Table of Contents. Chapter: Waves. Section 1: The Nature of Waves. Section 2: Wave Properties. Section 3: The Behavior of Waves

Similar documents
Chapter 17 Mechanical Waves

Ways Waves Interact. ! Reflection! Refraction! Diffraction! Interference. Standing Waves. ! Constructive! Destructive

Wave a repeating disturbance or movement that transfers energy through matter or space

Introduction to Waves

Unit 3: Energy On the Move

Waves. What are waves?

Waves, Light, and Sound

How do waves interact with objects? How do waves behave when they move between two media? How do waves interact with other waves?

Organize information about waves. Differentiate two main types of waves.

WAVES. Unit 3. Sources: Ck12.org

Introduction to Waves

waves? Properties Interactions

Chapter 20 Study Questions Name: Class:

Not all waves require a medium to travel. Light from the sun travels through empty space.

What are waves? Wave

Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy.

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

Parts of Longitudinal Waves A compression

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

Physical Science Ch. 10: Waves

Check out Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

WAVES. Mr. Banks 8 th Grade Science

Physical Science Ch. 10: Waves

Mechanical Waves and Sound

Chapter 17. Mechanical Waves and sound

Directed Reading A. Section: The Nature of Waves WAVE ENERGY. surface of the water does not. Skills Worksheet. 1. What is a wave?

Section 1 Types of Waves

Characteristics of Waves

INTRODUCTION TO WAVES. Dr. Watchara Liewrian

CERT Educational Series Light and Waves Module

CHAPTER 10 WAVES. Section 10.1 Types of Waves

Section 1: Types of Waves

WAVES. Pulses are disturbances or a single wave motion. A continuous production of pulses will give rise to a progressive wave (wave train).

Chapter 20 - Waves. A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another.

a disturbance that transfers energy Carries energy from one place to another Classified by what they move through

Why are both electromagnetic and mechanical waves needed to make movies? Waves. transfer energy but do not carry medium with them.

Introduction to Waves

2 Characteristics of Waves

Name Class Date. How do waves behave when they interact with objects? What happens when two waves meet? How do standing waves form?

What is a wave? A wave is a disturbance that transfers energy from place to place.

Cover Sheet-Block 6 Wave Properties

Waves. Please get out a sheet of paper for notes.

ENERGY OF WAVES ch.1 PRACTICE TEST

1.30 Wave Interactions

Waves, Sounds, and Light

17.5 Behavior of Waves

CHAPTER 8: MECHANICAL WAVES TRANSMIT ENERGY IN A VARIETY OF WAYS

Outline Chapter 7 Waves

9.2 Waves. Why learn about waves? wave - a traveling oscillation that has properties of frequency, wavelength, and amplitude.

Academic Year First Term. Grade 6 Science Revision Sheet

SECTION 1 & 2 WAVES & MECHANICAL WAVES

Mechanical Waves. Mechanical waves are created by the vibration of objects. Mechanical waves can be either transverse or longitudinal.

Chapter 10: Waves The Test. Types of Waves: Surface Waves. Wave concepts. Types of Waves: Compression Waves. Types of Waves: Compression Waves

2 nd Term Final. Revision Sheet. Students Name: Grade: 10 A/B. Subject: Physics. Teacher Signature

Modeling Waves Through Various Mediums

Florida Benchmarks. SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials.

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School

Mechanical waves Electromagnetic waves

Waves Disturbances that transport but not

a wave is a rhythmic disturbance that carries/transfers energy through matter or space A repeating movement

Vocabulary. Energy Wave Amplitude Conduction Convection Radiation Color spectrum Wavelength Potential energy

Reflection (continued)

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011

Waves. Unit 14. Why are waves so important? In this Unit, you will learn: Key words. Previously PHYSICS 305

The physicist's greatest tool is his wastebasket Albert Einstein

Full STEAM Ahead: Waves. Version 1 25 April 2018

Chapter 14: Waves. What s disturbing you?

Types of Waves. Section Section 11.1

WAVE NOTES WAVE NOTES THROUGH A MEDIUM EMPTY SPACE

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying

Chapter 19: Vibrations And Waves

Period: Date: 1. A single disturbance that moves from point to point through a medium is called a. a. period b. periodic wave c. wavelength d.

