132 6 M + 0.2 M zinc acetate [18] NiFe@NCX 1.0 83 6 M [19] C-CoPAN900 1.0 125 6 M + 0.2 M ZnCl 2 [20] CoFe@NCNTs 1.0 150 6 M + 0.2 M zinc acetate [21] NiCo 2 S 4 /N-CNT 1.0 147 6 M + 0.2 M ZnCl 2 [22] Mn 3 O 4 /Ti 3 C 2 MXene 1.0 150 6 M [23] Mo-N/C@MoS 2 1.0 194.6 6 M + 0.2 M zinc acetate [24] N-GCNT/FeCo 2.0 89.3 6 M + 0.2 M zinc acetate [25] Cu-N/C 1.0 132 6 M [26] 3D actiniae-like carbon nanotube assembly 2.0 157.3 6 M + 0.2 M zinc acetate [27] bicontinuous hierarchical porous carbon 0.5 197 6 M [28] Co/N/O tri-doped graphene mesh 0.5 152 6 M + 0.2 M ZnCl 2 [29] CuCo 2 O 4 /N-CNTs 2.0 90.50 6 M + 0.2 M zinc acetate [30] Co 4 N/CNW/CC 174 6 M + 0.2 M zinc acetate [31] Nanoporous carbon fiber Film 2.0 ~185 6 M + 0.2 M zinc acetate [16] N,P codoped carbon 0.3 ~93 6 M [32] N-doped hollow carbon nanospheres 1.0 76 6 M [33] carbon nanotube arrays 190 6 M + 0.2 M zinc acetate [34] macro-porous N, S- doped carbon 2.0 151 6 M + 0.2 M zinc acetate [35] hierarchically porous iron and nitrogen-codoped 1.0 135 6 M [36] carbon nanofibers Co 3 O 4 nanosheets/carbon cloth 0.74 107 6 M + 0.2 M zinc acetate [37] FeNC-850 2.4 186 7 M [38] Core-Shell NiFe@N- Graphite 2 85 6 M + 0.2 M zinc acetate [39] N,P-codoped nanoporous carbon 1 146 6 M [40] Co@N-C 0.5 105 6 M [41] NHPC 1:3-900 1.0 207 6 M + 0.2 M zinc acetate This work S-12

References 1. H. Yu, L. Shang, T. Bian, R. Shi, G. I. Waterhouse, Y. Zhao, C. Zhou, L. Z. Wu, C. H. Tung and T. Zhang, Adv. Mater., 2016, 28, 5080-5086. 2. M. Thomas, R. Illathvalappil, S. Kurungot, B. N. Nair, A. A. P. Mohamed, G. M. Anilkumar, T. Yamaguchi and U. S. Hareesh, ACS Appl. Mater. Interfaces, 2016, 8, 29373-29382. 3. H. W. Liang, Z. Y. Wu, L. F. Chen, C. Li and S. H. Yu, Nano Energy, 2015, 11, 366-376. 4. M. Thomas, R. Illathvalappil, S. Kurungot, B. N. Nair, A. A. P. Mohamed, G. M. Anilkumar, T. Yamaguchi and U. Hareesh, ACS Appl. Mater. Interfaces, 2016, 8, 29373-29382. 5. M. Graglia, J. Pampel, T. Hantke, T. P. Fellinger and D. Esposito, ACS Nano, 2016, 10, 4364-4371. 6. C. Xuan, Z. Wu, W. Lei, J. Wang, J. Guo and D. Wang, ChemCatChem, 2017, 9, 809-815. 7. Y. Zhang, X. Zhang, X. Ma, W. Guo, C. Wang, T. Asefa and X. He, Scientific Reports, 2017, 7, 43366. 8. L. Zhang, X. Wang, R. Wang and M. Hong, Chem. Mater., 2015, 27, 7610-7618. 9. J. He, Y. He, Y. Fan, B. Zhang, Y. Du, J. Wang and P. Xu, Carbon, 2017, 124, 630-636. 10. R. Ma, Y. Zhou, P. Li, Y. Chen, J. Wang and Q. Liu, Electrochim. Acta, 2016, 216, 347-354. 11. S. Liu, H. Zhang, Q. Zhao, X. Zhang, R. Liu, X. Ge, G. Wang, H. Zhao and W. Cai, Carbon, 2016, 106, 74-83. 12. W. Wei, H. Ge, L. Huang, M. Kuang, A. M. Alenizi, L. Zhang and G. Zheng, J. Mater. Chem. A, 2017, 5, 13634-13638. 13. J. Zhang, C. Zhang, Y. Zhao, I. S. Amiinu, H. Zhou, X. Liu, Y. Tang and S. Mu, Appl. Catal. B-Environ., 2017, 211, 148-156. 