Improvement of the characterization factor for biotic-resource depletion of fisheries

Similar documents
Supplementary Figure 1. Model selection simulation results based on time-varying Graham-Schaefer models with stochastic random walk parameters.

U.S. Fisheries - Sustainable Seafood Laurel Bryant

Mercury Levels in Commercial Fish and Shellfish

The Science of Rebuilding Fisheries: State of Play and Current issues

Status of Stocks 2013

Groundfish Harvest Specifications and Management Measures. Tillamook August 6 Newport August 7 Brookings August 12 North Bend August 13

Status of Stocks 2017

Status of Stocks. Report on the Status of U.S. Fisheries for NOAA Fisheries

Exploited Fishery Resources

FILED 11/22/ :49 AM ARCHIVES DIVISION SECRETARY OF STATE

Proposal for biomass and fishing mortality limit reference points based on reductions in recruitment. Mark N. Maunder and Richard B.

Agenda Item F.9.a Supplement GMT Report 3 November 2017

STATUS OF THE SOUTH AFRICAN MARINE FISHERY RESOURCES 2014

Our Future Ocean Small scale fisheries and food security in a changing climate

WEST COAST FISHERIES AND MANAGEMENT

Ottawa: complete list of seafood samples

Oceana Study Reveals Seafood Fraud Nationwide

SUSTAINABLE SEAFOOD MATCHING

SUPPLEMENTARY INFORMATION

Toronto: complete list of seafood samples

Maximising net economic returns in mixed fisheries: how many species do we need to control?

COMMUNICATION FROM THE COMMISSION. Consultation on Fishing Opportunities for 2011

More and better research: a win for the fishermen and a win for the fish so why aren t Pew et al helping to provide it?

Informational Report 1 September Release Mortality Workshop SMART Tool Results

Comparison of EU and US Fishery management Systems Ernesto Penas Principal Adviser DG Mare

Magnuson Reauthorization Dec Fishery Management Councils

Andrew A. Rosenberg University of New Hampshire, USA

Harvest strategy policy and stock rebuilding for Commonwealth fisheries in Australia: Moving toward MEY. Peter Gooday

Fish samples collected in Ottawa, July 2017

The State of the Ocean and the impact of subsidies. Daniel Pauly Sea Around Us project Fisheries Centre, UBC

Fishery Stock Status Fishing Mortality

NOAA FISHERIES SERVICE. Habitat Assessment Prioritization

Paper prepared by the Secretariat

Estimating the carbon footprint of the Galician fishing sector (NW Spain)

Recommendations to the 25 th Regular Meeting of the International Commission for the Conservation of Atlantic Tunas (ICCAT)

Groundfish Operational Assessments 2017 Overview

Rebuilding International Fisheries The Examples of Swordfish in the North and South Atlantic

Tracing Seafood from Vessel to Plate: Avoiding a Bait and Switch. Beth Lowell December 12, 2013

Harvest Control Rules in a multispecies world: The Barents Sea and beyond. Daniel Howell IMR Bergen

Impact of Industrial Tuna Fisheries on Fish Stocks and the Ecosystem of the Pacific Ocean

California Current Forage Fishes (Ranked by Biomass of the Group)

TECHNICAL AND COMPLIANCE COMMITTEE Twelfth Regular Session September 2016 Pohnpei, Federated States of Micronesia

Sustainable Seas - Marine Fisheries Fisheries and Fishing

Why the International Community Needs to Help Create Marine Reserves

GROUNDFISH MANAGEMENT TEAM REPORT ON CONSIDERATION OF INSEASON ADJUSTMENTS, INCLUDING CARRYOVER. Annual Vessel Limit (15.4%)

SAC-08-10a Staff activities and research plans. 8 a Reunión del Comité Científico Asesor 8 th Meeting of the Scientific Advisory Committee

The Council adopts the 2019 and 2020 flatfish flexibility ABC reserves as shown in Table 7, attached.

