ESA 372/3 Aerodinamik Pesawat

Similar documents
-1- UNIVERSITI SAINS MALAYSIA. First Semester Examination 2010/2011 Academic Session. November 2010

-1- UNIVERSITI SAINS MALAYSIA. First Semester Examination 2010/2011 Academic Session. November ESA 366/3 Flight Performance Prestasi Pesawat

ESA 244/2 Aerodynamics [Aerodinamik]

EAH 221/3 Mekanik Bendalir Untuk Jurutera Awam

INSTRUCTION: This section consists of FOUR (4) questions. Answer ALL questions. ARAHAN: Bahagian ini mengandungi EMPAT (4) soalan. Jawab SEMUA soalan.

Chapter 5 Wing design - selection of wing parameters - 4 Lecture 22 Topics

UNIVERSITI SAINS MALAYSIA. EAS 253/3 Theory of Structures [Teori Struktur]

HBT Bahasa, Undang-Undang dan Penterjemahan II

Aircraft Design: A Systems Engineering Approach, M. Sadraey, Wiley, Figures

PROBLEMS FOR CHAPTER 2 - PRESSURE. Question 1

INSTRUCTION: This section consists of SIX (6) essay questions. Answer FOUR (4) questions only.

AIR FLOW AROUND BODIES IN SUBSONIC WIND TUNNEL LIM FONG KIAW

UNIVERSITI SAINS MALAYSIA. EAL 335/4 Traffic and Transportation Engineering [Kejuruteraan Pengangkutan dan Lalulintas]

BLADE DESIGN FOR WINDMILL GENERATOR MUHAMMMAD FITRI BIN MOHAMED HASSAN

JNK 111/3 - Mekanik Bendalir I

Chapter 5 Wing design - selection of wing parameters - 3 Lecture 21 Topics

HYDROSTATIC FORCE ON A SUBMERGED PLANE SURFACE

BAB 4: GRAF GEOGRAFI TINGKATAN DUA BAB 4: GRAF

INSTRUCTION: This section consists of SIX (6) essay questions. Answer FOUR (4) questions only.

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

EAL235 Highway and Traffic Engineering

SULIT 4551/3. Diagram 1.1 shows the apparatus set-up used in this experiment. Rajah 1.1 menunjukkan susunan radas yang digunakan dalam eksperimen ini.

PEMBERITAHUAN PERTANYAAN BAGI JAWAB LISAN DEWAN RAKYAT TUAN WILLIAM LEONG JEE KEEN [ SELAYANG ]

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability.

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati

EAL335 Traffic and Transportation Engineering [Kejuruteraan Pengangkutan dan Lalulintas]

OBJEKTIF MODUL. Membincangkan dan menerangkan lebih lanjut pelbagai arahan (Command) tambahan dalam menganalisis data.

The Influence of Battle Damage on the Aerodynamic Characteristics of a Model of an Aircraft

11-1. Horizontal tailplane sizing according to control requirement

Welcome to Aerospace Engineering

Aerodynamics Principles

Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner

Wing-Body Combinations

Incompressible Flow over Airfoils

STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS

SHORT ESSAY COMPETITION PERTANDINGAN KARANGAN PENDEK

THE DYNAMICS OF CURRENT CIRCULATION AT NEARSHORE AND VICINITY OF ISLAND IN TERENGGANU WATERS NURUL RABITAH BINTI DAUD

ASSOCIATION BETWEEN ERGONOMIC RISK FACTORS AND MUSCULOSKELETAL PAIN AMONG FIXIE BIKE CYCLISTS MOHD SHAMSHEMUN BIN MOHAMED

WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult.

The effect of back spin on a table tennis ball moving in a viscous fluid.

Aerodynamic Analysis of a Symmetric Aerofoil

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology.

Preliminary Design Review (PDR) Aerodynamics #2 AAE-451 Aircraft Design

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft

The subsonic compressibility effect is added by replacing. with

A SYSTEM DYNAMIC MODEL FOR DECISION SUPPORT SYSTEM IN LEAN CONSTRUCTION ALI CHEGENI

DATA INTEGRITI. Akademi Audit Negara. CAATs ASAS ACL / 1

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and

Nama Penilai. No. K/Pengenalan. Tarikh Terima :. Tarikh Siap :... No. Telefon : No. Faksimili :.. 1. Adakah manuskrip ini merupakan karya asli?

