STABILITY OF WAVE-DISSIPATING CONCRETE BLOCKS OF DEACHED BREAKWATERS AGAINST TSUNAMI

Similar documents
ESTIMATION OF TSUNAMI FORCE ACTING ON THE BLOCK ARMORED BREAKWATER DUE TO SOLITON FISSION

WAVE LOAD ACTING ON HORIZONTAL PLATE DUE TO BORE

LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS

STUDY ON TSUNAMI PROPAGATION INTO RIVERS

REBUILDING COMPOSITE BREAKWATERS FOLLOWING THE 2011 TOHOKU TSUNAMI: LESSONS LEARNT AND DOES IT MAKE SENSE TO REINFORCE?

LABORATORY EXPERIMENTS FOR WAVE RUN-UP ON THE TETRAPOD ARMOURED RUBBLE MOUND STRUCTURE WITH A STEEP FRONT SLOPE

Numerical Simulations and Experiments on Tsunami for the Design of Coastal and Offshore Structures

Wave Breaking and Wave Setup of Artificial Reef with Inclined Crown Keisuke Murakami 1 and Daisuke Maki 2

A New Generator for Tsunami Wave Generation

Yasuyuki Hirose 1. Abstract

LABORATORY STUDY ON TSUNAMI REDUCTION EFFECT OF TEIZAN CANAL

LABORATORY EXPERIMENTS ON EROSION CONTROL PERFORMANCE OF AN L- SHAPED PERMEABLE STRUCTURE. Abstract

Tsunami Force Reduction due to Obstacle in Front of Coastal Dike and Evaluation of Collision Force by Driftage

Wave Force on Coastal Dike due to Tsunami

The Failure of the Kamaishi Tsunami Protection Breakwater

Evaluation of Tsunami Fluid Force Acting on a Bridge Deck Subjected to Breaker Bores

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN

Experimental study of tsunami wave load acting on storage tank in coastal area

New Reinforcing Technique for Mitigation of Earthquake-induced Failure of Breakwater

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL

CHAPTER 135. Influence of the core configuration on the stability of berm breakwaters. Nikolay Lissev 1 AlfT0rum 2

Wave Setup at River and Inlet Entrances Due to an Extreme Event

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology -

DAMAGE TO OIL STORAGE TANKS DUE TO TSUNAMI OF THE MW OFF THE PACIFIC COAST OF TOHOKU, JAPAN

BEACH EROSION COUNTERMEASURE USING NEW ARTIFICIAL REEF BLOCKS

Experimental and numerical investigation on wave interaction with submerged breakwater

Effect of sea-dykes on tsunami run-up. Tainan Hydraulics Laboratory National Cheng-Kung University Tainan TAIWAN.

LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709

Understanding the Tsunami Wave

FORMATION OF BREAKING BORES IN FUKUSHIMA PREFECTURE DUE TO THE 2011 TOHOKU TSUNAMI. Shinji Sato 1 and Shohei Ohkuma 2

STABILITY OF BREAKWATER ARMOUR UNITS AGAINST TSUNAMI ATTACK

WAVE PRESSURE DISTRIBUTION ON PERMEABLE VERTICAL WALLS

EXPERIMENTAL RESEARCH ON COEFFICIENT OF WAVE TRANSMISSION THROUGH IMMERSED VERTICAL BARRIER OF OPEN-TYPE BREAKWATER

Australian Journal of Basic and Applied Sciences

SPH applied to coastal engineering problems

STABILITY OF BREAKWATER ARMOUR UNITS AGAINST TSUNAMI ATTACK

EVALUATION OF TSUNAMI FLUID FORCE ACTING ON THE BRIDGE DECK

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS

RESEARCH ON STABILITY OF OPENING SECTION AT BAYMOUTH BREAKWATER Junichiro SAKUNAKA 1 and Taro ARIKAWA 2

DESIGN OPTIMIZATION FOR A PASSIVE MESH SCREEN WAVE ABSORBER FOR THE CCOB

WAVE OVERTOPPING AND RUBBLE MOUND STABILITY UNDER COMBINED LOADING OF WAVES AND CURRENT

MECHANISM AND COUNTERMEASURES OF WAVE OVERTOPPING FOR LONG-PERIOD SWELL IN COMPLEX BATHYMETRY. Hiroaki Kashima 1 and Katsuya Hirayama 1