Wave. 1. Transverse 2. Longitudinal 3. Standing

Cover Sheet-Block 6 Wave Properties

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes

17.1: Mechanical Waves

Waves. Name and Surname: Class: L E A R N I N G O U T C O M E. What are waves? Why are waves formed?

Force & Motion. Objective 6.P.1. 6.P.1 Understand the properties of waves and the wavelike property of energy in earthquakes, light and sound.

How are waves generated? Waves are generated by

A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p

Waves. Unit 9 - Light & Sound

Transverse waves cause particles to vibrate perpendicularly to the direction of the wave's motion (e.g. waves on a string, ripples on a pond).

SOUND and ENERGY. A wave in which the molecules vibrate in one direction and the wave of energy moves in another is called a transverse wave.

9.2 Waves. Why learn about waves? -----,

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse

20.1 Waves. A wave is an oscillation that travels from one place to another. Because waves can change motion, they are a travelling form on energy.

Name: Section: Date: Wave Review

Harmonic Motion & Waves

How Does Sound Energy Travel?

hill The waves reach the house because the hill has caused them to be A water wave gap

PHYSICS Simple Harmonic Motion, Vibrations and Waves

Chs. 16 and 17 Mechanical Waves

Chapter # 08 Waves. [WAVES] Chapter # 08

Exercises Vibration of a Pendulum (page 491) 25.2 Wave Description (pages ) 25.3 Wave Motion (pages )

Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move.

Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed : Wave Basics / Wave Properties

WAVES, WAVE BEHAVIOR, GEOPHYSICS AND SOUND REVIEW ANSWER KEY

Transcription:

Table of Contents Chapter: Waves Section 1: The Nature of Waves Section 2: Wave Properties Section 3: The Behavior of Waves

1 The Nature of Waves What s in a wave? A wave is a repeating disturbance or movement that transfers energy through matter or space. For example, during earthquakes, energy is transferred in powerful waves that travel through Earth.

1 The Nature of Waves Waves and Energy A pebble falls into a pool of water and ripples form. Click image to view movie.

1 The Nature of Waves Waves and Energy Because it is moving, the falling pebble has energy. As it splashes into the pool, the pebble transfers some of its energy to nearby water molecules, causing them to move. What you see is energy traveling in the form of a wave on the surface of the water.

1 The Nature of Waves Waves and Matter Imagine you re in a boat on a lake. Approaching waves bump against your boat, but they don t carry it along with them as they pass.

1 The Nature of Waves Waves and Matter The waves don t even carry the water along with them. Only the energy carried by the waves moves forward. All waves have this property they carry energy without transporting matter from place to place.

1 The Nature of Waves Making Waves A wave will travel only as long as it has energy to carry.

1 The Nature of Waves Making Waves Suppose you are holding a rope at one end, and you give it a shake. You would create a pulse that would travel along the rope to the other end, and then the rope would be still again.

1 The Nature of Waves Making Waves It is the up-and-down motion of your hand that creates the wave. Anything that moves up and down or back and forth in a rhythmic way is vibrating. The vibrating movement of your hand at the end of the rope created the wave. In fact, all waves are produced by something that vibrates.

1 The Nature of Waves Mechanical Waves The matter the waves travel through is called a medium. The medium can be a solid, a liquid, a gas, or a combination of these.

1 The Nature of Waves Mechanical Waves Not all waves need a medium. Some waves, such as light and radio waves, can travel through space. Waves that can travel only through matter are called mechanical waves. The two types of mechanical waves are transverse waves and compressional waves.

1 The Nature of Waves Transverse Waves In a transverse wave, matter in the medium moves back and forth at right angles to the direction that the wave travels. For example, a water wave travels horizontally as the water moves vertically up and down.

1 The Nature of Waves Compressional Waves In a compressional wave, matter in the medium moves back and forth along the same direction that the wave travels. You can model compressional waves with a coiled spring toy.

1 The Nature of Waves Compressional Waves Squeeze several coils together at one end of the spring. Then let go of the coils.

