Lab #21 - ORR: Resonance Tube

Similar documents
Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed : Wave Basics / Wave Properties

Waves and Sound. Honors Physics

Date Lab Time Name. Wave Motion

Questions. Background. Equipment. Activities LAB 3. WAVES

This requires a medium!

Waves and Sound. (Chapter 25-26)

Waves. Please get out a sheet of paper for notes.

WAVES. Pulses are disturbances or a single wave motion. A continuous production of pulses will give rise to a progressive wave (wave train).

Define transverse waves and longitudinal waves. Draw a simple diagram of each

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

Slide 1 / The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength Amplitude

Section 1 Types of Waves

Chs. 16 and 17 Mechanical Waves

What is a wave? A wave is a disturbance that transfers energy from place to place.

Chapter 17. Mechanical Waves and sound

Broughton High School

Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse

Similarly to elastic waves, sound and other propagated waves are graphically shown by the graph:

Chapter 17 Mechanical Waves

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another.

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School

Chapter 20 - Waves. A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another.

Wave a repeating disturbance or movement that transfers energy through matter or space

Period: Date: 1. A single disturbance that moves from point to point through a medium is called a. a. period b. periodic wave c. wavelength d.

Table of Contents. Chapter: Waves. Section 1: The Nature of Waves. Section 2: Wave Properties. Section 3: The Behavior of Waves

Waves. Unit 9 - Light & Sound

Characteristics of Waves

CHAPTER 16. Waves and Sound

CHAPTER 10 WAVES. Section 10.1 Types of Waves

Section 1: Types of Waves

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p

Slide 2 / 28 Wave Motion. A wave travels along its medium, but the individual particles just move up and down.

Name: Section: Date: Wave Review

Florida Benchmarks. SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials.

Mechanical Waves and Sound

This task should take you approximately 1 and a half hours.

Mechanical waves Electromagnetic waves

Chapter 12: Mechanical Waves and Sound

Physical Science 1 Chapter 6 WAVES. A wave is a disturbance that is propagated through a system. Waves transfer energy.

15815 Super Spring - Student

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

Waves and Sound Final Review

Section 4.2. Travelling Waves

CHAPTER 8: MECHANICAL WAVES TRANSMIT ENERGY IN A VARIETY OF WAYS

Cover Sheet-Block 6 Wave Properties

Chapter # 08 Waves. [WAVES] Chapter # 08

Parts of Longitudinal Waves A compression

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011

6 TH GRADE STUDYING HEAT, LIGHT, AND SOUND ENERGY WAVES

Waves Multiple Choice

Waves Wave Characteristics

Waves & Interference

The physicist's greatest tool is his wastebasket Albert Einstein

is shown in Fig. 5.1.

WAVES. Mr. Banks 8 th Grade Science

Chapter 14: Waves. What s disturbing you?

Properties of waves. Definition:

g L Agenda Chapter 13 Problem 28 Equations of Motion for SHM: What if we have friction or drag? Driven Oscillations; Resonance 4/30/14 k m f = 1 2π

SECTION 1 & 2 WAVES & MECHANICAL WAVES

Wave Review. Wave Characteristics: Label each of the following wave characteristics in the space below B A TROUGH PEAK

Chapter 20 Study Questions Name: Class:

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves

Sound waves... light waves... water waves...

Chapter 19: Vibrations And Waves

Topic 4.4 Wave Characteristics (2 hours)

Lecture 8. Sound Waves Superposition and Standing Waves

Types of Waves. Section Section 11.1

Harmonics and Sound Exam Review

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

Chapters 25: Waves. f = 1 T. v =!f. Text: Chapter 25 Think and Explain: 1-10 Think and Solve: 1-4

Harmonic Motion & Waves

LAB 10 Waves and Resonance

Units of Chapter 14. Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

PHYSICS. Waves & Simple Harmonic Motion

Longitudinal waves: Part 1

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes

How do waves interact with objects? How do waves behave when they move between two media? How do waves interact with other waves?

17.1: Mechanical Waves

Outline Chapter 7 Waves

2 Characteristics of Waves

NATURE AND PROPERTIES OF WAVES P.1

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying

Conceptual Physics. Chapter 25: Vibrations and Waves Mr. Miller

CHAPTER 14 VIBRATIONS & WAVES

Introduction to Waves

20.1 Waves. A wave is an oscillation that travels from one place to another. Because waves can change motion, they are a travelling form on energy.

Chapter 16 Waves and Sound

EXPERIMENT 6 THE SPEED OF SOUND USING THE RESONANCE OF LONGITUDINAL WAVES

Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Observing Waves, Their Properties, and Relationships

Physics Mechanics

3: PROPERTIES OF WAVES

Physics Waves & Sound

INTRODUCTION TO WAVES. Dr. Watchara Liewrian

Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move.

Waves, Light, and Sound

Not all waves require a medium to travel. Light from the sun travels through empty space.