ASAS SIMPAN KIRA DAN PERAKAUNAN Tempat: Kota Kinabalu, Sabah. Sila pilih tarikh kursus yang bersesuaian. Tandakan dalam kotak yang disediakan.

Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span)

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model

DATA AKSES. Akademi Audit Negara. View. CAATs ASAS ACL / 1

Aero Club. Introduction to Flight

of a natural-laminar-flow airfoil. Automation of such a cruise flap is likely to result in improved aircraft performance over a large speed range

IEK CHEMODYNAMICS [KIMODINAMIK]

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage

Aerodynamic investigations on a wing in ground effect

AERODYNAMIC ANALYSIS OF MULTI-WINGLETS FOR LOW SPEED AIRCRAFT

ANALYSIS OF STROKE DISTRIBUTION BETWEEN PROFESSIONAL, INTERMEDIATE AND NOVICE SQUASH PLAYERS DIYANA ZULAIKA BINTI ABDUL GHANI

Chapter 3 Lecture 9. Drag polar 4. Topics. Chapter-3

Low Speed Wind Tunnel Wing Performance

AN INVESTIGATION ON VERTICAL TAILPLANE DESIGN

Preliminary Analysis of Drag Reduction for The Boeing

Effect of Leading- and Trailing-Edge Flaps on Clipped Delta Wings With and Without Wing Camber at Supersonic Speeds

No Description Direction Source 1. Thrust

BORANG PENGESAHAN STATUS TESIS

Investigation and Comparison of Airfoils

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS

BUILD AND TEST A WIND TUNNEL

FUSELAGE-MOUNTED FINS ON THE STATIC DIRECTIONAL STABILITY. By M. Leroy Spearman, Ross B. Robinson, and Cornelius Driver

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber.

Numerical Analysis of Wings for UAV based on High-Lift Airfoils

SUKAN INSTITUSI PENDIDIKAN TINGGI

OUTLINE FOR Chapter 4

Theory of Flight Aircraft Design and Construction. References: FTGU pages 9-14, 27

EAL432 Advanced Transportation And Highway Engineering [Kejuruteraan Lebuhraya Dan Pengangkutan Lanjutan]

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics

(A) Ahad & Selasa Sun. & Tue. (B) Isnin & Rabu Mon. & Wed. Teras Kesukarelawanan / Volunteership Core

LEADING-EDGE VORTEX FLAPS FOR SUPERSONIC TRANSPORT CONFIGURATION -EFFECTS OF FLAP CONFIGURATIONS AND ROUNDED LEADING-EDGES-

OBJECTIVE METHODOLOGY

CHAPTER 5 WING DESIGN

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor.

Reynolds Number Effects on Leading Edge Vortices

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil

FLOW SIMULATION OF AN SST CONFIGURATION AT LOW-SPEED AND HIGH-LIFT CONDITIONS

RESEARCH MEMORANDUM FOR AERONAUTICS HAVING A TRZANGULAR WING OF ASPECT WETI0 3. Moffett Field, Calif. WASHINGTON. Ames Aeronautical Laboratory

Comparing GU & Savier airfoil equipped half canard In S4 wind tunnel (France)

Low-Speed Wind-Tunnel Investigation of the Stability and Control Characteristics of a Series of Flying Wings With Sweep Angles of 50

AF101 to AF109. Subsonic Wind Tunnel Models AERODYNAMICS. A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100)

Homework Exercise to prepare for Class #2.

Design Analysis and Optimization Of Wing With Variable Camber Continuous Trailing Edge Flap

UNIVERSITI PUTRA MALAYSIA DETERMINATION OF IDEAL WIDTH FOR EXCLUSIVE MOTORCYCLE LANE ALONG THE STRAIGHT SECTION OF FEDERAL HIGHWAY, SELANGOR, MALAYSIA

A Numerical Simulation Comparing the Efficiencies of Tubercle Versus Straight Leading Edge Airfoils for a Darrieus Vertical Axis Wind Turbine

BIOMECHANICAL LOADING OF INSTEP KICK FOR MALAYSIAN FOOTBALLER DAYANG KHAIRUNNISA BINTI ABANG KIPRAWI

Lembaga Penerbangan dan Antariksa Nasional Jl. Raya LAPAN, Sukamulya, Rumpin, Bogor Indonesia

