A practical approach to tracheostomy tubes and ventilators

Similar documents
Initiating In-Line Ventilator Speaking Valve Protocols: Why & How? Kristin C. Dolan; CCC-SLP Kindred Hospital Melbourne, FL

Instructions/Procedure for Use of the Speaking Valve

Assessment & Placement GUIDE

Section 2.9 Decannulation

Understanding Tracheostomy Care

Selecting the Ventilator and the Mode. Chapter 6

VENTILATORS PURPOSE OBJECTIVES

Understanding Tracheostomy Care for your Child

Day-to-day management of Tracheostomies & Laryngectomies

Mechanical Ventilation. Mechanical Ventilation is a Drug!!! is a drug. MV: Indications for use. MV as a Drug: Outline. MV: Indications for use

Basics of Mechanical Ventilation. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity

Mechanical Ventilation. Which of the following is true regarding ventilation? Basics of Ventilation

Indications for Mechanical Ventilation. Mechanical Ventilation. Indications for Mechanical Ventilation. Modes. Modes: Volume cycled

MEDICAL EQUIPMENT IV MECHANICAL VENTILATORS. Prof. Yasser Mostafa Kadah

Virginia Beach EMS. Oxylator EMX. Debra H. Brennaman, RN, MPA, NREMT-P

NOTE: If not used, provider must document reason(s) for deferring mechanical ventilation in a patient with an advanced airway

2) an acute situation in which hypoxemia is suspected.

KimVent * Closed Suction System Solutions for the Home Care Pediatric Patient. Instructions for Use. Ballard* Trach Care* Technology

Flight Medical presents the F60

Tracheostomy and Ventilator Education Program Module 11: Emergency Preparedness

Operating Instructions for Microprocessor Controlled Ventilators

PERFORMANCE EVALUATION #34 NAME: 7200 Ventilator Set Up DATE: INSTRUCTOR:

Astral in AirView: Improving patient care through connectivity. ResMed.com

Health Professional Info

Chapter 9 Airway Respirations Metabolism Oxygen Requirements Respiratory Anatomy Respiratory Anatomy Respiratory Anatomy Diaphragm

Mechanical ven3la3on. Neonatal Mechanical Ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on 8/25/11. What we need to do"

Breathing Process: Inhalation

Automatic Transport Ventilator

Mechanical Ventilation

Invasive mechanical ventilation:

Notes on BIPAP/CPAP. M.Berry Emergency physician St Vincent s Hospital, Sydney

Test your PICU/ NICU/ CHSU Knowledge

V8600 Ventilator. Integrated Invasive & Noninvasive Ventilation

UNDERSTANDING NEONATAL WAVEFORM GRAPHICS. Brandon Kuehne, MBA, RRT-NPS, RPFT Director- Neonatal Respiratory Services

Automatic Transport Ventilators. ICU Quality Ventilation on the Street.

Astral in AirView: Improving patient care through connectivity. ResMed.com

Mechanical Ventilation

Inspiration 7i Ventilator

VENTILATION SERVO-s EASY AND RELIABLE PATIENT CARE

Endotracheal Suctioning: In Line ETT

EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES

Complex Care Hub Manual: Pressure Ventilation on the LTV 1200

Initiation and Management of Airway Pressure Release Ventilation (APRV)

O-Two Self-Study Guide. e600 Transport Ventilator Ventilation Modes

patient education program 4156 South 52 nd Street, Omaha, NE ChildrensOmaha.org/HomeHealthcare

GE Healthcare. Centiva/5 Critical Care Ventilator. Meet a new level of expectations

INTRODUCTION TO BI-VENT (APRV) INTRODUCTION TO BI-VENT (APRV) PROGRAM OBJECTIVES

Completed downloadable Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 5th Edition by Cairo

Objectives. Respiratory Failure : Challenging Cases in Mechanical Ventilation. EM Knows Respiratory Failure!

