ACCURATE PRESSURE MEASUREMENT FOR STEAM TURBINE PERFORMANCE TESTING

Similar documents
Steam Turbine Performance Measurement. Pressure Measurement

BAROMETER PRESSURE STANDARD PRESSURE CONTROLLER

AC : MEASUREMENT OF HYDROGEN IN HELIUM FLOW

The M-Series Eletta Flow Meter High accuracy DP Flow Meter with multiple functions

Differential Pressure Transmiter

L 100. Bubble-Tube Level System. Installation, Operation and Maintenance Instructions

The HumiSys. RH Generator. Operation. Applications. Designed, built, and supported by InstruQuest Inc.

7250 Sys. Ruska Multi-Range Pressure Calibration System. GE Sensing & Inspection Technologies. Features. Applications

Lab 1c Isentropic Blow-down Process and Discharge Coefficient

Application Note AN-107

Multiphase MixMeter. MixMeter specification. System Specification. Introduction

Series 7250 Ruska High-Speed Digital Pressure Controller. GE Sensing. Features

DF-550E PROCESS ANALYSERS APPLICATIONS FEATURES

Exercise 2-2. Second-Order Interacting Processes EXERCISE OBJECTIVE DISCUSSION OUTLINE. The actual setup DISCUSSION

Constant Pressure Inlet (CCN) Operator Manual

Selecting the right pressure sensor for your application

PPC4E Pressure Controller/Calibrator Superior rangeability and reliability

Appendix D: SOP of INNOVA 1412 Photoacoustic Multi-Gas Monitor. Description and Principle of Operation

COMPARISON OF DIFFERENTIAL PRESSURE SENSING TECHNOLOGIES IN HOSPITAL ISOLATION ROOMS AND OTHER CRITICAL ENVIRONMENT APPLICATIONS

Pneumatic high-pressure controller Model CPC7000

Series Ruska Digital Pressure Indicator. GE Sensing & Inspection Technologies. Features

Micro Motion 3098 Gas Specific Gravity Meter

800 Series Mass Flow Meters and Controllers. High Performance Mass Flow Meters and Controllers

HumiSys HF High Flow RH Generator

Precision level sensing with low-pressure module MS

BAPI Pressure Line of Products - FAQs

Electronic gas volume corrector model DGVC-04

HIGH ACCURACY MULTI-GAS MONITORING USING AUTOMATED SELF- CALIBRATION

Features. Main Voltage: Vdc. Input Control Signal: 0-5 Vdc or 4-20 madc (Sourcing) Monitor Output Voltage: 0-5 Vdc or 4-20 madc (Sourcing)

Model GFC 7000T CO 2 Analyzer (Addendum to GFC 7000TA Manual, PN 07272)

Additel 780 Series Pressure Controller

AC : ACCURATE CRYOCHAMBER FOR A SMALL LABORATORY WITH SMALL BUDGET

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

Model EXAxt AV550G. Averaging Oxygen Analyzer

ONSITE PROVING OF GAS METERS. Daniel J. Rudroff WFMS Inc West Bellfort Sugar Land, Texas. Introduction

COMPAFLOW. Compressed Air. Volumetric flow. Gas. Mass flow. Steam. Net volumetric flow. Liquid

2600T Series Pressure Transmitter Models 264DC Differential and 264HC Gage Level Transmitters. Kent-Taylor

Cover Page for Lab Report Group Portion. Pump Performance

Additel 761 Automated Pressure Calibrators Selection Guide

GP1 & GP2. Electropneumatic Regulators FOR PRESSURE CONTROL TO 1,000 PSI

AUTOMATIC HOSE TEST UNIT, TYPE SPU

High-performance submersible pressure transmitter For level measurement Model LH-10

Additel 780 Series Pressure Controller

MEGAS 2.0. Gas analysis with direct C-Level Calculation and Bus-Connection. Data sheet