Aerospace Design Project. Design of a class-3 Ultralight airplane

Drag Divergence and Wave Shock. A Path to Supersonic Flight Barriers

Transcription:

-1- UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 25/26 Second Semester Examination 25/26 Academic Session April/Mei 26 April/May 26 ESA 372/3 Aerodinamik Pesawat Aircraft Aerodynamics Masa : [ 3 jam] Hour : [3 ours] ARAHAN KEPADA CALON : INSTRUCTION TO CANDIDATES: Sila pastikan baawa kertas soalan ini mengandungi LIMA BELAS (15) mukasurat bercetak dan SEMBILAN (9) soalan sebelum anda memulakan peperiksaan. Please ensure tat tis paper contains FIFTEEN (15) printed pages and NINE (9) questions before you begin examination. Baagian A: Jawab DUA (2) soalan. Baagian B: Jawab TIGA (3) soalan. Part A: Answer TWO (2) questions. Part B: Answer THREE (3) questions. Soalan bole dijawab dalam Baasa Inggeris kecuali satu soalan mestila dijawab dalam Baasa Malaysia. Te question can be answered in Englis but one question must be answered in Baasa Malaysia. Setiap soalan mestila dimulakan pada mukasurat yang baru. Eac questions must begin from a new page. 2/-

-2- BAHAGIAN A/PART A 1. Apaka kategori-kategori pesawat berdasarkan nombor Mac? Berikan julat nombor Mac untuk kategori-kategori yang berbeza. Wat are te categories of aircraft based on fligt Mac number? Give te range of Mac number for different categories. (1 marka/marks) 2. Secara ringkas terangkan maksud: Briefly explain te meanings of: (a) Luas Bersi Sayap Net Wing Area (b) Seretan Trim Trim Drag (c) Perentas Aerodinamik Min Mean Aerodynamic Cord (d) Seretan Parasit Parasite Drag (e) Faktor Kecekapan Oswald Oswald Efficiency Factor. (1 marka/marks) 3/-

-3-3. Secara matematik buktikan Perentas Aerodinamik Min (MAC) bagi sebua rujukan sayap tersapu bole diuraikan ole C 2 C 3 r 1 1 2 Matematically prove tat Mean Aerodynamic Cord (MAC) of a reference swept wing can be expressed as C 2 3 C r 2 1 1 di mana C r adala perentas sayap pada punca dan adala nisba tirus sayap were C r is te wing cord at root and is te wing taper ratio. (1 marka/marks) 4/-

-4-4. Jawab anya satu daripada soalan berikut (a atau b): Answer just one of te following questions (a or b): (a) Secara ringkas terangkan bagaimana seretan gelombang bagi pesawat pejuang bole dikurangkan pada laju supersonik. Apaka kesan kebolemampatan pada isipadu dan keratan rentas komponen pesawat apabila seretan gelombang dikurangkan? Briefly explain ow te wave drag of figter aircraft can be reduced at supersonic speeds. Wat are te compressibility effects of volume and cross section of aircraft components on te wave drag reduction? (1 marka/marks) ATAU/OR (b) Apaka konsep Nombor Mac Genting (M crit ) dan kesannya pada peningkatan seretan pada pesawat subsonik yang tinggi? Apaka kaitan di antara Nombor Mac Genting dan Nombor Mac pada jajap/aras (M C )? Wat is te concept of Critical Mac Number (M crit ) and its effect on te drag rise of a ig-subsonic aircraft? Wat is te relation between Critical Mac Number and Mac number at cruise (M C )? (1 marka/marks) 5/-

-5- BAHAGIAN B/PART B 5. Gambaraja 1.1 memperliatkan suatu sayap gerak dengan data sebagai berikut : Figure 1.1 sows a a cranked wing plan form wit te given data as follows : Rentang sayap b = 1 Rentang sayap baagian dalam y B = 3 Sudut pinggir depan tersapu sayap baagian dalam LE _1 = 2 Sudut pinggir depan tersapu sayap baagian LE _ 2 = 5 Sudut pinggir belakang tersapu sayap baagian luar TE _1 = 1 Sudut pinggir depan tersapu TE _ 2 = 5 Tentukan parameter geometri sayap seperti raja tersebut di atas 6/-