Using Common Ventilator Graphics to Provide Optimal Ventilation

Mechanical Ventilation. Flow-Triggering. Flow-Triggering. Advanced Concepts. Advanced Concepts in Mechanical Ventilation

QUICK REFERENCE GUIDE

Mechanical Ventilation

Ventilator Training Module

Manual: Biphasic Positive Airway Pressure (BiPAP) Ventilation

Laryngeal Mask Airway (LMA) Indications and Use for the NH EMT-Intermediate and Paramedic

Patient Information for the: Humanitarian Device for use in the Control of Air Leaks

HIGH FREQUENCY JET VENTILATION (HFJV): EQUIPMENT PREPRATION

Principles of mechanical ventilation. Anton van Kaam, MD, PhD Emma Children s Hospital AMC Amsterdam, The Netherlands

Update to RS-232 commands. Changing patient from NIV to INVASIVE Vent Type. SNDF command

Clinical Skills. Administering Oxygen

RESPIRATORY PHYSIOLOGY, PHYSICS AND PATHOLOGY IN RELATION TO ANAESTHESIA AND INTENSIVE CARE

TITLE: Pulse Oximetry COMPETENCY #: Resp #1 NEW COMPETENCY REVISION DATE: 10/18/12 EMPLOYEE NAME. DATE INITIAL RE-EVALUATION ANNUAL (if required) PRN

Tracheostomy Handbook

Instructions for Use. OptiLife Nasal Lab Mask

Advanced Ventilator Modes. Shekhar T. Venkataraman M.D. Professor Critical Care Medicine and Pediatrics University of Pittsburgh School of Medicine

The Crossvent 2i+ 2. Ventilator Concept (brief theory of operation and features)

Airways and Resuscitators. CRC 330 Cardiorespiratory Care University of South Alabama

ONLINE DATA SUPPLEMENT. First 24 hours: All patients with ARDS criteria were ventilated during 24 hours with low V T (6-8 ml/kg

4/2/2017. Sophisticated Modes of Mechanical Ventilation - When and How to Use Them. Case Study 1. Case Study 1. ph 7.17 PCO 2 55 PO 2 62 HCO 3

SARASOTA MEMORIAL HOSPITAL NURSING PROCEDURE

Fiberoptic Intubation Made Easi(er) Know Your Scope. Indications. Christine Whitten MD Department of Anesthesia Kaiser Permanente San Diego

Bunnell LifePulse HFV Quick Reference Guide # Bunnell Incorporated

CAREGIVER S GUIDE TO RESPIRATORY CARE IN THE HOME ADULT

AUTOVENT 4000 VENTILATOR

Having a one-way valve after laryngectomy. Information for patients Speech and Language Therapy

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Oxygen prescription. Dr Julian Forton. Consultant in paediatric respiratory medicine Noah s Ark Children s Hospital for Wales

Intermittent Positive Pressure Breathing (IPPB) Guideline

Potential Conflicts of Interest Received research grants from Hamilton, Covidien, Drager, General lel Electric, Newport, and Cardinal Medical Received

Hallowell EMC 2000 and 2002 Veterinary Ventilator Set-up, Use, and Troubleshooting

Standards and guidelines for care and management of patients requiring oxygen therapy.

Medical Instruments in the Developing World

Ventilators. Dr Simon Walton Consultant Anaesthetist Eastbourne DGH KSS Basic Science Course

HAMILTON-C2 HAMILTON-C2. The universal ventilation solution

Recommendations on Checking Anaesthesia Delivery Systems

Expanding versatility. The upgraded Trilogy family of ventilators continues to meet the changing needs of your patients

NSQIP showed that the University of Utah was a high outlier in for patients receiving >48 cumulative hours of mechanical ventilation.

HONG KONG COLLEGE OF ANAESTHESIOLOGISTS TECHNICAL GUIDINES RECOMMENDATIONS ON CHECKING ANAESTHESIA DELIVERY SYSTEMS

Trach Tubes/Accessories

Department of Pediatrics. Guide to Pediatric Tracheostomy Care at Home

My CoughAssist. A patient guide to CoughAssist T70. Please visit

The aim of this guideline is to describe the indications and procedure for using high flow nasal prong oxygen

COALINGA STATE HOSPITAL. Effective Date: August 31, 2006

Guide to Understand Mechanical Ventilation Waveforms

MEDUMAT Standard a MEDUMAT Standard. The Ventilation Standard for Professionals

SLE5000 Infant Ventilator with HFO

Technical Data and Specifications

The Basics of Ventilator Management. Overview. How we breath 3/23/2019

VENTILATION SERVO-i INSPIRATION IN EVERY BREATH

Transcription:

A practical approach to tracheostomy tubes and ventilators Alison McKee, MS CCC-SLP University Specialty Hospital, Baltimore MD Department of Rehabilitation Services Heather Starmer, MA CCC-SLP Johns Hopkins University, Baltimore, MD Department of Otolaryngology Head and Neck Surgery

Learner objectives Discuss different communication options for tracheotomized and ventilator dependent patients Demonstrate understanding of basic ventilator settings and their implications on speech Discuss evidence regarding the benefits of voice restoration Describe ways to initiate an in-line ventilator speaking valve program

Introduction to trachs Indications and types

Indications for tracheostomy Prolonged mechanical ventilation Acute or chronic airway obstruction Retention of pulmonary secretions Sleep apnea

Tracheostomy

Anatomy of a trach tube 1. Faceplate 2. Hub 3. Outer Cannula 4. Pilot line/pilot balloon 5. Cuff 4 1 2 3 5

Trach tubes (cont.) Shiley Plastic with white face plate Can be cuffed or cuffless 1 2 1 obturator 2 inner cannula

Portex Trach tubes (cont.) Plastic tube Clear or white faceplate Blue pilot balloon

Trach tubes (cont.) Bivona aircuff TTS (tight to shaft) cuff hugs outer cannula

Trach tubes (cont.) Bivona fomecuff (red pilot balloon) Used when unable to maintain seal with standard cuff Reduces risk of damage from over- inflation of cuff Passive cuff inflation Cannot be used with speaking valves

Trach tubes (cont.) Extra length Used primarily with bariatric patients to ensure proper ventilation Made by most trach manufacturers

Trach tubes (cont.) Bivona/Portex talking trach Used for communication with patients who require cuff inflation Delivery of non- pulmonary air between the inflated cuff and the vocal folds

Trach tubes (cont.) Fenestrated trachs Designed to allow communication when on vent Problematic due to malpositioning of fenestrates Rarely used

Trach tubes Jackson (metal) Used for non-vent patients Cuffless model only

Tracheostomy speaking valves

Nature of the problem Diversion of airflow away from larynx Inadequate subglottic pressure to cause vocal fold vibration

The solution Re-establish establish airflow through the larynx Substitute alternative vibration source if larynx is not accessible

Speaking Valve Function Patient can continue to breath in through the trach tube Exhalation is then redirected up through the trachea creating a closed system Promotes a more normal respiratory pattern for breathing and expelling secretions

Currently prevalent speaking valves Passy Muir Speaking Valve Biased closed valve Perceptually best quality voice Fewest clinically relevant mechanical problems Reduced effort required to initiate voice (Zajac et al. Journal of Speech, Language, and Hearing Research 1999; Leder. Journal of Speech and Hearing Research 1994) Montgomery Speaking Valve Biased open valve Good to use for patients with mild upper airway obstruction due to cough release mechanism

Passy Muir Speaking Valve Four different styles 1. PMV 2001 2. PMV 005 3. PMV 007 (vent) 4. PMV 2000 (low profile) 1 1 2 3 4

Montgomery Speaking Valve 2 different styles 1. Tracheostomy valve 2. Ventilator valve 1 2

Speaking Valves Primary benefit Communication Successful restoration of verbal communication in vented and trach dependent patients Patient reported improvement in psychosocial functions and emotional status Improvements noted in adults as well as pediatric patients (ManzanoManzano et al. Critical Care Medicine 1993; Passy et al. Laryngoscope 1993; Hull, et al. Pediatric rehabilitation 2005)

Speaking Valves Secondary benefits (Passy Muir only) Swallowing Reduced occurrence of laryngeal penetration/aspiration Reduced amount aspirated (Suiter,, McCullough, & Powell. Dysphagia 2003; Stachler,, Hamlet, Choi,, & Fleming. Laryngoscope 1996; Dettlebach,, Gross, Mahlmann,, & Eibling. Head and Neck 1995)