IMAGE-BASED FIELD OBSERVATION OF INFRAGRAVITY WAVES ALONG THE SWASH ZONE. Yoshimitsu Tajima 1

CHAPTER 132. Roundhead Stability of Berm Breakwaters

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET

DAMAGE TO STORAGE TANKS CAUSED BY THE 2011 TOHOKU EARTHQUAKE AND TSUNAMI AND PROPOSAL FOR STRUCTURAL ASSESSMENT METHOD FOR CYLINDRICAL STORAGE TANKS

The 2011Tsunami Damage on Coastal Facilities and Countermeasures (both hard and soft) for Future Tsunamis

PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING. Akihiko Kimura 1 and Taro Kakinuma 2

PHYSICAL AND NUMERICAL MODELLING OF WAVE FIELD IN FRONT OF THE CONTAINER TERMINAL PEAR - PORT OF RIJEKA (ADRIATIC SEA)

MODEL EXPERIMENT AND FIELD TEST OF PW-OWC TYPE WAVE POWER EXTRACTING BREAKWATER

Stability of Cubipod Armoured Roundheads in Short Crested Waves Burcharth, Hans Falk; Andersen, Thomas Lykke; Medina, Josep R.

Shoreline Evolution Due to Oblique Waves in Presence of Submerged Breakwaters. Nima Zakeri (Corresponding Author), Mojtaba Tajziehchi

WAVE OVERTOPPING OF RUBBLE MOUND BREAKWATERS

TSUNAMI WAVE LOADING ON A BRIDGE DECK WITH PERFORATIONS

CHAPTER 83. DESIGN OF A DETACHED BREAKWATER SYSTEM by Osarau Toyoshima Director, Sea Coast Division, River Bureau, Ministry of Construction, JAPAN

ALTERNATIVES FOR COASTAL STORM DAMAGE MITIGATION AND FUNCTIONAL DESIGN OF COASTAL STRUCTURES

Wave Induced Flow around Submerged Sloping Plates

Costa de Benalmadena Malaga PART III COASTAL STRUCTURES. Playa D'Aro Gerona, costa Brava

NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents

PHYSICAL MODELING FOR MEASURING THE EFFECTIVENESS OF SINGLE CURTAIN PILE FOUNDATION BREAKWATER IN INTERMEDIATE WATER DEPTH

Deep-water orbital waves

A New Strategy for Harbor Planning and Design

International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN:

The Eighteenth (2008) International Offshore and Polar Engineering Conference Vancouver, Canada, July 6 11, 2008

MONITORING SEDIMENT TRANSPORT PROCESSES AT MANAVGAT RIVER MOUTH, ANTALYA TURKEY

WIND WAVES REFLECTIONS - A CASE STUDY

COMPARISON OF ROCK SEAWALL AND DUNE FOR STORM DAMAGE REDUCTION

ALTERNATIVES FOR COASTAL STORM DAMAGE MITIGATION

CROSS-SHORE SEDIMENT PROCESSES

Large scale wave run-up tests on a rubble mound breakwater

Low-crested offshore breakwaters: a functional tool for beach management

COLLAPSE MECHANISM OF SEAWALLS BY IMPULSIVE LOAD DUE TO THE MARCH 11 TSUNAMI

TRANSPORT OF NEARSHORE DREDGE MATERIAL BERMS

Update: UNSW s Research Program for Extreme Waves on Fringing Reefs. Matt Blacka,Kristen Splinter, Ron Cox

OECS Regional Engineering Workshop September 29 October 3, 2014

Technical Note AN EMPIRICAL. METHOD FOR DESIGN OF BREAKWATERS AS SHORE PROTECTION STRUCTURES

International Journal of Civil Engineering and Technology (IJCIET), ISSN (Print), INTERNATIONAL JOURNAL OF CIVIL ENGINEERING