Framework Adjustment 56. to the. Northeast Multispecies FMP

ICES Advisory Approach

US West Coast rockfish complex, Cabezon, Kelp Greenling

Magnuson-Stevens Act Provisions; Fisheries off West Coast States; Pacific Coast

Depletion-Based Stock Reduction Analysis (DB-SRA) for Starry Flounder (Platichthys stellatus) in U.S. Waters off California, Oregon and Washington

COMMISSION OF THE EUROPEAN COMMUNITIES COMMUNICATION FROM THE COMMISSION. Fishing Opportunities for 2009 Policy Statement from the European Commission

Barotrauma in Atlantic Coast Fisheries. Chip Collier March 2011

GROUNDFISH MANAGEMENT TEAM (GMT) REPORT ON CONSIDERATION OF INSEASON ADJUSTMENTS

California Fixed Gear and Recreational Fisheries Pedro Point (between San Francisco and Half Moon Bay)

Pacific Coast Groundfish Fishery Harvest Specifications and Management Measures

= new from the previous year = deleted from the previous year

canada s in-depth guide to Sustainable Seafood .org SeaChoice is a sustainable seafood program of the following four conservation groups:

Linkages between open and coastal ecosystems on the Pacific coast of North America

SCIENTIFIC COMMITTEE TWELFTH REGULAR SESSION. Bali, Indonesia 3-11 August 2016

October Net Loss: Overfishing Off the Pacific Coast

The U.S. West Coast Groundfish Bottom Trawl Survey

Arctic Fisheries: Present and future perspectives

The State of World Fishery

Delaware Division of Fish & Wildlife. Year 2005 Tidal Water Recreational Fishing Limits

Key Whitefish FIP Updates

Fishing mortality in relation to highest yield. Fishing mortality in relation to agreed target

A REVIEW AND EVALUATION OF NATURAL MORTALITY FOR THE ASSESSMENT AND MANAGEMENT OF YELLOWFIN TUNA IN THE EASTERN PACIFIC OCEAN

US West Coast rockfish complex, Cabezon, Kelp Greenling

ICES advises that when the MSY approach is applied, catches in 2019 should be no more than tonnes.

FLORIDA FISH AND WILDLIFE CONSERVATION COMMISSION 1 MARINE FISHERIES INFORMATION SYSTEM 12:43 Friday, November 7, 2008

Plaice (Pleuronectes platessa) in Division 7.e (western English Channel)

Marine Recreational Information Program Transition to Improved Survey Designs

I. What is a Fishery? II. What is Fisheries Management? III. What is Fisheries Science? I. Brief history of the evolution of fisheries science.

Fresh, All Natural& Sustainable. January 2015

2016 : STATUS SUMMARY FOR SPECIES OF TUNA AND TUNA-LIKE SPECIES UNDER THE IOTC MANDATE, AS WELL AS OTHER SPECIES IMPACTED BY IOTC FISHERIES.

Undulate ray (Raja undulata) in divisions 8.a b (northern and central Bay of Biscay)

Undulate ray (Raja undulata) in divisions 7.d e (English Channel)

COMMUNICATION FROM THE COMMISSION. on the State of Play of the Common Fisheries Policy and Consultation on the Fishing Opportunities for 2018

WORKING GROUP ON STOCK ASSESSMENTS 5 TH MEETING DOCUMENT SAR-5-08 TARGET SIZE FOR THE TUNA FLEET IN THE EASTERN PACIFIC OCEAN

WESTERN MEDITERRANEAN

MEMORANDUM. PDT Recommendations for EFH Designations. Species Life Stage PDT Recommendations. American plaice Juveniles 3C American plaice Adults 3C

DRAFT MEMORANDUM DATE:

Evaluating the Accuracy of Trawl Logbook Estimates of Groundfish Discards

Time is running out for bluefin tuna, sharks and other great pelagic fish. Oceana Recommendations for the ICCAT Commission meeting November 2008

Southern bluefin tuna >6.4kg Bigeye tuna >3.2kg Yellowfin tuna >3.2kg Swordfish >119cm LJFL / >18kg dressed Marlins >210cm LJFL