Speaking valves Secondary benefits (Passy Muir only) Secretion management Subjective patient report of reduced oral and nasal secretions (Passy et al. Laryngoscope 1993) Reduced secretion production over 24 hour period (Lichtman and Birnbaum. Journal of Speech and Hearing Research 1995) Olfaction Olfaction (Lichtman and Birnbaum. Journal of Speech and Hearing Research 1995; Passy et al. Laryngoscope 1993)

Speaking valves Secondary benefits (Passy Muir only) Vent weaning/decannulation (Fukumoto,, Ota, & Arima. Critical Care Resuscitation 2006)

Speaking Valve Candidacy Can be used with trach patients on and off the vent Pt should be awake, alert, and attempting to communicate Airway patency trach size/# of intubations Can be used for decannulation purposes in patients who are not communicative

Contraindications for speaking valve use Cuff inflation Fome cuff trach Thick, copious secretions Total laryngectomy Laryngeal masses, stenosis,, inadequate patency of upper airway

Communication restoration in the trach patient Assess size and type of tracheostomy tube Patients with Fome cuff trachs are not candidates for speaking valves secondary to passive inflation of cuff Larger diameter trachs may result in inadequate airflow through the upper airway (ideal size of trach is 2/3 size of tracheal lumen) Specialty trachs can be utilized for abnormal airways (e.g. extra length, double cuff, stoma cuff, TTS)

Speaking Valve Assessment Verify and record baseline vital signs Slowly deflate cuff (~1cc at a time) and monitor pt s s vitals and work of breathing Suction patient if necessary Verify voice by digital occlusion of trach Apply speaking valve and monitor for changes in voice, vitals, or work of breathing Advance time of use as tolerated

Communication options for ventilator dependent patients

First steps Assess size and type of tracheostomy tube Determine reason for trach/vent dependence Assess vent settings and recent weaning course Discuss patient status with respiratory therapist and pulmonary team

Ventilator modes Assist control (AC) Machine does all the work. If the pt attempts to trigger a breath the vent will deliver the volume predetermined by the vent setting at the preset rate Pressure Regulated Volume Control (PRVC), adjusts pressure delivered during each breath to ensure target volume Used in the most compromised pulmonary patients

Ventilator modes (continued) Synchronized Intermittent Mandatory Ventilation (SIMV) Vent will deliver a predetermined number of breaths per minute at a certain volume. If pt initiates breaths, those breaths will be at the pt s spontaneous volumes Used in beginning of weaning

Ventilator modes (continued) Continuous Positive Airway Pressure (CPAP)- Pt determines how many breaths per minute will be taken. No preset volumes are presented to the patient. Pt is given continuous positive air pressure to maintain integrity of gas exchange at alveoli. Weaning step before trach collar

Ventilator modes (continued) Pressure support Can be utilized with other vent modes to provide pressure support to overcome resistance from vent tubing. Pressure support is to minimize respiratory muscle fatigue.

Ventilator settings Rate Predetermined, minimum number of breaths per minute which will be delivered to the patient. Tidal volume The volume of air delivered with every mechanical breath. Pressure support - The pressure delivered with each inspiration. Positive end expiratory pressure (PEEP) Positive pressure which is present at the end of expiration Fraction of inspired oxygen (FI02) percentage of oxygen delivered with each breath.

Vent setting implications for verbal communication Tidal volume Patients who require high tidal volumes may have more difficulty with cuff deflation due to difficulty compensating for loss of volume and inability to adjust tidal volumes above a certain level. Some pulmonologists feel that patients with tidal volumes greater than 800 are not candidates for cuff deflation/inline PMV

Vent setting implications for verbal communication PEEP The PMV adds ~2 cm of PEEP. PEEP >7 can lead to barotrauma. Patients receiving >5 of PEEP at baseline may need to have the vent adjusted for the added PEEP from the PMV. Pressure support As with PEEP, high airway pressures can lead to barotrauma. In general, patients with PS >10 are not candidates for inline PMV.

Vent setting implications for verbal communication FI02 Patients with higher oxygen requirements often do not tolerate cuff deflation due to inability to compensate. Generally speaking, patients with FI02 >60% don t t do well with cuff deflation/inline PMV.