Aalborg Universitet. Published in: Proceedings of Offshore Wind 2007 Conference & Exhibition. Publication date: 2007

Osaka University Graduate School of Engineering Division of Global Architecture Dept. of Naval Architecture and Ocean Engineering Takuya Okubayashi,

BILLY BISHOP TORONTO CITY AIRPORT PRELIMINARY RUNWAY DESIGN COASTAL ENGINEERING STUDY

Vertical Distribution of Wave Overtopping for Design of Multi Level Overtopping Based Wave Energy Converters Kofoed, Jens Peter

Effect of channel slope on flow characteristics of undular hydraulic jumps

PhD student, January 2010-December 2013

Waves. Types of Waves. Parts of a wave. Insert wind_wave.wmv. Shark attack

Technical Brief - Wave Uprush Analysis Island Harbour Club, Gananoque, Ontario

A NUMERICAL STUDY ON THE EFFECT OF BEACH NOURISHMENT ON WAVE OVERTOPPING IN SHALLOW FORESHORES

CHAPTER 68. RANDOM BREAKING WAVES HORIZONTAL SEABED 2 HANS PETER RIEDEl. & ANTHONY PAUL BYRNE

WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION

A comparison between existing tsunami load guidance and large-scale experiments with long-waves.

Using sea bed roughness as a wave energy dissipater

Bahman Esfandiar Jahromi 1*, Faridah Jaffar Sidek 2

Shoaling and Breaking of Solitary Waves on Slopes

Wave Transmission on Submerged Rubble Mound Breakwater Using L-Blocks

STRUCTURAL STABILITY OF CUBE AND ROCK-ARMOURED SUBMERGED BREAKWATERS FOR BEACH PROTECTION

Doctor of Philosophy in Civil Engineering K.SREENIVASA REDDY. Dr.M.G. MUNI REDDY, M.Tech., Ph.D

Waves Part II. non-dispersive (C g =C)

Morphological change on Cua Dai Beach, Vietnam: Part I image analysis

WATERWAYS AND HARBORS DIVISION Proceedings of the American Society of Civil Engineers. EQUILIBRIUM FLOW AREAS OF INLETS ON SANDY COASTS a

PHYSICAL EXPERIMENTS ON THE HYDRODYNAMIC RESPONSE OF SUBMERGED FLOATING TUNNEL AGAINST THE WAVE ACTION

HARBOUR SEDIMENTATION - COMPARISON WITH MODEL

Transcription:

STABILITY OF WAVE-DISSIPATING CONCRETE BLOCKS OF DEACHED BREAKWATERS AGAINST TSUNAMI Minoru Hanzawa 1, Akira Matsumoto and Hitoshi Tanaka 3 In Japan, detached breakwaters made with wave dissipating concrete blocks such as Tetrapods have been widely applied, but the effectiveness of such kinds of detached breakwaters on tsunami disaster prevention and stability of the structure have not been discussed in detail. Only few studies on wave run-up reduction were done after Nihonkai Chubu Earthquake Tsunami in 1983. In order to mitigate tsunami disasters in sea coast areas, the effectiveness of detached breakwaters and the stability of wave-dissipating concrete blocks should be properly evaluated. Authors has just studied on the effectiveness of detached breakwater on wave run-up reduction and wave pressure reduction on the seawall taking actually possible damage to detached breakwaters into account (Hanzawa et al., 11). In this particular study, the hydraulic model tests have been systematically and carefully carried out to discuss the stability of wave-dissipating blocks of detached breakwater against solitary tsunami waves. Tetrapods of rear side of the breakwater tends to be damaged like land slide. The damage by tsunami is bigger than that by ordinary wind waves. A countermeasure for improving the stability is also proposed based on the damage process of detached breakwater. Keywords: Coastal Structures, Wave-dissipating Concrete Block, Tsunami INTRODUCTION In recent years, the risk of occurrence of tsunamis generated by near shore earthquakes, such as, Tokai, Tonankai, Nankai and off-miyagi had been considered to be higher and higher than before, as well as off shore tsunamis traveling long distances, e.g., the 1 Chilean tsunami. And actually on March, 11th, 11 the huge, devastating tsunami generated by the 11 off the Pacific coast of Tohoku Earthquake attacked and damaged the huge area mainly in the east coast of Tohoku and Kanto in Japan. Although the concentrated efforts for recovery and rebuilding damaged coastal structures has been made since soon after the event had occurred, the prospect of completion of recovery is still invisible at the time of this paper is written. The tsunami forces on vertical walls, such as seawalls, has already been studied in detail, e.g., Asakura et al.(), Kato et al.(), Mizutani and Imamura(). Detached breakwaters are widely applied in front of seawalls especially in Japan. As for the effectiveness of detached breakwaters, only few studies on wave run-up reduction were done by eg., Uda et al.(198) after Nihonkai Chubu Earthquake Tsunami in 1983, and Nakamura et al.(1998). The effects of reduction of wave pressure on the seawall behind detached breakwaters have not been studied. In the event of the Indian ocean tsunami in, it was suggested that the detached breakwater surrounding Male island in the Maldives protected the island from inundation by the tsunami (Fujima et al., ). However, the phenomena was not utilized to formulate a design method. In order to mitigate tsunami disasters in sea coast areas, the effectiveness of detached breakwaters should be properly estimated and consideration of the stability of concrete blocks against tsunami is inevitable. In this context, authors already has just studied on the effectiveness of detached breakwater on wave run-up reduction and wave pressure reduction on the seawall taking actually possible damage to detached breakwaters into account (Hanzawa et al., 11). In this particular study, hydraulic model tests have been systematically and carefully carried out using solitary tsunami waves to evaluate the stability of wave-dissipating concrete blocks of detached breakwater following our previous study above. The counter measures to improve the stability of the concrete blocks against tsunamis proposed. In addition to the stability, the performance of detached breakwaters for wave run-up reduction taking actually possible concrete block movements into account to supplement the results obtained by the former study above. 1 Fudo Tetra Corp., 7- Koamicho, Chuo-ku, Tokyo, 13-1, Japan. Fudo Tetra Corp., -7 Higashi Nakanuki, Tsuchiura, 3-, Japan. 3 Tohoku University, -- Aoba, Sendai, 98-8579, Japan. 1

COASTAL ENGINEERING 1 HYDRAULIC MODEL TESTS Wave Flume Setup Figure 1 shows the wave flume setup. The wave flume is 3m long,.5m wide and 1.m deep. It is equipped with a piston type wave generator. The slope of 1/5 begins at x=3.75m and ends at x=.5m. The slope of 1/3 begins at x=.5m and ends at x=13.5m. The flat bed is constructed from x=13.5m to 1.75m followed by a 1/ slope. Totally 13 wave gauges were installed from x=.5m to 1.5m (St.1 to 13) for water surface monitoring as shown in Figure 1. However, wave gauge at No.9 was not allocated at the time of actual stability test with detached breakwater. 1. 1) h = 3cm, h 1 = 3cm, ) h = cm, h 1 = cm.8. Wave Maker Wave Height Gauges(St.1~13) St.1 3 5 7 8 9 1 11 1 13.5m z(m). h 1 1/.. h 3.75m.5m Detached 1/3 Breakwater 1/5 13.5m 1.75m - -1 1 3 5 7 8 9 1 11 1 13 1 15 1 17 18 19 x(m) Figure 1. Wave flume setup. Detached Breakwater Figure shows the cross section of the detached breakwater constructed in the flume for the test case with an off-shore water depth h =3cm and water depth at the detached breakwater h=9.7cm. The center of the detached breakwater is set at x=11.5m (St.9). The detached breakwater is made using wave-dissipating concrete blocks of Tetrapods of 59g. The crown width of the detached breakwater is equivalent to 3 rows of Tetrapod units. The crown height is set with a clearance of hc=cm above the sea water level which is set based on Japanese typical manner of.5h above sea water level, where H=8cm is calculated based on the Hudson formula (Hudson, 1959) with KD=8.3 for 59g Tetrapods above. z (m).5. SWL.3m 1:/3.97m.13m.m 1:/3.3 1.75 11. 11.5 11.5 11.75 x (m) Figure. Cross section of detached breakwater (water depth at D.B.: h=9.7cm).