Continuous Gas Analysis In situ laser gas analyzers TÜV and MCERTS add-on for LDS 6 operating instructions Compact Operating Instructions

Intelligent SUNTEX DC-5310(RS) Dissolved Oxygen Transmitter

IDL01. Battery Powered Precision Digital Gauge for Leak Testing. Stainless Steel Sensor. class 0.05

Long term stability tests of INO RPC prototypes

Pneumatic high-pressure controller Model CPC7000

Ron Gibson, Senior Engineer Gary McCargar, Senior Engineer ONEOK Partners

Compiled by: B Beard. Approved by: SH Carstens. Description of requirements and procedures for compact provers to be used as verification standards.

1 Overview. Pressure Measurement Single-range transmitters for general applications. 1/22 Siemens FI US Edition

3.0 Pressure Transmitter Selection

Additel 761 Automated Pressure Calibrators

Pressure is our Business

USING THE CS400/CS405 (KPSI SERIES 169/173) SUBMERSIBLE PRESSURE TRANSDUCER WITH CAMPBELL SCIENTIFIC DATALOGGERS INSTRUCTION MANUAL

NT High-temperature flowmeter model Simultaneous flow and pressure outputs for high-temperature applications

OSAT Series. Intrinsically Safe Infrared Temperature Sensor Operator's Guide

Exercise 5-2. Bubblers EXERCISE OBJECTIVE DISCUSSION OUTLINE. Bubblers DISCUSSION. Learn to measure the level in a vessel using a bubbler.

Basic Nitriding Sampling System Hydrogen Analyzer with Calculated % DA, % NH 3, and K N Values. Operations Manual

Plasma. Argon Production Helium Liquefaction Truck Loading Pure Gas Bottling

The Discussion of this exercise covers the following points:

EPR High Precision 3000 psi Electronic Pressure Controller Accurate to 0.25% of full scale

LPG DRIVER ATTENDED TRANSPORT LOADING

Air Bubbler Depth Gauge DG2200 Installation and Reference Manual

better measurement Simply a question of SCHMIDT Flow Sensor SS The cost-effective alternative in pressurised systems up to 10 bars.

The HumiPyc ( Model 2) - Gas Pycnometer; Density, Moisture, Permeation Analyzer; Filter Integrity Tester; RH sensor Calibrator

Flow metering in gases Introduction to COMBIMASS family

Brooks TMF-Zone 1 Models 5816-Ex/5864-Ex

1 Overview. Pressure Measurement Single-range transmitters for general applications. 1/22 Siemens FI

P-5215 Differential Pressure Transmitter

Additel 761 Automated Pressure Calibrators Selection Guide

Laboratory Hardware. Custom Gas Chromatography Solutions WASSON - ECE INSTRUMENTATION. Custom solutions for your analytical needs.

DPC-30 DPC-100. Reference Manual

Additel 761 Automated Pressure Calibrators

INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE

Pressure Measurements

Gas Measurement Fundamentals Certification. Curriculum

Specifications and information are subject to change without notice. Up-to-date address information is available on our website.

Pneumatic High-Speed Pressure Controller Model CPC3000

SX150A. Features. Typical Applications. Description

Laboratory Hardware. Custom Gas Chromatography Solutions WASSON - ECE INSTRUMENTATION. Engineered Solutions, Guaranteed Results.

Using Modbus Protocol with the ALTUS Net Oil Computer. Instruction Manual

High-performance submersible pressure transmitter For level measurement Model LH-10

Precision Liquid Settlement Array Manual

Technical Explanation

THE PRESSURE SIGNAL CALIBRATION TECHNOLOGY OF THE COMPREHENSIVE TEST

Pressure Measurement Single-range transmitters for general applications

Micro Motion 7812 Fiscal Gas Density Meter

TechTalk. Purging for Delayed Coking. Understanding purging system design in heavy-fouling applications. Outline

628 Differential Pressure Decay Leak Tester

A versatile gas mixing system for blending LPG and air that is SAFE, RELIABLE, and EASY TO USE

ERZ 2000-NG Flow Computer

How to specify a product. Process Sensors and Mechanical Instruments

Title: Standard Operating Procedure for Dasibi Model 5008 Gas Dilution Calibrator

The HumiPyc - Model 1 - Gas Pycnometer; Density, Moisture, Permeation Analyzer; RH sensor Calibrator

Autocalibration Systems For In Situ Oxygen Analyzers

Hot extractive multi-channel gas analyser for continuous process and emissions monitoring.

