Swell and Wave Forecasting

Similar documents
Swell and Wave Forecasting

A Little Math. Wave speed = wave length/wave period C= L/T. Relationship of Wave Length to Depth of Wave Motion

WIND SPEED LENGTH OF TIME WIND BLOWS (Duration) DISTANCE OVER WHICH IT BLOWS (Fetch)

Waves Part II. non-dispersive (C g =C)

Waves. Types of Waves. Parts of a wave. Insert wind_wave.wmv. Shark attack

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted

What are Waves? Earthquake. Waving flags. Vocal Cords Vibrate

Waves. G. Cowles. General Physical Oceanography MAR 555. School for Marine Sciences and Technology Umass-Dartmouth

Garrett McNamara, Portugal, 30 Jan What is a wave?

What is a wave? Even here the wave more or less keeps it s shape and travelled at a constant speed. YouTube. mexicanwave.mov

OCEAN WAVES NAME. I. Introduction

General Coastal Notes + Landforms! 1

Oceans in Motion: Waves and Tides

Reading Material. Inshore oceanography, Anikouchine and Sternberg The World Ocean, Prentice-Hall

El Niño Southern Oscillation. Pressure systems over Darwin Australia and Tahiti Oscillate Typically occurs every 4-7 years

OECS Regional Engineering Workshop September 29 October 3, 2014

Chapter 10 Lecture Outline. The Restless Oceans

Ocean Waves and Surf Forecasting: Wave Climate and Forecasting

Surface Waves NOAA Tech Refresh 20 Jan 2012 Kipp Shearman, OSU

Oceans - Laboratory 12

MAR 110 LECTURE #14 Ocean Waves

Announcements. Explosions at the Fukushima nuclear power plant, Japan. Next project due online Nov. 6th A week of waves

MAR 110 LECTURE #20 Storm-Generated Waves & Rogue Waves

Wave Propagation and Shoaling

Deep-water orbital waves

Ocean Waves. What is a Wave? Where re the waves?!

Wave research at Department of Oceanography, University of Hawai i

Waves Unit II: Waves in the Ocean (3.5 pts)

Undertow - Zonation of Flow in Broken Wave Bores

4/20/17. #30 - Coastlines - General Principles Coastlines - Overview

G. Meadows, H. Purcell and L. Meadows University of Michigan

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

The inner shelf is a friction-dominated realm where surface and bottom boundary layers overlap.

/50. Physical Geology Shorelines

The Movement of Ocean Water. Currents

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS

Undertow - Zonation of Flow in Broken Wave Bores

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches

CHAPTER 32 WAVES, BREAKERS AND SURF

Chapter. The Dynamic Ocean

THE RESTLESS SEA.

WAVES. Mr. Banks 8 th Grade Science

Coastal Wave Energy Dissipation: Observations and Modeling

a disturbance that transfers energy Carries energy from one place to another Classified by what they move through

Chapter 22, Section 1 - Ocean Currents. Section Objectives

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens

Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College

Where the Swell Begins

OCN 201 Tides. Tsunamis, Tides and other long waves

Nearshore Morphodynamics. Bars and Nearshore Bathymetry. Sediment packages parallel to shore, that store beach sediment

Shore - place where ocean meets land Coast - refers to the larger zone affected by the processes that occur at this boundary.

BEACH PROCESSES AND COASTAL ENVIRONMENTS

MAR 110 LECTURE #15 Wave Hazards

There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular

page - Laboratory Exercise #5 Shoreline Processes

Synoptic Lab, MET 421, Test 2

Waves & Currents. Ocean Explorer Module 3. Marine Science Lesson Enhancements based on Grade 11 & 12 curriculum in Physics, Chemistry & Biology

Chapter 7. Waves in the Ocean

Mechanical Waves and Sound

Coastal Wave Studies FY13 Summary Report

Ocean Motion Notes. Chapter 13 & 14

(Supplementary) Investigation Waves in a Ripple Tank

Airy Wave Theory 1: Wave Length and Celerity

COASTAL ENVIRONMENTS. 454 lecture 12

What is a wave? A wave is a disturbance that transfers energy from place to place.

Earth s oceans covers 71 % _ of the planet s surface. In reality, Earth s ocean waters are all. interconnected as part of a single large global ocean.

3/9/2013. Build house on cliff for a view of the ocean - be one with said view Pearson Education, Inc. Shorelines: summary in haiku form

Imagine that you can see a side view of a wave as it approaches a beach. Describe how the wave changes as the wave approaches the beach.

Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy

Waves, Light, and Sound

Chapter 20 Study Questions Name: Class:

Salmon: Introduction to ocean waves

Wave Breaking. Wave Breaking

TRAPPED-FETCH WAVES The Theory from an Observational Perspective

Questions # 4 7 refer to Figure # 2 (page 321, Fig )

Full STEAM Ahead: Waves. Version 1 25 April 2018

The behaviour of tsunamis

The movement of ocean water is a powerful thing. Waves created

Waves. Name and Surname: Class: L E A R N I N G O U T C O M E. What are waves? Why are waves formed?