-6- Wing span b = 1 Inner board wing span y B = 3 Leading edge swept angle Inner wing part LE _1 = 2 Leading edge swept angle Outer wing part LE _ 2 = 5 Trailing edge swept angle Outer wing part TE _1 = 1 Leading edge swept angle TE _ 2 = 5 Tentukan parameter sayap tersebut di atas Determine te geometry parameter for te wing as depicted in above figure (i) Pengagian perentas c(y) Te cord distribution c(y) (4 marka/marks) (ii) Min perentas aerodinamik c mac Te mean aerodynamic cord c mac (4 marka/marks) (iii) Luas sayap acuan S ref Wing area reference S ref (4 marka/marks) (iv) Nisba bidang A R dan nisba tirus λ Aspect ratio A R and taper ratio λ (4 marka/marks) (v) Kedudukan koordinat min perentas aerodinamik ( x c mac, yc mac ) Location of te coordinate te mean aerodynamic cord x, yc mac ) ( c mac (4 marka/marks) 7/-

-7- (vi) Jika sayap tersebut diatas mempunyai data ciri ciri aerodinamik airfoil pada Nombor Mac M =.4 yang berikut: dc d airfoil =.16 /deg, = -1.2 L= If te wing as mentioned above as te aerodynamics caracteristics for its airfoil data as follows: dc d airfoil =.16 /deg, = -1.2 L= Tentukan pemalar daya angkat sayap tersebut pada sudut serang = 5 Determined te lift coefficient for te wing at angle of attack = 5 (4 marka/marks) 8/-

-8-6. Diberikan airfoil NACA serie 1412 dengan data ciri aerodinamik seperti Gambaraja 2.1 di bawa. Raja tersebut diasilkan dari suatu eksperimen aerodinamik di terowong angin pada Nombor Mac M =.3 A given an airfoil NACA serie 1412 wit te aerodynamics caracteristics as sown in te Figure 2.1 belows. Tis data was resulted from te experiment of wind tunnel wic conducted at te Mac Number Mac M =.3 Split flap Split flap airfoil airfoil Gambaraja 2.1: Ciri ciri aerodinamik Naca 1412 Airfoil Figure 2.1: Aerodynamics Caracteristics of Naca 1412 Airfoil Dengan dengan data tersebut di atas (seperti ditunjukan ole ara pana airfoil) tentukan ciri ciri aerodinamik airfoil untuk besaran-besaran berikut: Wit using above data, (as sown by arrow for te airfoil) determine te aerodynamics caracteristics for te airfoil in term of following quantities: (i) Sudut serang pada daya angkat sifar L =? Zero lift angle of attack L =? 9/-

-9- (ii) Kurva kemiringan pemalar daya angkat dc d airfoil slope curve of lift coefficient dc d airfoil (iii) Pemalaran daya angkat maksimum dan sudut tegun c max =? dan stall =? Te maximum lift coefficient and te stall angle and stall =? c max =? (iv) Pemalar daya seret minimum c dmin te minimum drag coefficient c dmin (v) Pemalar moment angguk c mc/ 4 =? te pitcing moment coefficient c mc/ 4 =? (vi) Tentukan sudut serang reka bentuk untuk airfoil tersebut =? des Determine te angle of attack design for tis airfoil des =? (vii) Terangkan maksud digit dari airfoil Naca 1412 ini Explain te mean of digit for tis airfoil Naca 1412. (12 marka/marks) 1/-

-1-7. Keronjong udara di atas dilengkapi dengan kepak jenis flower yang dipesongkan pada sudut pesongan 15 dengan konfigurasi seperti Gambaraja 2.2 dengan c = 1.235 c Above airfoil was equipped wit fowler type of flap wit te defection flap angle δ f = 15 as it was sown in te Figure 2.2 wit c = 1.235 c Gambaraja 2.2: Geometri kepak fowler Figure 2.2: Geometry fowler flap Tentukan: Determine: (i) Kenaikan pekali daya angkat c pada sudut serang Te increment of lift coefficient increment c at zero angle of attack (ii) Kemiringan kurva pekali daya angkat keronjong udara akibat pesongan dc kepak d airfoil flap dc Te slope of lift coefficient curve d airfoil flap due to flap deflection c max (iii) Kenaikan pekali daya angkat maksimum airfoil flap c max Te increment of maximum lift coefficient airfoil flap (13 marka/marks) 11/-