14. M. Borghei, N. Laocharoen, E. Kibena-Põldsepp, L. S. Johansson, J. Campbell, E. Kauppinen, K. Tammeveski and O. J. Rojas, Appl. Catal. B-Environ., 2017, 204, 394-402. 15. A. Zhang, T. Qu, S. Cao, Y. Li, Y. Zhao and A. Chen, Adv. Mater. Interfaces, 2018, 5, 1701390. 16. Q. Liu, Y. Wang, L. Dai and J. Yao, Adv. Mater., 2016, 28, 3000-3006. 17. M. Wu, T. Zhao, H. Jiang, L. Wei and Z. Zhang, Electrochim. Acta, 2016, 222, 1438-1444. 18. P. Cai, S. Ci, E. Zhang, P. Shao, C. Cao and Z. Wen, Electrochim. Acta, 2016, 220, 354-362. 19. J. Zhu, M. Xiao, Y. Zhang, Z. Jin, Z. Peng, C. Liu, S. Chen, J. Ge and W. Xing, ACS Catal., 2016, 6, 6335-6342. 20. B. Li, X. Ge, F. T. Goh, T. A. Hor, D. Geng, G. Du, Z. Liu, J. Zhang, X. Liu and Y. Zong, Nanoscale, 2015, 7, 1830-1838. 21. P. Cai, Y. Hong, S. Ci and Z. Wen, Nanoscale, 2016, 8, 20048-20055. 22. X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao and W. Hu, Nano Energy, 2017, 31, 541-550. 23. Q. Xue, Z. Pei, Y. Huang, M. Zhu, Z. Tang, H. Li, Y. Huang, N. Li, H. Zhang and C. Zhi, J. Mater. Chem. A, 2017, 5, 20818-20823. 24. I. S. Amiinu, Z. Pu, X. Liu, K. A. Owusu, H. G. R. Monestel, F. O. Boakye, H. Zhang and S. Mu, Adv. S-13

Funct. Mater., 2017, 27, 1702300. 25. C. Y. Su, H. Cheng, W. Li, Z. Q. Liu, N. Li, Z. Hou, F. Q. Bai, H. X. Zhang and T. Y. Ma, Adv. Energy Mater., 2017, 7, 1602420. 26. Q. Lai, J. Zhu, Y. Zhao, Y. Liang, J. He and J. Chen, Small, 2017, 13, 1700740. 27. S. Wang, J. Qin, T. Meng and M. Cao, Nano Energy, 2017, 39, 626-638. 28. M. Yang, X. Hu, Z. Fang, L. Sun, Z. Yuan, S. Wang, W. Hong, X. Chen and D. Yu, Adv. Funct. Mater., 2017, 27, 1701971. 29. C. Tang, B. Wang, H. F. Wang and Q. Zhang, Adv. Mater., 2017, 29, 1703185. 30. H. Cheng, M. L. Li, C. Y. Su, N. Li and Z. Q. Liu, Adv. Funct. Mater., 2017, 27, 1701833. 31. F. Meng, H. Zhong, D. Bao, J. Yan and X. Zhang, J. Am. Chem. Soc., 2016, 138, 10226-10231. 32. J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen and L. Dai, Angew. Chem., 2016, 128, 2270-2274. 33. J. Zhu, H. Zhou, C. Zhang, J. Zhang and S. Mu, Nanoscale, 2017, 9, 13257-13263. 34. Z. Li, M. Shao, Q. Yang, Y. Tang, M. Wei, D. G. Evans and X. Duan, Nano Energy, 2017, 37, 98-107. 35. Z. Pei, H. Li, Y. Huang, Q. Xue, Y. Huang, M. Zhu, Z. Wang and C. Zhi, Energy Environ. Sci., 2017, 10, 742-749. 36. Y. Zhao, Q. Lai, Y. Wang, J. Zhu and Y. Liang, ACS Appl. Mater. Interfaces, 2017, 9, 16178-16186. 37. Z. Song, X. Han, Y. Deng, N. Zhao, W. Hu and C. Zhong, ACS Appl. Mater. Interfaces, 2017, 9, 22694-22703. 38. J. Yang, J. Hu, M. Weng, R. Tan, L. Tian, J. Yang, J. Amine, J. Zheng, H. Chen and F. Pan, ACS Appl. Mater. Interfaces, 2017, 9, 4587-4596. 39. P. Liu, D. Gao, W. Xiao, L. Ma, K. Sun, P. Xi, D. Xue and J. Wang, Adv. Funct. Mater., 2018, 1706928. 40. H. Luo, W.-J. Jiang, Y. Zhang, S. Niu, T. Tang, L.-B. Huang, Y.-Y. Chen, Z. Wei and J.-S. Hu, Carbon, 2018, 128, 97-105. 41. M. Zhang, Q. Dai, H. Zheng, M. Chen and L. Dai, Adv. Mater., 2018, 30, 1705431. S-14