APPENDIX G WEATHER DATA SELECTED EXTRACTS FROM ENVIRONMENTAL DATA FOR BCFS VESSEL REPLACEMENT PROGRAM DRAFT REPORT

Chapter 8 Wave climate and energy dissipation near Santa Cruz Island, California

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying

The ocean water is dynamic. Its physical

The events associated with the Great Tsunami of 26 December 2004 Sea Level Variation and Impact on Coastal Region of India

Lecture 21: Potpourri

What Do You Think? GOALS

Oceans and Coasts. Chapter 18

The Composition of Seawater

INTRODUCTION TO WAVES. Dr. Watchara Liewrian

How are waves generated? Waves are generated by

The Setting - Climatology of the Hawaiian Archipelago. Link to Video of Maui Waves

Florida Benchmark Review Unit 3

For Educational and Non-Profit Use Only!

Ocean waves and shock waves

Organize information about waves. Differentiate two main types of waves.

Rip Current Rip Tide,

ENERGY OF WAVES ch.1 PRACTICE TEST

Wave Transformation, Prediction, and Analysis at Kaumalapau Harbor, Lanai, Hawaii

OCEANOGRAPHY STUDY GUIDE

Environmental Geology Chapter 11 COASTAL PROCESSES and RELATED HAZARDS

Transcription:

Lecture 25 Swell and Wave Forecasting Swell and Wave Forecasting Motivation Terminology Wave Formation Wave Decay Wave Refraction Shoaling Rouge Waves 1 2 Motivation In Hawaii, surf is the number one weather-related killer. More lives are lost to surf-related accidents every year in Hawaii than another weather event. Between 1993 to 1997, 238 ocean drownings occurred and 473 people were hospitalized for ocean-related spine injuries, with 77 directly caused by breaking waves. Going for an Unintended Swim? 3 4

Motivation Motivation - Marine Safety Surf is the number one weather-related killer in Hawaii. Surf's up! Heavy surf on the Columbia River bar tests a Coast Guard vessel approaching the mouth of the Columbia River. 5 6 Sharks Cove Oahu Giant Waves Peggotty Beach, Massachusetts February 9, 1978 7 8

Terminology Wavelength - L - the horizontal distance from crest to crest. Wave height - the vertical distance from crest to trough. Wave period - the time between one crest and the next crest. Wave frequency - the number of crests passing by a certain point in a certain amount of time. Wave speed - the rate of movement of the wave form. C = L/T Ocean Waves Wave Spectra Wave spectra as a function of wave period 9 10 Open Ocean Deep Water Waves Orbits largest at sea sfc. Decrease with depth At L/2 orbit is 1/23rd at surface When depth > L/2 essentially no movement bottom is not felt deep water wave Depth of L/2 = Wave Base Factors Affecting Wind Wave Development The following factors control the size of wind waves: 1. Wind strength 2. Wind duration 3. Fetch - the uninterrupted distance over which wind blows without changing direction. 4. Air-sea temperature difference 5. Ocean depth 11 12

Development of Sea State If Wind is Steady - Waves continue to grow with time until limited by either Wind Speed or Fetch This is called a: Fully Developed Sea (NOT Duration Limited) Significant Wave Height - Average height of the third highest waves Sea State includes a wide range of periods, wavelengths, and multiple directions due to: Original sea state plus New waves generated in fetch area Swell and Wave Lifecycle Three things happen to large waves when they leave the storm region. 1. Dissipation: Wave amplitude gradually dies out as the waves travel away from their source. Opposing wind enroute can accelerate the dissipation. 2. Dispersion: Swell disperse over the open ocean: longer wavelength swell move faster than shorter wavelength swell. 3. Angular spreading: Shorter wavelengths have more angular spreading. 13 14 Wave Decay Deep Water Waves and Dispersion Depth > L/2, where L is wavelength Longer waves move faster Wave speed = C C = (gl/2!) 1/2 Dispersion of waves of differing wavelength leads to swell that run ahead of storm. Graph of the relationship between wave speed and wavelength. 15 16

Deep Water Waves: Dispersion & Swell Group Velocity In deep water, waves of different wavelengths travel at different speeds. Waves with the longest wavelengths move the fastest and leave an area of wave formation sooner. Because of their different speeds, waves separate out from one another into groups with similar wavelength. This process is called dispersion. Dispersion causes groups of waves with the same wavelength to travel together, causing a very regular, undulating ocean surface called swell. 17 Individual waves within a set of waves move faster than the group of waves moves. The group velocity is 1/2 the individual wave velocity. This is due to the fact that waves in the front loose energy in lifting an undesturbed ocean surface, whereas waves in the back benefit from the energy of waves ahead. Therefore, the leading wave dissipates and the trailing wave grows, resulting in the slower group velocity. The group velocity is 1/2 the individual wave velocity. 18 Angular Spreading Swell and Wave Lifecycle Two things happen to large waves when they near shore. 1. Refraction: As waves move into shallower water, they slow down and thus turn toward the shore. 2. Shoaling: As waves move into shallow water they slow and become steeper as they increasingly feel the bottom, until finally the top of the wave pitches forward and the wave breaks. Angular spreading is proportional to swell energy. Swell from broad fetches experience less angular spreading. Steep wave dissipate more quickly through angular spreading. 19 20