COASTAL ENGINEERING 1 3 Damage Expression The damage of wave-dissipating concrete blocks has been conventionally expressed by D(%), percentage of the number of damaged blocks against the total number of blocks. However, in our study, this method of count of damaged blocks is considered to be difficult, because a heavier damage should be analyzed for the situation of a tsunami disaster. Therefore, the damage parameter S proposed by van der Meer(1987) is used in our study. S is calculated as Ae/Dn (Ae: eroded area of cross section, Dn=V 1/3, V: volume of Tetrapod unit). Figure 3 shows the definition of damage based on this van der Meer method. Figure shows the measuring points to calculate the cross-sectional change of the detached breakwater. S.W.L A( Ae : 侵食部の面積 Eroded Area ) S=Ae/Dn Dn=V 1/3 (V: volume) Figure 3. Definition of Damage of Detached Breakwaters. 1cm 5cm 8cm 8cm 5cm 8cm 8cm 8cm 5cm : Dummy Figure. Measruing Points of Cross-Sectional Change. Test Cases Table 1 shows the hydraulic model test cases. Case A and B are the test cases with water depth at the detached breakwater h=9.7cm (off-shore water depth at wave generator h =3cm) and h=.7cm (h=cm), respectively. In our study the crest heights of hc=8.cm and 1.cm were also tested in addition to the base case with hc=cm in order to analyze the influence of crest height on the stability of wave-dissipating concrete blocks. And Tetrapod masses of 98.g and 15.g were also tested in addition to the base case of 58.9g in order to verify the effect of mass increase on stability of wavedissipating concrete blocks. In our study, solitary waves are generated for the stability tests as the one of the tsunami wave condition as the first step of the research on the stability of the wave-dissipating concrete blocks against tsunamis. The offshore wave height in front of the wave paddle at St.1 in Figure 1 was 1cm to 9cm and the wave height at the breakwater St.9 was up to about 15cm. The detached breakwater was reconstructed after every wave generation and cross-sectional change measurement as explained in the previous section.

COASTAL ENGINEERING 1 Table 1. Hydraulic Model Test Cases. Case Water Depth at D.B. h (cm) Crest Hight hc (cm) A-1-1 A-1-. A-1-3 A--1 A-- A--3 A-3-1 A-3- A-3-3 B-1-1 9.7.7 8. 1.. Mass of TP M (g) 58.9 98. 15. 58.9 98. 15. 58.9 98. 15. 58.9 TESTS RESULTS AND DISCUSSIONS Cross Sectional Change Figure 5 shows examples of stability test result as change of cross section of detached breakwater before and after tsunami wave attack for the test case with water depth at the detached breakwater h=.7cm. In the figures ηmax is the incident wave height at St.9 measured under the condition without breakwater. S is the damage parameter (=Ae/Dn, Ae: eroded area of cross section, Dn:=V 1/3 : V is volume of Tertapod) proposed by van der Meer (1987) and D is the percentage of damaged blocks against total number of blocks as explained before. As shown in the figures, the part of rear slope of the detached breakwater is damaged. ηmax, S and D of figures (a) and (b) are.9cm, 1.7,.1% and 11.cm, 3.7, 19.7% respectively. As for Case (a) KD is calculated as.1 with the damage of D=.1%. On the other hand, 1% damage is expected with ordinary wind wave height as KD=8.3. This means that the damage by tsunami is bigger compared with ordinary wind wave. Wave-dissipating concrete blocks are usually relocated unit by unit when damaged by ordinary wind waves. And the damaged sections are the shoulders of front/rear slopes and the crest. On the other hand, as for the tsunami waves, detached breakwater tends to be damaged mainly around the rear slope and just after water surface reaches highest level resulting in relocation of Tetrapods like land slide. This manner of damage is very important to be discussed later from the view point of the flow field to give hints for improvement of the stability of wave-dissipating concrete blocks of detached breakwater against tsunamis. Figure shows the test results as relation between ηmax and S for the cases with water depth at detached breakwater h=9.7cm. The abscissa is normalized by the nominal size of Tetrapod Dn. Figures (a), (b) and (c) correspond to the cases with crown heights hc=, 8 and 1cm. Each figure shows the results for the base case with Tetrapod of mass of 58.9g comparing with those for additional cases with 98.g and 15.g. As shown in the figure, the heavier the mass, the smaller the damage as naturally expected and the linear tendency of relation between S and ηmax / Dn can be observed. The effect of bigger crown height on the Tetrapod stability can be also observed. However, the mass increase is considered to have more effective than crown height.