Towards a mixed demersal fisheries management plan in the Irish Sea. (ICES subdivisions VIIa): framework and objectives

Sustaining the Great Salt Lake Brine Shrimp Resource

Categories of fish. 1. Demersal: live on or near the ocean floor (cod, halibut, flounder, hake, shrimp, and shelfish)

New England Fishery Management Council MEMORANDUM

REVIEW OF SIZE LIMITS FOR FINFISH IN WESTERN AUSTRALIA

Fish Stock Status. 10 th November 2016 Seafish Common Language Group Friend s House, Euston Road, London NW1 2BJ

EU request to ICES on in-year advice on haddock (Melanogrammus aeglefinus) in Division 7.a (Irish Sea)

White anglerfish (Lophius piscatorius) in divisions 8.c and 9.a (Cantabrian Sea and Atlantic Iberian waters)

Advice June 2012

GROUNDFISH MANAGEMENT TEAM REPORT ON CONSIDERATION OF INSEASON ADJUSTMENTS FOR 2010 PART 1

87% 49% North Western Waters Status and Potential Productivity of Fish Stocks. Summary. Only 10 stocks are in line with the Common Fisheries Policy.

85% 57% Towards the recovery of European Fisheries. Healthy stocks produce more fish. of European fish stocks are below healthy levels

ENSO: El Niño Southern Oscillation

Transcription:

Improvement of the characterization factor for biotic-resource depletion of fisheries Arnaud Hélias, 2, 3,*, Juliette Langlois, 2, 3, Pierre Fréon 3, 4 Montpellier SupAgro, 2 Place Viala, Montpellier, F-34060, France 2 INRA, UR050, Laboratoire de Biotechnologie de l Environnement, Avenue des Etangs, Narbonne, F-00, France 3 ELSA, Research group for environmental life cycle sustainability assessment, 2 place Pierre Viala, Montpellier, F-34060, France 4 IRD EME UMR22, Av. J. Monnet, F-34203, Sète, France * Corresponding author. E-mail: arnaud.helias@supagro.inra.fr ABSTRACT Langlois et al. (202; 204a) proposed characterization factors (CF) for fish biotic resource extraction impact assessment at the species level. This paper is an improvement of this approach. In the present work, the CF depends on the Maximum Sustainability Yield (MSY), weighted by the ratio of the current total fishing effort to the fishing effort at the MSY value. Because this ratio often cannot be computed from current databases, it is here obtained from the ratio of total catches to MSY and roots of the parabola linking catches to fishing effort. The new version of the CF is proposed for 25 fish stocks. This work allows assessment of fisheries in the LCA formalism. It contributes to a better representation of the depletion of biotic resources. Keywords: Biotic resource depletion, Fisheries, Maximum sustainable yield, Characterization factor. Introduction Food production is a major sector for environmental burden due to increase of foodstuff demand and food production intensification. The sea is more and more exploited for human food, and environmental assessment approaches have to take into account this use. Seafood products, coming from direct fishery activities or from aquaculture, where a part of the feeding comes from fish catches, induce a large consumption of biotic resources for human activities. An environmental assessment of these systems by Life Cycle Assessment (LCA) cannot be performed without a focus on this impact. Langlois et al. (204b) review the use of the sea in LCA and propose related impact pathways dedicated to the biodiversity damage potential, the ecosystem services damage potential, climate change, and the biotic resource damage potential. Recently, Emanuelsson et al. (204) proposed new characterization factors (CFs) for fish resource depletion based on the lost potential yield (LPY). The LPY represents the average of lost catches owing to ongoing overfishing and is assessed by simplified biomass projections covering different fishing mortality scenarios. This useful approach provides CFs for 3 European fish species, but several parameters are needed: CFs are computed from () current biomass and fish mortality, and (2) target biomass and target fish mortality to Maximum Sustainability Yield (MSY). The biotic resource damage potential is studied in Langlois et al. (202; 204a) for fishing activities at both species, for a given stock, and ecosystem levels. Proposed CF values have been used by Avadí et al. (204). For the species level, CFs are built based on MSY and catches to deal with the biotic resource states. The present work is an improvement of CF determination at the species level. 2. Methods 2.. Maximum Sustainability Yield. The relation between catches and fishing effort is commonly modelled by a parabola, where the MSY is equal to the catches at the inflexion point (see Figure ). Fish stocks are classically assessed with MSY: the highest fish catch that can be sustained in the long term (Graham 935; Schaefer 99). Fishery exploitation of a given stock at time t (C t ) can be increased up to a maximum level by increasing the fishing effort (E t ), because the catches are compensated by an equivalent fish production. Above the MSY and its corresponding E MSY, renewal of the resource (reproduction and body growth) cannot keep pace with the removal caused by fishing and natural mortality. The MSY can be estimated either with a variety of stock-assessment methods or empirically. The most useful database for this is the RAM Legacy Stock Assessment Database (Ricard et al. 202). 533