-11-8. Diberikan sayap empat persegi panjang dengan data geometri seperti pada Gambaraja 3.1 dibawa: Given a rectangular wing planform wit te geometry data as sown in te figure 3.1 belows: c = 1.25 Flap section y =.4 b = 8 Gambaraja 3.1/Figure 3.1 rentang sayap b = 8 meter perentas sayap = 1.25 meter flap dimulai dari posisi y =.4 b Data flap seperti pada soalan nombor 7 wing span b = 8 meter wing cord = 1.25 meter te flap start from te position y =.4 b Data flap as question number 7 Menggunakan data geometri sayap seperti di atas dan data soalan no7. untuk nombor Mac, tentukan: Using te geometry data of wing as given above and also airfoil data as given in question number 7, determine: (i) Tentukan besaran besaran parameter geometry sayap + flap yang diperlukan dalam perkiraan aerodinamik sayap dan kepak dalam al berkenaan dengan pemalar daya angkat (misalnya : luasan sayap, aspect ratio, taper ratio, dan lain-lainnya) 12/-

-12- Determine te parameter geometry wing and flap wic would be required for te aerodynamic caracteristic calculations related to te lift coefficients ( as example : wing area, aspect ratio, taper ratio etc) (ii) Kemiringan kurva pekali daya angkat sayap dc Te slope of lift coefficient curve d Wing dc d Wing (iii) Kemiringan kurva pekali daya angkat sayap akibat kepak pesongan dc d Wing flap dc Te slope of lift coefficient curve d Wing flap due to flap deflection (iv) Terangkan mengapa sudut serang sayap pada pekali daya angkat sifar c sama dengan keronjong udara C wing airfoil Explain wy te angle of attack for zero lift coefficient for te wing is c C equal to its airfoil. wing airfoil (v) Jika kepak dari yang semula adala kepak jenis fowler digantikan dengan kepak jenis split dengan data aerodinamik kepak split seperti Raja 2.1 itung pemalar daya angkat sayap dan kepak pada sudut serang α = 5. 13/-

-13- If te te flap wic originally fowler flap ten replaced by te split flap wic te aerodynamics caracteristics for tis type of split flap as sown in figure 2.1, calculate te lift coefficient wing and flap for te angle of attack α = 5. 14/-

-14-9. Suatu Pesawat terbang dengan data sayap, airfoil dan flap flower seperti yang diberikan pada soalan no 7 dan no 8 tersebut di atas. Disamping itu pesawat mempunyai data tambaan sebagai berikut. An aircraft wit te data for te wing, airfoil and flower flap as described in te problems no 7 and no 8, In addition to tis te additional data aircraft are given as follow : Luas ekor mendatar S.2 S w Sudut ekor terpasang i 4 Tekanan dinamik ekor mendatar n.85 dc Kemiring kurva pekali angkat ekor 5.84 /rad d t Jarak mendatar antara min aerodinamik titik kontrol sayap dan ekor mendatar 3.5 c mac Jarak menegak sayap dan ekor mendatar.85 cmac Diameter badan pesawat d f = 2.5 c mac Sudut sayap terpasang i w = 3 Horizontal tail area S.2 S w Tail incidence angle i 4 Horizontal tail dynamics pressure n.85 Te slope of tail lift coefficients dc d t 5.84 /rad Horizontal distance among te mean aerodynamic control points of wing and orizontal tail 3.5 c mac Vertical distance wing and orizontal tail.85 cmac Fuselage diameter d f = 2.5 c mac Te wing incidence i w = 3 15/-

-15- Kirakan: Calculate: (i) Kemiringan kurva pekali daya angkat sayap badan pesawat C L WF Te wing body lift curve slope C L WF (ii) Kemiringan kurva pekali daya angkat pesawat C Lα A Te airplane lift curve slope coefficients C A Lα (iii) Pekali daya angkat pesawat pada sudut serang sifar C L α A Te airplane zero angle of attack lift coefficient C L α A α (iv) Sudut serang pada pekali daya angkat sifar L A Te airplane zero lift angle of attack α L A (v) Pekali daya angkat maksimum pesawat C Lmax A Te airplane maximum lift coefficients C A Lmax oooooo 16/-