COASTAL ENGINEERING 1 5 Figure 7 and 8 show the comparison of the test results from the test cases with water depth at the breakwater h=9.7cm and.7cm. The mass of Tetrapod and the crown height are M=58.9g and hc=cm respectively for both cases. The abscissa of Figure 7 is ηmax /Dn as same as Figure. It can be seen that the smaller the depth, the bigger the damage. It is considered that if the tsunami height is the same, the inflow water volume can be the same level resulting higher velocity in the shallow case to cause bigger damage to the detached breakwater. In Figure 8, the abscissa is ηmax /h. The data cloud of Figure 8 is considered smaller compare with that of Figure 7. From these results, it is implied that the velocity increase and damage of detached breakwater can be possibly expressed by this parameter of ηmax /h. z(cm) 8 - - - -8-1 S=1.7 (D=.1%, KD=.) h=.7cm, M=58.9g, hc=cm Rank 5 ηmax=.9cm before wave after wave difference sea bed -1 1 3 5 x(cm) (a) ηmax =.9cm z(cm) 8 - - - -8-1 S=3.7 (D=5.7%, KD=19.7) h=.7cm, M=58.9g, hc=cm Rank 8 ηmax=11.cm before wave after wave difference sea bed -1 1 3 5 x(cm) (b) η max =11.cm Figure 5. Examples of cross sectional change before and after tsunami wave attack

COASTAL ENGINEERING 1 S=Ae/Dn 7 5 3 1 h=9.7cm, M=58.9g, hc=cm h=9.7cm, M=98.g, hc=cm h=9.7cm, M=15g, hc=cm. 1.. 3.. 5.. ηmax/dn (a) hc=cm 7 5 h=9.7cm, M=58.9g, hc=8cm h=9.7cm, M=98.g, hc=8cm h=9.7cm, M=15g, hc=8cm S=Ae/Dn 3 1. 1.. 3.. 5.. ηmax/dn (b) hc=8cm 7 5 h=9.7cm, M=58.9g, hc=1cm h=9.7cm, M=98.g, hc=1cm h=9.7cm, M=15g, hc=1cm S=Ae/Dn 3 1. 1.. 3.. 5.. ηmax/dn (c) hc=1cm Figure. Relation between ηmax and S (h=9.7cm).

COASTAL ENGINEERING 1 7 S=Ae/Dn 7 5 3 1 h=9.7cm, M=58.9g, hc=cm h=.7cm, M=58.9g, hc=cm. 1.. 3.. 5.. ηmax/dn Figurer 7. Relation between ηmax /Dn and S. S=Ae/Dn 7 5 3 h=9.7cm, M=58.9g, hc=cm h=.7cm, M=58.9g, hc=cm 1..5 1. 1.5. ηmax/h Figurer 8. Relation between ηmax /h and S. Analysis of Flow Field by CADMAS-SURF In this section, the flow field in and around the detached breakwater is analyzed by using numerical simulation. CADMAS-SURF (Isobe et., al., 1998, ), one of the VOF method (Hurt, 1981) was used. The flow fields under the conditions of the solitary tsunami wave are simulated. Figure 9 (a) shows the time series of the water surface change calculated at the center of the detached breakwater. Figure 9 (b), (c) and (d) show the velocity vectors in and around the detached breakwater at the time when the water level at the center of detached breakwater is the maximum and. and. seconds after the peak time respectively. As shown in the figures, the very high downward velocity along the rear slope of the detached breakwater can be seen just after the water level reaches highest under the solitary tsunami wave. This specific condition of flow field is considered to clearly corresponds to the phenomena of movement of Tetrapods like land slide under the solitary tsunami wave.