C t MSY overexploited stock (too rapid increase in E t ) exploited stock overexploited stock (too rapid increase in E t & E t > E MSY ) overexploited stock (E t > E MSY ) 0 E MSY E t Figure. Fish catch (C t ) as a function of fishing effort (E t ) at the steady state 2.2. Characterization factors previously proposed In Langlois et al. (202; 204a), CFs are computed as follows CF = { MSY MSY = MSY C t C t if exploited elseif Eq. where C t represents mean fish catches over five years prior to impact assessment to approximate the equilibrium value (if average catches are higher than the MSY due to non-equilibrium situation, C t is set equal to MSY). For an exploited stock, CF allows to place landings in front of renewability of the stock. When the stock is overexploited, the ratio of MSY to C t is added. The ratio varies from to infinity for catch rates ranging from MSY to zero (i.e. when the stock is overexploited close to MSY or when it is severely depleted, respectively). The ratio allows introducing the seriousness of the overexploitation based on catches only, which are common data (unfortunately, fishing efforts are often unavailable data). See Langlois et al. (204a) for the determination of the stock status (i.e. overexploited or not). 2.3. Improvement of the characterization factors In the present work, to determine the CF, MSY is changed in accordance with the ratio the extent of exploitation or overexploitation. Let the relation presented in Figure be E t E MSY, which describes C t = a E t 2 + a 2 E t Eq. 2 The derivative is the following: dc t = 2a de E t + a 2 t Eq. 3 dc t = 0 = 2a de E MSY + a 2 t E t =E MSY Eq. 4 With (2) and (4), we have C t = a E t 2 + 2a E MSY E t Eq. 5 534