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION

PRELIMINARY DATASHEET

Transcription:

ACCURATE PRESSURE MEASUREMENT FOR STEAM TURBINE PERFORMANCE TESTING Blair Chalpin Charles A. Matthews Mechanical Design Engineer Product Support Manager Scanivalve Corp Scanivalve Corp Liberty Lake, WA 99019 Liberty Lake, WA 99019 KEYWORDS Intelligent Pressure Scanner, Safety Purge, Ethernet Communication, Steam Turbine Performance Optimization ABSTRACT Accurate pressure measurement is vital to the understanding of steam turbine efficiency, reliability, and service condition. This paper describes a safety purge system that isolates and protects inexpensive PC based pressure sensors from steam pressure media while providing high accuracy, serviceability, and automation. Programmable pneumatic configurations sequentially isolate the pressure sensors from the measurement source, purge the scanner lines, and purge the test article pressure input lines of any accumulated condensate with no affect on the properties of the turbine during a test. CURRENT METHODS Typically, steam turbine measurement applications use individual all-media pressure sensors designed for harsh and corrosive applications. With the all-media approach, differential readings are achieved with either, two sensors measuring and mathematically comparing pressures, or by using large, expensive all media differential sensors. Using two sensors for one differential measurement may result in a reduced accuracy, as well as doubling the instrumentation costs when compared to a single differential sensor. All media sensors, which may weight up to 29 lbs (1.3 kg) are designed for a permanent installation. They must be removed and sent to a calibration lab for calibration, which for a system measuring 128 inputs, could require up to 40 hours to complete. Sensors calibrated in a laboratory environment may experience significant zero and span shift errors when subjected to the high ambient temperatures near steam turbines. Measurements that are good at the beginning of a test may deteriorate as the test progresses due to head pressures formed as trapped air leaves the pressure media and forms air pockets in the system tubing. The permanent installation prevents measurement validations during a test.

A SAFETY PURGE MEASUREMENT SYSTEM A new method using intelligent electronic pressure scanners, incorporating relatively inexpensive piezoresistive sensors, has been developed to measure pressures in steam turbines. These sensors normally could not be used to measure liquid or high temperature steam media pressures. However, this system has a safety purge feature that isolates the sensors from the harsh media without affecting the accuracy of the pressure measurement. Two separate purge paths are used in the safety purge system, one within the scanner equipment rack, and one at the input lines from the turbine. The first purge path, referred to as cabinet purge, uses a valve in the pressure scanner to purge input lines to atmosphere. The second purge path, referred to as turbine purge, uses a remote purge valve located near the system measurement connection to the steam turbine to purge those lines to a drain. PNEUMATIC PRESSURE SCANNERS WITH SAFETY PURGE The safety purge system modules contain 16 thermally compensated individual differential pressure sensors. The sensors are coupled to a pneumatically piloted valve allowing in situ pressure calibrations, isolation, and line purge. Standard modules connect the reference side of the sensors to a common reference, typically local atmospheric pressure. True differential measurements may be manufactured by adding pneumatic valves to the reference side of the sensors. Full scale accuracy of 0.05% is achieved by pressure-temperature characterization of each sensor with 9 pressure points at 10 temperatures from 0 C to 69 C. The calibration temperatures used are module operating temperatures as the sensors are isolated from the high temperature steam. These modules also have line reference capabilities. In high-line, low differential testing, pressures higher than the normal sensor value are introduced to both sides of the sensor diaphragm. Accuracy is maximized when the differential measurement is distributed over the full range of the pressure sensor. When equal high pressures are introduced to both sides of the sensor diaphragm, the differential reading is not zero. The sensor housing does not have a balanced construction and due to its greater surface area, the reference side of the sensing diaphragm experiences greater forces than the positive measurement side. After re-calibrating the zero point at this elevated pressure only slight span errors exist when applying known differential pressures. Supporting results of this can be found in the Reference 3. A typical pressure sensor is shown in figure 1. Figure 1 Sensor