1 The Nature of Waves Compressional Waves As the wave moves, it looks as if the whole spring is moving toward one end. The wave carries energy, but not matter, forward along the spring. Compressional waves also are called longitudinal waves.

1 The Nature of Waves Sound Waves Sound waves are compressional waves. When a noise is made, such as when a locker door slams shut and vibrates, nearby air molecules are pushed together by the vibrations.

1 The Nature of Waves Sound Waves The air molecules are squeezed together like the coils in a coiled spring toy are when you make a compressional wave with it. The compressions travel through the air to make a wave.

1 The Nature of Waves Sound in Other Materials Sound waves also can travel through other mediums, such as water and wood. When a sound wave reaches your ear, it causes your eardrum to vibrate. Your inner ear then sends signals to your brain, and your brain interprets the signals as sound.

1 The Nature of Waves Water Waves Water waves are not purely transverse waves. A water wave causes water to move back and forth, as well as up and down. Water is pushed back and forth to form the crests and troughs.

1 The Nature of Waves Water Waves The low point of a water wave is formed when water is pushed aside and up to the high point of the wave.

1 The Nature of Waves Water Waves The water that is pushed aside returns to its initial position.

1 The Nature of Waves Water Waves Ocean waves are formed most often by wind blowing across the ocean surface. The size of the waves that are formed depend on the wind speed, the distance over which the wind blows, and how long the wind blows.

1 The Nature of Waves Seismic Waves Forces in Earth s crust can cause regions of the crust to shift, bend, or even break. The breaking crust vibrates, creating seismic (SIZE mihk) waves that carry energy outward.

1 The Nature of Waves Seismic Waves Seismic waves are a combination of compressional and transverse waves. They can travel through Earth and along Earth s surface. The more the crust moves during an earthquake, the more energy is released. Click image to view movie.

1 Question 1 Section Check What is a wave? Answer A wave is a repeating movement that transfers energy through matter or space.

1 Question 2 Section Check Which is carried by a water wave? A. a boat on the surface B. boat anchor submerged 50 m C. energy D. water molecules

1 Answer Section Check The answer is C. Waves carry energy without transporting matter from place to place.

1 Question 3 Section Check Which type of wave does not need a medium? A. electromagnetic B. mechanical C. ocean D. sound

1 Answer Section Check The answer is A. Electromagnetic waves are made by vibrating electric charges and can travel through space where matter is not present.

2 Wave Properties The Parts of a Wave Waves can differ in how much energy they carry and in how fast they travel. Waves also have other characteristics that make them different from each other.

2 Wave Properties The Parts of a Wave A transverse wave has alternating high points, called crests, and low points, called troughs.

2 The Parts of a Wave On the other hand, a compressional wave has no crests and troughs. When you make compressional waves in a coiled spring, a compression is a region where the coils are close together. Wave Properties

2 Wave Properties The Parts of a Wave The coils in the region next to a compression are spread apart, or less dense. This less-dense region of a compressional wave is called a rarefaction.

2 Wavelength A wavelength is the distance between one point on a wave and the nearest point just like it. For transverse waves the wavelength is the distance from crest to crest or trough to trough. Wave Properties

Wave Properties 2 Wavelength A wavelength in a compressional wave is the distance between two neighboring compressions or two neighboring rarefactions.

2 Wavelength Wave Properties The wavelengths of sound waves that you can hear range from a few centimeters for the highest-pitched sounds to about 15 m for the deepest sounds.

2 Wave Properties Frequency and Period The frequency of a wave is the number of wavelengths that pass a fixed point each second. You can find the frequency of a transverse wave by counting the number of crests or troughs that pass by a point each second. Frequency is expressed in hertz (Hz).

2 Wave Properties Frequency and Period The period of a wave is the amount of time it takes one wavelength to pass a point. As the frequency of a wave increases, the period decreases. Period has units of seconds.

2 Wave Properties Wavelength is Related to Frequency As frequency increases, wavelength decreases. The frequency of a wave is always equal to the rate of vibration of the source that creates it. If you move the rope up, down, and back up in 1 s, the frequency of the wave you generate is 1 Hz.