2 MSY = a E MSY + 2a E MSY E MSY Eq. 6 E t C t = ( E t ) 2 + 2 Eq. 7 MSY E MSY E MSY The polynomial (7) allows finding the ratio of fishing effort to fishing effort for the MSY as a function of the ratio of catches to MSY. The roots are the following: r = + C t, r MSY 2 = C t MSY and are used in the CF to weigh MSY Eq. 8 CF = { MSY(+ C t MSY ) MSY( C t MSY ) if exploited elseif Eq. 9 This weight varies theoretically from 2 (unexploited resource) to 0 (totally depleted resource) and introduces a relative position for the stocks according to the fishing effort only with catches and MSY values. 3. Results The RAM Legacy database includes biological reference points for over 36 stocks, of which 38 have MSY values and 33 have catches data. The number of stocks with both values is 25. Table gives CF values for overexploited (55) and exploited (70) stocks, where both catches and MSY are available in the RAM legacy database. Figure 2, left part, shows the CF weight factors according to the relative finishing effort both for previous ( for exploited, MSY C t for overexploited stock) and current CFs ( ± C t ). Figure 2, right part, shows the MSY total biotic resource depletion impacts (i.e. C t MSY) for both previous and current work. Table. Characterization factors (CF) for biotic-resource depletion at the species-stocks level in the RAM Legacy database. Overexploited Exploited Stock ID Common name CF (kg -.y) Stock ID Common name CF (kg -.y) ACADREDGOMGB Acadian redfish 2.76 0-09 ALBASPAC Albacore tuna.48 0 - ALBANATL Albacore tuna 4.80 0 - ARFLOUNDPCOAST Arrowtooth flounder.00 0-0 AMPL5YZ American Plaice 9.77 0-0 ARGANCHONARG Argentine anchoita.20 0-2 ANCHOVYKILKACS Anchovy kilka 4.87 0-0 ARGANCHOSARG Argentine anchoita.73 0-2 ARGHAKENARG Argentine hake 2.09 0 - ATOOTHFISHRS Antarctic toothfish 2.32 0-0 ARGHAKESARG Argentine hake 3.60 0-2 AUSSALMONNZ Australian salmon.98 0-0 ATBTUNAEATL Atlantic bluefin tuna 2.03 0 - BGROCKPCOAST Blackgill rockfish 2.80 0-09 ATBTUNAWATL Atlantic bluefin tuna 8.03 0-0 BHEADSHARATL Bonnethead shark 8.79 0-3 ATHAL5YZ Atlantic Halibut 3.63 0-08 BIGEYEIO Bigeye tuna 8.99 0-2 BIGEYEATL Bigeye tuna.53 0 - BIGEYEWPO Bigeye tuna.55 0 - BLACKOREOWECR Black oreo 7.95 0-0 BLACKROCKNPCOAST Black rockfish 8.05 0-0 BLUEROCKCAL Blue rockfish 5.8 0-09 BLACKROCKSPCOAST Black rockfish 6. 0-0 BOCACCSPCOAST Bocaccio 2.59 0-08 BLUEFISHATLC Bluefish 4.55 0 - BSBASSMATLC Black sea bass 4.88 0-0 BTIPSHARATL Blacktip shark 3.36 0 - BUTTERGOMCHATT Atlantic butterfish 8.2 0-08 BTIPSHARGM Blacktip shark 2.07 0 - CABEZSCAL Cabezon 7.54 0-08 CABEZNCAL Cabezon 5.43 0-09 CODGB Atlantic cod 3.87 0-0 CHAKESA Shallow-water cape hake 6.37 0-2 CODGOM Atlantic cod 5.8 0-0 CHILISPCOAST Chilipepper 2.36 0-0 CROCKPCOAST Canary rockfish 3.83 0-08 CMACKPCOAST Pacific chub mackerel 2.65 0 - DEEPCHAKESA Deep-water cape hake 9.38 0-2 DSOLEPCOAST Dover sole 3.50 0 - DKROCKPCOAST Darkblotched rockfish.59 0-08 ESOLEPCOAST English sole.28 0-0 GAGGM Gag 4.46 0-0 FLSOLEBSAI Flathead sole 4.27 0-2 GRAMBERGM Greater amberjack.03 0-09 GEMFISHNZ common gemfish 3.86 0-0 535