8 COASTAL ENGINEERING 1 (b) (c) (d) 1 8 η(cm) -..5 7. 7.5 8. 8.5 9. 9.5 1. 1.5 11. t(s) (a) Time series of the water surface change at the center of the detached breakwater.5 m/s (b) t=tpeak (at water level peak) (c) t=tpeak+.s (d) t=tpeak+.s Figurer 9. Water velocity calculated by CADMAS-SURF.

COASTAL ENGINEERING 1 9 Improvement of Stability As discussed previously, detached breakwater made with wave-dissipating concrete blocks tends to be damaged by solitary tsunami wave like a land sliding. This phenomenon can be explained by the very high downward velocity along the slope of the detached breakwater calculated by CADMAS-SURF previously. Based on this phenomenon, an additional hydraulic model test was carried out to improve the stability of the detached breakwater. In this test case, the first row of Tetrapods of the rear side of the detached breakwater was fixed by a wire. Figure 1 (a) and (b) show the results of the test cases with and without the fixing the first row of the detached breakwater respectively. As shown in the figures, the stability of the detached breakwater can be drastically improved by the fixing the first row of rear side of the breakwater. As explained above, the first row of the breakwater was fixed by a wire in the test. As for the practical measure for fixing at site, many alternatives can be considered. For example, driving steel pipe piles or placing heavy flat type concrete blocks close to the first row of Tetrapods. However, further consideration shall be done such as wave force on to steel pipe piles, etc., in order to practically realize those ideas. z(cm) 8 - - - -8-1 -1 h=9.7cm, M=58.9g, hc=cm, Rank 1 ηmax=15.5cm before wave after wave difference sea bed -1 1 3 5 x(cm) (a) without improvement z(cm) 8 - - - -8-1 -1 h=9.7cm, hc=cm, M=58.9g, Rank 1 ηmax=15.1cm before wave after wave difference sea bed -1 1 3 5 x(cm) (b) with improvement by fixing the first row of rear side Figurer 1. Stability improvement.

1 COASTAL ENGINEERING 1 Reduction of Tsunami Wave Run-up The effect f detached breakwater to reduce the run-up was experimentally studied by authors (Hanzawa, et.al., 11) Wave-dissipating concrete blocks were fixed by nets to avoid displacement of blocks at the time of the wave run-up tests in the former study above. The damaged breakwater was simulated by using cross section of under water type. But, in reality, blocks might be damaged during receiving the wave. In this study additional hydraulic model tests were carried out to evaluate the effect on reduction of wave run-up taking the actually possible damage into account. Figure 11 shows the results of hydraulic model tests. The plots of,, are represent the test cases without detached breakwater, with full type breakwater and the underwater type respectively. The plots of are describe the cases with full type allowing block movement. Even if the blocks are moved, effect on run-up reduction is the same as the case without block movement. z (m).5. SWL.3m 1:/3.13m (Ordinary Type).m.97m 1:/3.3 1.75 11. 11.5 11.5 11.75 x (m) z (m).5. SWL.3m.37m 1:/3 1:/3.97m (Underwater Type).3 1.75 11. 11.5 11.5 11.75 x (m) R/H 5..5. 3.5 3..5. 1.5 1..5 Without D.B. With D.B. (Under Water Type with Net) With D.B. (Ordinary Type with Net) With D.B. (Ordinary Type without Net) h =3cm (h 1 =3cm)...5.1.15..5 H /h Figurer 11. Wave run-up reduction effect.