Vent setting implications for verbal communication Rate Again, patients with higher respiratory rate requirements are less likely to adjust to changes in ventilation. Generally speaking, patients with set rates of >16 may not do well with cuff deflation/inline PMV.

Other considerations Peek airway pressures Patients with baseline peak airway pressures >40 are not candidates for inline PMV secondary to risks of barotrauma (as measured at rest, not during phonation attempts or coughing) Secretions Patients with excessive secretions may not be able to tolerate cuff deflation or inline PMV.

Verbal communication options for vent dependent patients Leak speech/cuff deflation Inline Passy Muir Valve Talking trach tubes Electrolarynx

Leak speech/cuff deflation Requires: - Intact or relatively unimpaired articulators - Fairly stable pulmonary status - Patent upper airway - Functional vocal fold mobility Contraindications: - High oxygen requirements - High tidal volumes

Leak speech assessment Consult with pulmonary or respiratory departments to determine pt stability Verify and record vent settings Verify and record baseline vital signs Suction orally and via trach if necessary Slowly deflate cuff (~1cc at a time) and monitor pt s s ability to phonate as well as pt s s VS and WOB suction again if needed

Leak Speech Assessment cont. Disable low minute volume alarm. Monitor pt 1:1 during initial trial and discontinue if HR or RR increase, if SaO2 decreases, if pt has severe and intractable coughing, or if the pt c/o excessive SOB. Advance time gradually according to tolerance

Keep in mind with leak speech Vent settings, particularly tidal volume and pressure support will impact the pt s s voice production. If pt is unable to achieve any voice (particularly if low minute volume does not alarm at all), suspect excessive trach size.

Keep in mind with leak speech cont. Tidal volumes may be adjusted to assist with voice production. ENT consultation if persisting dysphonia/aphonia.

Inline PMV Requires: - Intact or relatively unimpaired articulators - Fairly stable pulmonary status - Patent upper airway - Functional vocal fold mobility - Good tolerance of cuff deflation Contraindications: - High oxygen requirements - High tidal volumes - High PEEP - High pressure support

Inline PMV assessment Consult with pulmonary or respiratory departments to determine pt stability Coordinate with RT for initial evaluation (recommend assessment of tolerance of cuff deflation prior to initial inline PMV trials) Verify and record baseline vent settings Verify and record baseline vital signs Suction orally and via trach if necessary Slowly deflate cuff (~1cc at a time) and monitor pt s s ability to phonate as well as pt s s VS and WOB suction if necessary

Inline PMV assessment cont. Disable low minute volume alarm. Monitor pt 1:1 during initial trial and discontinue if HR or RR increase, if SaO2 decreases, if pt has severe and intractable coughing, or if the pt c/o excessive SOB. Advance time gradually according to tolerance

Problems you may encounter Problem: Good vital signs but poor phonation Solutions: 1. RT can make vent adjustments including increasing tidal volume or PEEP 2. ST can focus on maximizing respiratory support for phonation through traditional voice therapy techniques 3. ENT can assess for glottic closure issues

Problems you may encounter Problem: Severe coughing Solutions: 1. Revert back to cuff deflation trials to desensitize the upper airway 2. Keep cuff deflated throughout the day for greater desensitization 3. Do short, intermittent PMV applications until pt becomes used to airflow

Problems you may encounter Problem: Good VS with cuff deflation but inability to tolerate inline PMV Solutions: 1. Most likely issue is inadequate upper airway patency recommend ENT consult 2. Anxiety may also contribute to this scenario, if voice is excellent but pt with increased HR/RR, try relaxation techniques and short, intermittent PMV applications

Developing an in-line protocol

Protocols and Procedures Obtain access to/create PMV policy and procedure (see handout) Determine responsible parties SLP, RT, pulmonologist and nursing Determine selection criteria See previous slide on speaking valve candidacy Meet with appropriate committee to review draft and determine approval process

Determine responsible parties Pulmonologist: : Initiate consultation and communicate any change in status that may impact candidacy for valve use

Determine responsible parties Speech language pathologist: Conduct a clinical evaluation of the PMV candidate, dispense and apply the PMV and necessary adaptors, develop appropriate therapeutic goals, follow the patient s s progress, and discontinue PMV intervention if changes in status occur.