SYSTEM INSTALLATION AND OPERATION In all cases, steam from the test article will migrate through the measurement lines to the scanning module even though there is no flow. Condensate forms and collects inside of the tube due to ambient temperature differences. If water enters the measurement system, head pressure errors will result. If water reaches the sensor level, sensor die and wire bond corrosion will occur, resulting in sensor failures. To prevent problems, the system must be installed as shown in Figure 2. The safety purge cabinet should be located 4 to 6 feet (1.2 to 1.8 meters) above the measurement points. The measurement system should be mounted 6 feet (1.8 meters) or more above the safety purge system. A customer supplied purge air source capable of providing purge pressures 20% greater than the maximum test pressure is required. The purge pressure may be dry air, or Nitrogen. If air is used, it must conform to the ISA-S7.3 Instrument Air Quality Standard. The purge pressure will move any condensate that might form in the pressure input lines back to the turbine. Purge pressure levels greater than this can paint the inner walls of the tubing with a fine layer of micro droplets which can reform into large drops. Purge flow meters may be installed in each line to monitor purge flow and adjust final purge pressures to the steam turbine. The system uses clear Teflon tubing from the safety purge cabinet to the measurement cabinet. Periodic visual checks of this tubing must be performed to insure that condensate has not formed in the measurement lines. Figure 2 Recommended System Installation

PURGE FLOW REQUIREMENTS Purge flow requirements may vary with the test requirements. Purge flow will be determined by the number of pressure points, the maximum pressure to be measured, the capacity of the purge pressure source, and the test article backpressure. SYSTEM VALVE CONFIGURATIONS The system operates in the following configurations: De-energized Mode All purge air is removed. The input lines to the sensors are disconnected in the pressure module valves. This mode should only be used when the steam turbine is not operating. Dormant Mode: Measurement lines are closed and the system is put in a safe mode. This mode is used to conserve the purge pressure source while the turbine is being allowed to stabilize prior to data collection. Purge Mode: All lines are purged. Purge pressure is used to prevent moisture from making contact with the sensors. If electrical power is lost, the system will default to this mode. Measurement Mode: Measurement lines are connected to the pressure scanners. This mode is used for short periods of time when data is to be collected. If control pressures are lost, the system will default to this mode. DE-ENERGIZED MODE This valve configuration is shown in Figure 3. In this mode, all valves in the safety purge cabinet and the measurement cabinet are vented. No purge pressure is applied. The internal valve in the pressure scanner is set to the calibrate mode which connects the input line to the module calibration manifold. This mode must not be used during tests, or whenever the steam turbine is operating. Figure 3 De-Energized Mode

DORMANT MODE This valve configuration is shown in Figure 4. In this mode, Valves 2 and 3 are energized, placing the system in the safe mode. The pressure inputs are isolated in the safety purge cabinet. The connection from the safety purge cabinet to the measurement cabinet is connected to a drain line. The sensors are isolated from the input lines. The input lines are connected to the pressure scanner calibration manifold. PURGE MODE Figure 4 Dormant Mode This valve configuration is shown in Figure 5. The purge supply to the safety purge cabinet has been energized. Valve 1 has been energized directing purge air to the steam turbine. The measurement cabinet valves 4 and 5 have also been energized, directing purge air to the input lines forcing any condensate out the drain line. The sensors are still isolated. This mode should be used at all times during a test unless pressures are to be measured. The system must be in the purge mode for a minimum of 10 minutes prior to a test. Figure 5 Purge Mode