COASTAL ENGINEERING 1 11 CONCXLUSIONS In this study, hydraulic model tests have been systematically and carefully carried out using solitary tsunami waves to evaluate the stability of concrete blocks of detached breakwater. The main results from our study this time are summarized as follows: 1) Tetrapods at rear slope of detached breakwaters are mainly damaged by solitary tsunami waves rather than front side. ) Detached breakwater tends to be damaged after water surface reaches highest level resulting in relocation of Tetrapods like land slide. 3) Mass of Tetrapod calculated based on Hudson formula using design wind wave is not sufficient to be stable against same wave height of solitary tsunami wave. ) Shallow depth causes heavier damage to detached breakwater compared with that in deeper water if the wave height is the same. 5) Relative wave height to water depth at detached breakwater might possibly be parameter to formulate damage of breakwaters. ) The stability of detached breakwater can be drastically improved by fixing the first row of rear side of the breakwater. 7) Even if the blocks are moved, effect on run-up reduction is the same as the case without block movement. The stability of detached breakwater made with wave-dissipating concrete blocks against solitary tsunami waves were studied by systematic hydraulic model tests as the first step. Authors would like to continue this research by carrying out more hydraulic model tests to formulate the relation between the stability of the detached breakwater and the tsunami wave height. REFERENCES Asakura, R., Iwase K., Ikeya T., Takao M., Kaneto T., Fujii N. and Ohmori M.. The tsunami wave force acting on land structures, Proceedings of the 8 th International Conference on Coastal Engineering, ASCE, 1191-1. Fujima, K., Shigihara, Y., Tomita, T., Honda, K., Nobuoka, H., Hanzawa, M., Fujii, H., Ohtani, H., Orishimo, S., Tatsumi, M. and Koshimura, S.. Survey results of Indian Ocean Tsunami in the Maldives, Coastal Engineering Journal, Vol. 8, No., JSCE, 81-97. Hanzawa, H., Matsumoto, A. and Tanaka, H. 11. Experimental Research on Detached Breakwaters Effect on Tsunami Disaster Mitigation, Proceedings of Coastal Structures 11, ASCE (in printing) Hudson, R.Y. 1959. Laboratory Investigation of Rubble-mound Breakwater, Proceedings of ASCE, Vol.85, WW3, 93-11. Hirt, C. and B.D. Nichol. 1981. Volume of Fluid (VOF) Method for Dynamics of Boundaries, Journal of Computational Physics, Vol. 39, 1-5. Isobe, M., Y. Hanahara, Y. Xiping and S. Takahashi.. Numerical Simulation of Waves Overtopping a Breakwater, Proceedings of the 8 th International Conference on Coastal Engineering, ASCE, 73-85. Isobe, M., Y. Xiping,.Umemura and S. Takahashi. 1999. Study on Development of Numerical Wave Flume, Proceedings of Coastal Engineering, vol., JSCE, 3-. (in Japanese). Kato, F., Inagaki, S.and Fukuhama, M.. Wave Force on Coastal Dike due to Tsunami, Proceedings of the 3 th International Conference on Coastal Engineering, ASCE, 515-511. Mizutani, M and Imamura, F.. Hydraulic Experimental Study on Wave Force of a Bore Acting on Structure, Proceedings of Coastal Engineering, vol.7, JSCE, 9-95. (in Japanese)

1 COASTAL ENGINEERING 1 Nakamura, K., Sasaki, T. and Nakayama, A. 1998. Hydraulic Model Study on Reduction of Run-up of Tsunami by Coastal Structures, Proceedings of Civil Engineering in Ocean, vol.1, JSCE, 93-98. (in Japanese). Togashi, M., Hirayama, Y., Kawano, T. and Soda, Y. 198. On Scattering Mechanism of Concrete Blocks Due to Tsunami Run-up with Soliton Dispersion, Proceedings of Coastal Engineering, vol.33, JSCE, -7. (in Japanese). Togashi, M., Y. Hirayama, and M. Sugiyama. 1987. Damaging Mechanism of Precast Concrete Armour Unit Dikes Due to Tsunami Run-up with Soliton Dispersion, Proceedings of Coastal Engineering, vol.3, JSCE, 517-51. (in Japanese). Uda, T., Omata, A. and Yokoyama, Y. 198. Effect of Detached Breakwaters against Tsunami Run-up on the Beach, Proceedings of Coastal Engineering, vol.3, JSCE, 1-5. (in Japanese). van der Meer, J.W. 1987. Stability of breakwater armor layers-design formulae, Coastal Engineering, 11, 19-39.