Determine responsible parties Respiratory therapist: Assess the respiratory status of the patient, make necessary adjustments to the ventilator after discussion with the pulmonologist,, place and remove the PMV according to recommendations made by the SLP, and monitor the status of the patient during inline PMV use in conjunction with the SLP.

Determine responsible parties Nursing: Communicate to the SLP any changes in patient status which may impact candidacy for inline PMV use, assist in monitoring the patient during PMV once established, place and remove the PMV according to recommendations made by the SLP, and clean the PMV according to SLP recommendations.

In-line protocol inclusions Establish candidacy in conjunction with RT and pulmonary Determine speaking valve placement guidelines Identify troubleshooting tips Establish a discontinuation criteria Train and educate staff with competencies

Importance of multidisciplinary care Speech pathologists are experts in voice, speech, and swallowing Respiratory therapists are experts in trach/vent management Otolaryngologists are experts in airway management Pulmonologists are experts in pulmonary management Nurses are experts in the care of their patients

Good studies to cite to your medicine colleagues 91/104 patients able to tolerate cuff deflation/cuffless trach while on mechanical ventilation (Bach and Alba. Chest A multidisciplinary team approach can be used to promote a positive patient outcome in the mechanically vented (Bell. Critical Care Nurse 1996.) Chest 1990.) Cuff deflation increase vocalization without compromising respiratory function (Conway and Mackey. Anaesthesia 2004)

Other communication options

Talking trach tubes Requires: - Intact or relatively unimpaired articulators - Functional vocal fold mobility - Relatively patent upper airway Contraindications: - No major contraindications

Talking trach tubes Made by both Bivona and Portex Allows for phonation by presentation of non-pulmonary air between the cuff and the vocal folds. Does not require cuff deflation and will not impact ventilation of the patient.

Talking trach tube

Assessment for talking trach tube Once a patient is identified as a candidate, trach can be changed by ENT. Once the trach is changed, humidified air line should be established for the talking trach.

Assessment for talking trach tube cont. The talking trach line is attached via oxygen tubing to the humidified air source and the flow should be set initially at 7L/min. Digitally occlude the port on the talking trach line to administer airflow to the upper airway and ask pt to phonate.

Troubleshooting with a talking trach Problem: Air does not seem to be flowing through. Solution: Because the port is located right above the cuff, secretions can clog the line. Try flushing saline through the line and then reverse suction through the talk line. Problem: Excessively wet vocal quality impacting intelligibility Solution: Suction through the talk line to remove secretions from above the cuff.

Troubleshooting with a talking trach Problem: Inability to get adequate voicing Solution: May be due to inadequate airflow. Air flow meter may vary between 5-15 L/minute. Try increasing the airflow by 1 L/min at a time. Problem: Excessive coughing Solution: Airflow may be too high. Try reducing the airflow by 1 L/min at a time. Also try intermittent application of air rather than constant airflow.

Troubleshooting with a talking trach Problem: Intermittent voice breaks Solution: Because of the design of talking trachs, patient position and trach position can interfere with uninterrupted phonation. Try different head postures and positions while sustaining phonation to find the best position. Problem: Pt complaints of throat irritation with prolonged use Solution: Turn air flow off when not in use to minimize air delivery.

Electrolarynx For patients on the vent who are unable to obtain restoration of laryngeal communication, an electrolarynx can be used to restore alaryngeal speech. Patients do best with oral adaptors Electrolarynx training for vent patients should mirror what is done for laryngectomy patients (i.e. focus on device placement, over- articulation, speaking rate).

Other non-oral oral options Communication boards Writing Assistive/augmentative communication devices

Ethical Considerations Quality of life issues (Markstrom Wittemer 2003) Markstrom et al 2002, Kaub- Family and caregivers involvement (Rossi Ferrario 2001) Coping with long-term tracheostomy or ventilation

Conclusions

Conclusions There are a number of communication options available for tracheotomized and ventilator dependent patients Successful rehabilitation depends upon a functional multidisciplinary approach The SLP s interventions can extend beyond basic communication restoration SLPs have the knowledge, passion, and communication skills to advocate for their patients