MEASUREMENT MODE This valve configuration is shown in Figure 6. The purge air supply has been deenergized. Valves 1 through 7 are set to vent. The pressure input lines are connected to the sensors. Empirical testing has shown a purge time to measurement time ratio of 2:1 is required for the best accuracy. Figure 6 Measurement Mode MEASUREMENT SYSTEM The measurement system may be comprised of one or more pressure scanner enclosures, and a calibrator enclosure. Each pressure scanner enclosures can accept up to 8 pressures scanners for a total of 128 pressure input channels. Each enclosure is a mini-data system, containing a processor, RAM, a hard disk drive, and 16 bit A/Ds. The pressure scanners have a Transducer Electronic Datasheet (TEDS) chip installed which will identify each module to the enclosure. Calibration data for all system pressure scanners are stored on the hard disk drive. At power-up, or when commanded, the enclosure reads the TEDS chip data from each of the scanners and maps the calibration coefficients into RAM. When a data scan is initiated, the enclosure scans the input channels, converts the voltage outputs from each sensor to an A/D count value. The A/D count values are converted to engineering units and written to the hard disk or transmitted to a Host computer. This system communicates with a Host or Plant Computer via Ethernet TCP/IP. All data are transmitted in a choice of formats. Pressure data may be converted to one of 23 preprogrammed engineering units. Data may be output in Binary or ASCII formats. All of these setup parameters may be configured by the user. A typical 128 channel pressure measurement system consisting of 8 pressure scanners in an enclosure is shown in Figure 7. Calibrator enclosures are not shown in this view.

Figure 7-128 Channel Pressure Measurement System CALIBRATION AND VALIDATION A key function of this system is its ability to perform a full system calibration or validate individual sensors on demand and in-situ. The system includes secondary standard pressure calibrators that are controlled by the system software. This feature allows a user to perform a calibration/validation while the system is monitoring the steam turbine. The calibration/validation process requires only a few minutes for each pressure range. PORTABILITY The system does not have to be permanently installed at a turbine. System cabinets can be made portable so that the system could be used to test several turbines at a power plant. Turbines could be monitored more frequently thus improving overall plant efficiency. CONCLUSIONS Although the system shown in this paper is a fixed installation, portable systems are in use. Portable systems operate in the same manner as a fixed installation. Portable systems allow a user to test steam turbines in remote locations. This method of steam turbine pressure measurement has been proven at six installations world wide with more systems on order. This system has a lower overall cost per channel when compared to a system using individual all media sensors for each pressure input. Individual all media sensors cost approximately $1000 per channel including signal conditioning, but not the cost of calibrations. This system will cost approximately $500 to $600 per channel including pressure calibrators. Calibration is simplified from individual sensors. Each pressure range may be calibrated in situ, simultaneously, and on demand as required during a test.

Increased Turbine Efficiency lowers cost of operation. This system allows more frequent tests to improve efficiency. The safety purge cabinet ensures that the pressure measurement system is protected from harsh media. Ethernet Communications a system may be monitored from any PC or plant network connection. AKNOWLEDGEMENT The author wishes to acknowledge all the individuals who assisted with input and data for this paper. REFERENCES 1. Greener, Derek, Intelligent Pressure Measurement for TurboMachinery Applications, 1996, ASME paper 2. Matthews, Charles, Intelligent Pressure Measurement in Multiple Sensor Arrays, Proceedings, 41 st International Instrumentation Symposium, 1995 3. Chalpin, Blair and Labanei, Raef, High-Line, Low Differential Pressure Measurement and Calibration During Turbine Testing, Proceedings, 40 th International Instrumentation Symposium, 1994 4. Chalpin, Blair, Methods and Apparatus for Precise Measurement of Differential Pressures, 1994, U.S. Patent #08/280,780