Overexploited Exploited Stock ID Common name CF (kg -.y) Stock ID Common name CF (kg -.y) HAD5Y Haddock 7.35 0-0 GOPHERSPCOAST Gopher rockfish 9.90 0-09 KMACKGM King Mackerel 3.9 0-0 HADGB Haddock.69 0 - NZSNAPNZ8 New Zealand snapper 6.48 0-0 HERRNWATLC Herring 3.4 0-2 POLL5YZ Pollock.94 0-0 KELPGREENLINGORECOAST Kelp greenling 7.98 0-09 POPERCHPCOAST Pacific ocean perch.54 0-08 KINGKLIPSA Kingklip 7.57 0-2 PTOOTHFISHMI Patagonian toothfish 5.42 0-09 KMACKSATLC King Mackerel 3.88 0-0 RGROUPGM Red grouper 2.86 0-0 LNOSESKAPCOAST Longnose skate 5.35 0-0 RPORGYSATLC Red porgy 3.20 0-08 LSTHORNHPCOAST Longspine thornyhead.56 0-0 RSNAPEGM Red snapper.08 0-09 MACKGOMCHATT Mackerel 7.85 0-2 RSNAPWGM Red snapper 8.77 0-0 MONKGOMNGB Monkfish 2.86 0-0 SBARSHARATL Sandbar shark 2.9 0-08 NRSOLEEBSAI Northern rock sole.72 0-2 SNOWGROUPSATLC Snowy grouper 7.04 0-09 NZLINGLIN3-4 Ling 5.89 0 - SPANMACKSATLC Spanish mackerel 7.27 0-0 NZLINGLIN5-6 Ling 2.75 0 - STMARLINSWPO Striped marlin 6.56 0-0 NZLINGLIN6b Ling 7.00 0-0 STRIPEDBASSGOMCHATT Striped bass 9.89 0 - NZLINGLIN72 Ling.4 0-09 SWORDMED Swordfish 8.24 0 - NZLINGLIN7WC Ling 9.32 0 - SWORDNATL Swordfish.6 0-0 OROUGHYNZMEC Orange roughy 2.37 0-0 TAUTOGRI Tautog 7.44 0-09 PATGRENADIERSARG Patagonian grenadier 7.57 0-2 TILESATLC Tilefish 6.55 0-09 PHAKEPCOAST Pacific hake.32 0-2 VSNAPSATLC Vermilion snapper 3.83 0-09 POPERCHGA Pacific ocean perch 3. 0 - WHAKEGBGOM White hake 4.87 0-0 PSOLENPCOAST Petrale sole 3.90 0-0 Windowpane.79 0-09 PSOLESPCOAST Petrale sole 4.06 0-0 WINDOWSNEMATL Windowpane 3.63 0-09 PTOOTHFISHPEI Patagonian toothfish 2.43 0-0 WINFLOUN5Z Winter Flounder 8.03 0-0 REDFISHSPP3LN Redfish species 2.07 0 - WINFLOUNSNEMATL Winter Flounder 9.25 0-0 SABLEFEBSAIGA Sablefish 3.73 0 - WITFLOUN5Y Witch Flounder 4.25 0-0 SABLEFPCOAST Sablefish.6 0-0 WPOLLEBS Walleye pollock.02 0-2 SBWHITACIR Southern blue whiting 5.9 0 - WPOLLGA Walleye pollock 2.80 0 - SKJCWPAC Skipjack tuna 6.43 0-3 YELLCCODGOM Yellowtail flounder.49 0-09 SKJEATL Skipjack tuna 2.63 0-2 YELLGB Yellowtail flounder 4. 0-0 SKJWATL Skipjack tuna 9.9 0-2 YELLSNEMATL Yellowtail Flounder 4.7 0-09 SMOOTHOREOCR Smooth oreo.95 0-0 YEYEROCKPCOAST Yelloweye rockfish.48 0-07 SMOOTHOREOWECR Smooth oreo 2.93 0-0 SNOSESHARATL Atlantic sharpnose shark 3.94 0-3 SOUTHHAKECR Southern hake 2.07 0-0 SOUTHHAKESA Southern hake 9.87 0 - SSTHORNHPCOAST Shortspine thornyhead 3.32 0-0 STFLOUNNPCOAST Starry flounder 6.20 0-0 STFLOUNSPCOAST Starry flounder.3 0-09 SWORDSATL Swordfish 4.8 0 - TREVALLYTRE7 Trevally 4.6 0-0 VSNAPGM Vermilion snapper.63 0-0 WPOLLNSO Walleye pollock 3.29 0-3 YELL3LNO Yellowtail Flounder 3. 0 - YFINATL Yellowfin tuna 6.07 0-2 YFINCWPAC Yellowfin tuna 2.50 0-2 YTROCKNPCOAST Yellowtail rockfish.22 0-0 YTSNAPSATLC Yellowtail snapper 4.35 0-0 536