Refraction Bends Wave Rays so they: Diverge in Bays (lower energy) Converge on Headlands (higher energy) Refracting Waves 21 22 When depth < L /2, Shallow - Water Waves wave motions extend to the bottom, causing the waves to slow and their height to increase. These changes are called shoaling and the waves at this time are called shallow water waves. Shallow - Water Waves For shallow water waves, wave speed is a function of the depth of the water (D). C = (gd) 1/2 Paths of water particles become long and flat Crests overtake troughs Waves break 23 24

Wave Refraction and Shoaling Bottom Topography Controls Wave Breaking Spilling Plunging Waves Feel the Bottom at depth < 1/2 wavelength causes refraction Wave speed and length decrease with depth But period and energy remain same Thus, wave height increases Waves break when the ratio of height/wavelength! 1/7 Surging 25 26 Rip Currents Rip Currents Water returns seaward in narrow jets called rip currents. If you are caught in one, how can you escape? Swim parallel to shore to areas where the surf can wash you in! Water streams seaward in narrow jets called rip currents. Water moves toward shore where the waves are breaking. 27 28

Tools for Surf Forecasting Life Guard Reports, CAMS Ocean Buoy Data Ship Reports Numerical Wave Prediction Models Lifeguard Observations: Wave Height Hawaii surf scale is roughly equal to 50% of the wave face. Photo shows 10" wave Hawaii scale. 29 30 Waves are Scale Invariant Climatology of North Shore Surf Breaking waves are scale invariant; its difficult to tell how large they are without a surfer for scale. 31 32

Climatology of South Shore Surf Conditions Can Change Rapidly 8 AM Tuesday 20 February, 2001 6 PM Tuesday 20 February, 2001 33 34 NWS Watches and Warnings for Hawaii Location of Federal Buoys NWS HIGH SURF ADVISORY AND WARNING CRITERIA Location Advisory* Warning* North-Facing Shores 15 Feet 25 Feet West-Facing Shores/Big Island 8 Feet 12 Feet West-Facing Shores/Remaining Islands 12 Feet 20 Feet South-Facing Shores 8 Feet 15 Feet East-Facing Shores 8 Feet 15 Feet *Heights of wave face at time of peak cresting. 35 36

Hawaii Buoy Observations UH/SOEST Coastal Buoys 24 N NOAA Buoy 51001 (1981-present) UH/CDIP Waimea Waverider Buoy (12/2001-present) 295 253 nm 22 273 Niihau Kauai Oahu -162-160 -158 Buoy locations and island shadowing. 37 38 Wave Watch III Output from global numerical Wave prediction model UH Local Wave Modeling Regional to local wave models that predict refraction and shoaling for the Hawaiian Is. 39 40

Swell and Wave Forecasting Additional tips for wave forecasting: 2. Wave Sets: Swell travel with a group velocity that is ~1/2 the speed of individual waves. When a wave group arrives at the shore it is referred to as a set. 3. Lulls: Between sets, lulls in the waves can draw inexperienced people to their deaths. 4. Travel Time: Rule of thumb to estimate of travel time for large swells is 10 latitude per day (10 ~1110 km or 665 nautical miles). Thus, it will take ~3-4 days from the north Pacific and ~1 week from New Zealand for the swell to arrive. Epic (Giant) Wave Events 41 42 December 1969 Epic Event Epic Wave Event of December 1969 NCAR/NCEP Reanalysis Data for 8 AM 30 November 1969 43 44

Animation of SLP Analyses Dec. 1969 Condition Black, Jan. 1998 A captured fetch occurs when the swell travel at the same speed as the storm, so that high winds remain over the swell region. 45 46 Animation of SLP Analyses Jan. 1998 Source Regions for Large Swell in Hawaii Fetches associated with observations of epic surf in Hawaii during past 30 years. Boxes enclose #35 knots pointing toward the islands over a fetch # 600 km. Note the captured fetch that again occurred in this case. 47 48

Hurricane Waves hit Japan Rouge or Freak Waves Hurricanes traveling in a straight line produce a captured fetch that focuses wave energy like a lighthouse beam. 49 50 Rouge or Freak Waves Rouge or Freak Waves! A Rouge Wave is a wave of very considerable height (up to 30 meters) that usually appears as a solitary wave ahead of which there is a deep trough. It is the unusual steepness of the wave that is its outstanding feature, and which makes it dangerous to shipping. Observations suggest that such waves have usually occurred where a strong current flows in the opposite direction to a heavy sea or large swell. 51 52