2 Wave Properties Wavelength is Related to Frequency The speed of a wave depends on the medium it is traveling through. Sound waves usually travel faster in liquids and solids than they do in gases. However, light waves travel more slowly in liquid and solids than they do in gases or in empty space. Sound waves usually travel faster in a material if the temperature of the material is increased.

2 Wave Properties Calculating Wave Speed You can calculate the speed of a wave represented by v by multiplying its frequency times its wavelength.

2 Wave Properties Amplitude and Energy Amplitude is related to the energy carried by a wave. The greater the wave s amplitude is, the more energy the wave carries. Amplitude is measured differently for compressional and transverse waves. Click image to play movie.

2 Wave Properties Amplitude of Compressional Waves The amplitude of a compressional wave is related to how tightly the medium is pushed together at the compressions. The denser the medium is at the compressions, the larger its amplitude is and the more energy the wave carries.

2 Wave Properties Amplitude of Compressional Waves The closer the coils are in a compression, the farther apart they are in a rarefaction.

2 Wave Properties Amplitude of Compressional Waves So the less dense the medium is at the rarefactions, the more energy the wave carries.

2 Wave Properties Amplitude of Transverse Waves The amplitude of any transverse wave is the distance from the crest or trough of the wave to the rest position of the medium.

2 Question 1 Section Check If a wave has a high point and a low point, is it a compressional or transverse wave?

2 Answer Section Check Transverse waves have alternating high points, called crests, and low points, called troughs.

2 Question 2 Section Check What is the wavelength of a wave?

2 Answer Section Check A wavelength is the distance between one point on a wave and the nearest point just like it.

2 Question 3 Section Check Which of the following refers to the number of wavelengths that pass a fixed point each second? A. frequency B. period C. wavelength D. wave speed

2 Answer Section Check The answer is A. Period is a length of time, and wavelength is a distance.

3 Reflection The Behavior of Waves Reflection occurs when a wave strikes an object and bounces off of it. All types of waves including sound, water, and light waves can be reflected.

3 Reflection The Behavior of Waves How does the reflection of light allow you to see yourself in the mirror? It happens in two steps. First, light strikes your face and bounces off. Then, the light reflected off your face strikes the mirror and is reflected into your eyes.

3 Echoes The Behavior of Waves A similar thing happens to sound waves when your footsteps echo. Sound waves form when your foot hits the floor and the waves travel through the air to both your ears and other objects.

3 Echoes The Behavior of Waves Sometimes when the sound waves hit another object, they reflect off it and come back to you. Your ears hear the sound again, a few seconds after you first heard your footstep.

3 The Law of Reflection The beam striking the mirror is called the incident beam. The beam that bounces off the mirror is called the reflected beam. The Behavior of Waves

3 The Behavior of Waves The Law of Reflection The line drawn perpendicular to the surface of the mirror is called the normal.

3 The Behavior of Waves The Law of Reflection The angle formed by the incident beam and the normal is the angle of incidence. The angle formed by the reflected beam and the normal is the angle of reflection.

3 The Law of Reflection According to the law of reflection, the angle of incidence is equal to the angle of reflection. All reflected waves obey this law. The Behavior of Waves

3 Refraction The Behavior of Waves When a wave passes from one medium to another such as when a light wave passes from air to water it changes speed. If the wave is traveling at an angle when it passes from one medium to another, it changes direction, or bends, as it changes speed.

3 Refraction The Behavior of Waves Refraction is the bending of a wave caused by a change in its speed as it moves from one medium to another.

3 The Behavior of Waves Refraction of Light in Water Light waves travel slower in water than in air. This causes light waves to change direction when they move from water to air or air to water. When light waves travel from air to water, they slow down and bend toward the normal.

3 The Behavior of Waves Refraction of Light in Water When light waves travel from water to air, they speed up and bend away from the normal.

3 The Behavior of Waves Refraction of Light in Water You may have noticed that objects that are underwater seem closer to the surface than they really are. In the figure, the light waves reflected from the swimmer s foot are refracted away from the normal and enter your eyes.

3 The Behavior of Waves Refraction of Light in Water However, your brain assumes that all light waves have traveled in a straight line. The light waves that enter your eyes seem to have come from a foot that was higher in the water.