2 00.5 log 0 (weight factor) 0 C t CF 0.5 0. 0 0 0.5.5 2 0 0.5.5 2 E t E MSY E t E MSY Figure 2. Weight factors (left part) and total impact (right part) according to relative fishing effort. White circle: approach proposed in Langlois et al. (204a); black triangle: this study. 4. Discussion This work is an improvement of the previous CF calculations in two respects: The CF value increases now continuously according to the total fishing effort for exploited species. The CF for a species where the current total catches is close to the MSY (i.e. close to overexploitation) is now higher than the CF for a species where catches are low, as it is shown in Figure 2, left part, when the relative fishing effort is lower than. The total impact (total catches by CF) increases continuously from low exploited species to depleted resources, whereas in the previous equations, the total impact was identical for all overexploited species (Figure 2, right part, when the relative fishing effort exceeds ). As already expressed in Langlois et al. (204a), the use of MSY and steady state assumption present some limitations. The transition periods for a given stock are not properly taken into account, being it the result of a drastic increase in effort leading to overexploitation, or to a fast decrease in effort, resulting from the implementation of a low quota aimed at the rapid restoration of the stock biomass. In order to limit this inconvenient and to approximate the equilibrium state, a five-year catches average has been used. 5. Conclusion While many impacts are now consensual in LCA and standard frameworks are starting to be available (JRC- EIS 20), no guidelines exist for biotic impact assessment (Emanuelsson et al. 204). This work proposes CFs at midpoint level for fishing activities, where the use of the biotic resource is taken into account in front of the resource recovery capacity (expressed by the MSY). This work allows assessment of fisheries in the LCA formalism. It contributes to a better representation of the depletion of biotic resources. 6. Acknowledgments This work benefited from the support of the French National Research Agency (WinSeaFuel ANR-09-BIOE- 05). J. Langlois, P. Fréon and A. Hélias are members of the ELSA research group (Environmental Life Cycle and Sustainability Assessment, http:// www.elsa-lca.org); they thank all the members of ELSA for their precious advice. 537

7. References Avadí A, Fréon P, Quispe I (204) Environmental assessment of Peruvian anchoveta food products: is less refined better? Int J Life Cycle Assess. doi: 0.007/s367-04-0737-y Emanuelsson A, Ziegler F, Pihl L, et al. (204) Accounting for overfishing in life cycle assessment: new impact categories for biotic resource use. Int J Life Cycle Assess. doi: 0.007/s367-03-0684-z Graham M (935) Modern Theory of Exploiting a Fishery, and Application to North Sea Trawling. ICES J Mar Sci 0:264 274. doi: 0.093/icesjms/0.3.264 JRC-EIS (20) International Reference Life Cycle Data System (ILCD) Handbook: Recommendations for Life Cycle Impact Assessment in the European context EUR 2457 EN - 20, First Edit. Eur Comm 59. doi: 0.278/33030 Langlois J, Fréon P, Delgenès J, et al. (202) Biotic resources extraction impact assessment in LCA of fisheries. 8th Int. Conf. Life Cycle Assess. Agri-Food Sect. (LCA Food 202),. INRA, Rennes, France, Saint Malo, France, pp 57 522 Langlois J, Fréon P, Delgenes J-P, et al. (204a) New methods for impact assessment of biotic-resource depletion in LCA of fisheries: theory and application. J Clean Prod. doi: 0.06/j.jclepro.204.0.087 Langlois J, Fréon P, Steyer J-P, et al. (204b) Sea-use impact category in life cycle assessment: state of the art and perspectives. Int J Life Cycle Assess. doi: 0.007/s367-04-0700-y Ricard D, Minto C, Jensen OP, Baum JK (202) Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish 3:380 398. doi: 0./j.467-2979.20.00435.x Schaefer M (99) Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Bull Math Biol 53:253 279. doi: 0.06/S0092-8240(05)80049-7 538

This paper is from: Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector 8-0 October 204 - San Francisco Rita Schenck and Douglas Huizenga, Editors American Center for Life Cycle Assessment

The full proceedings document can be found here: http://lcacenter.org/lcafood204/proceedings/lca_food_204_proceedings.pdf It should be cited as: Schenck, R., Huizenga, D. (Eds.), 204. Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 204), 8-0 October 204, San Francisco, USA. ACLCA, Vashon, WA, USA. Questions and comments can be addressed to: staff@lcacenter.org ISBN: 978-0-988245-7-6