3 Diffraction The Behavior of Waves When waves strike an object, several things can happen. The waves can bounce off, or be reflected. If the object is transparent, light waves can be refracted as they pass through it. Waves also can behave another way when they strike an object. The waves can bend around the object.

3 Diffraction The Behavior of Waves Diffraction occurs when an object causes a wave to change direction and bend around it. Diffraction and refraction both cause waves to bend. The difference is that refraction occurs when waves pass through an object, while diffraction occurs when waves pass around an object.

3 Diffraction The Behavior of Waves Waves also can be diffracted when they pass through a narrow opening. After they pass through the opening, the waves spread out.

3 The Behavior of Waves Diffraction and Wavelength The amount of diffraction that occurs depends on how big the obstacle or opening is compared to the wavelength. When an obstacle is smaller than the wavelength, the waves bend around it.

3 The Behavior of Waves Diffraction and Wavelength If the obstacle is larger than the wavelength, the waves do not diffract as much. In fact, if the obstacle is much larger than the wavelength, almost no diffraction occurs.

3 The Behavior of Waves Hearing Around Corners You re walking down the hallway and you can hear sounds coming from the lunchroom before you reach the open lunchroom door.

3 The Behavior of Waves Hearing Around Corners Why can you hear the sound waves but not see the light waves while you re still in the hallway? The wavelengths of sound waves are similar in size to a door opening. Sound waves diffract around the door and spread out down the hallway. Light waves have a much shorter wavelength. They are hardly diffracted at all by the door.

3 The Behavior of Waves Diffraction of Radio Waves AM radio waves have longer wavelengths than FM radio waves do. Because of their longer wavelengths, AM radio waves diffract around obstacles like buildings and mountains. As a result, AM radio reception is often better than FM reception around tall buildings and natural barriers such as hills.

3 Interference When two or more waves overlap and combine to form a new wave, the process is called interference. Interference occurs while two waves are overlapping. The Behavior of Waves

3 The Behavior of Waves Constructive Interference In constructive interference, the waves add together. This happens when the crests of two or more transverse waves arrive at the same place at the same time and overlap.

3 The Behavior of Waves Constructive Interference The amplitude of the new wave that forms is equal to the sum of the amplitudes of the original waves.

3 The Behavior of Waves Destructive Interference In destructive interference, the waves subtract from each other as they overlap. This happens when the crests of one transverse wave meet the troughs of another transverse wave.

3 The Behavior of Waves Destructive Interference The amplitude of the new wave is the difference between the amplitudes of the waves that overlapped. Waves undergoing destructive interference are said to be out of phase.

3 The Behavior of Waves Standing Waves A standing wave is a special type of wave pattern that forms when waves equal in wavelength and amplitude, but traveling in opposite directions, continuously interfere with each other. The places where the two waves always cancel are called nodes.

3 The Behavior of Waves Standing Waves in Music When the string of a violin is played with a bow, it vibrates and creates standing waves. Some instruments, like flutes, create standing waves in a column of air.

3 Resonance The Behavior of Waves The process by which an object is made to vibrate by absorbing energy at its natural frequencies is call resonance. If enough energy is absorbed, the object can vibrate so strongly that it breaks apart.

3 Question 1 Section Check State the law of reflection. Answer According to the law of reflection, the angle of incidence is equal to the angle of reflection.

3 Question 2 Section Check is the bending of a wave caused by a change in its speed as it moves from one medium to another. A. Diffraction B. Diffusion C. Refraction D. Reflection

3 Answer Section Check The answer is C. The greater the change in speed is, the more the wave bends.

3 Question 3 Section Check Which is the means by which you can hear around corners? A. diffraction B. diffusion C. reflection D. refraction

3 Answer Section Check The answer is A. Diffraction occurs when an object causes a wave to change direction and bend around it.

Help To advance to the next item or next page click on any of the following keys: mouse, space bar, enter, down or forward arrow. Click on this icon to return to the table of contents. Click on this icon to return to the previous slide. Click on this icon to move to the next slide. Click on this icon to open the resources file. Click on this icon to go to the end of the presentation.

End of Chapter Summary File