(some) Types of Waves:

Transcription:

Chapter 21 Lab #21 - ORR: Resonance Tube Introduction The vertical resonance apparatus is a device for helping the Physics student understand the principle of waves and resonance. In particular the study of sound waves. Sound waves, light waves, radio or electromagnetic waves and even water waves all have similar characteristics. They all have a wave form and wave length. THey can be reflected and amplified. And they can all be measured and altered. There are two types of waves, transverse and longitudinal. A transverse wave is a wave that travels at right angles to the energy source that produced the wave. As an example, if you have a long rope laid out across the floor and you give one end a quick flip, you will see the wave traveling down the length of the rope. The force that propagated the wave was the up and down motion of your hand. This in turn caused the piece of rope and so on. This wave travels all the way down the rope, which is perpendicular to the force that started everything. (see Figure 21.1) Figure 21.1: 65

66 CHAPTER 21. LAB #21 - ORR: RESONANCE TUBE A longitudinal wave is a wave that travels parallel to the force that propagated it. A good example of this would be a long coiled spring, stretched out across the floor. If you were to squeez several coils of the spring together and then release them, you would note a wave traveling once again down the length of your medium. In this case the spring. But this time the wave is traveling parallel to the force that caused it. It would be wrong to say that the wave is traveling in the same direction because the wave once reaching the end of the spring, could return towards the source. (see Figure21.2) Figure 21.2: Before we actually perform an experiment to study waves it is necessary that you understand the different properties of a wave. In Fig. 21.3, you will see the different parts of an average wave. The amplitude of the wave is the height that the wave reaches before it begins to recede. In sound waves this would characterize the volume of the sound. In light it would be the intensity of the brightness. The frequency is the number of times the wave occurs within a given time. Usually within one second. This would relate to the pitch in sound waves and the colour in light waves. The wavelength is the actual distance between the crest or troughs of consecutive waves. This change can be measured in either meters or feet. The symbol for wavelength is λ. Figure 21.3:

67 Sound waves are caused by the air being vibrated longitudinally by some sort of oscillating source. This wave strikes our eardrum thus setting up vibrations in our eaar that are the same frequency and intensity. This allows us to distinguish betwen different pitches and volume. Humans can normally hear sounds that vibrate between 20 to 20,000 Hz (Hertz, which means cycles per second). The speed of sound at sea level and at a temperature of zero degrees centrigrade is 331.4 m/s (metres per second). The speed increases by about 0.61 m/s for every one degree of centigrade rise in temperature. The formula for this is v = 331.4 + 0.61T where v = speed of sound in air in metres per second and T = air temperature in Celsius. Resonance When waves travel through a medium they will quite often be reflected back toward their original source. If these reflected waves are in time (in phase) with the source of the vibration they will amplify the waves just like pushing a child in a swing. In the example of pushing a swing, when your pushes are in time with the person in the swing the person gets higher and higher with very little effort. Or at least it is a simple manner to keep the person swinging at a constant height with very little effort. If the waves are out of phase they will degrade or even cancel each other out. Again using our example of the swing, pushing forward on the swinging person as the person swings back toward you will stop the swing or worse send the person flying out of his seat. Instructions Figure 21.4:

68 CHAPTER 21. LAB #21 - ORR: RESONANCE TUBE Set up the unit as shown in Fig.21.4. Please note that the bottom of the resonance tube lies just slightly over the edge of the table. If you want to use the unit on the floor, place a book or board under the base so that the bottom of the tube can rest just below the base. The unit will work as just described but we suggest laying a book across the back of the base for added insurance against the unit tipping over. (Fig. 21.5) Figure 21.5: You will need a 512 Hz tuning fork as your sound source. This tuning fork is placed in the right angle clamp, just above the top of the resonance tube. (Fig. 21.6) Figure 21.6: Raise the can all the way to the top and tighten the clamp. Now pour the water into the can pausing periodically to allow the water to fill up the tube. You will need approximately 3/4 of a liter of water. You want to bring the water level up to about the 80 cm mark and have very little water left in the can. Now lower the can to a point where the top of the can rests at about the 35 cm mark. The water level should drop in the tube to about the 35 cm mark. Now you are going to strike the tuning fork with a mallet or something hard in order to set the tuning fork into vibration. Once the tuning fork is emanating a steady tone quickly slide the can upwards and clamp it at about the mid point of the rod.

69 Listen to the tone that is set up in the unit as the water in the tube rises. There will be a point where you will hear the volume dramatically increase and then begin to decrease again. Strike the fork again and lower the can, listening for the increase in volume again. Repeat this procedure until you can accurately pinpoint the level at which the tone is at its loudest. Mark this point on the glass tube with a marker. Next raise the can all the way to the top, tighten the clamp and strike the tuning fork again. As the level of the water climbs you are once again listening for a second point where the volume increases drastically. You may have to strike the tuning fork again if the sound completely falls off before the water reaches its highest point in the tube. Once again, once you hear the increased volume, move the column up and down while striking the tuning fork until you can pinpoint the second point. If everything has been done correctly you should have found the two points of increased volume somewhere near the 40 and 75 cm marks. Theory Figure 21.7: So what does this mean? Well taking a look at Fig. 21.7 you will see that the tuning fork arms are travelling parallel with the length of the tube. As the arm travels travels downward it pushes a column of air with it, sending a sound wave down into the tube. This wave will strike the surface of the water in the column and some of the wave will be absorbed but

70 CHAPTER 21. LAB #21 - ORR: RESONANCE TUBE some will be reflected back up toward the tuning fork. If the level of the water is in the wrong position the wave will strike the fork or another wave head-on, thus reducing or cancelling out the sound. If, on the other hand, the level is just right the wave will arrive at the tuning fork at the precise moment that it is traveling upward and will actually help to amplify the sound. Fig. 21.8 (remember the example of the swinging child). You should find two points on the tube that this will occur. Figure 21.8: Take a look at Fig. 21.9 to understand why there are two points of amplification. If the tube was long enough there can actually be many points where the sound would resonate. Figure 21.9: To determine the actual wavelength, take the length of the bottom mark on the tube as measured from the tuning fork and from this subtract the distance of the highest mark as measured from the tuning fork. Fig.21.10. Next multiply this by two to get the wavelength of this sound wave. Once you have the wavelength it is just a simple matter of calculating the actual frequency of the sound wave. Remember that the speed of sound through the air is determined by the temperature of the air. So you must first measure the temperature of the room in centigrade. next multiply the temperature by 0.61 (the increase of traveling sound for every one degree increase in air temperature.) This number is then added to the speed of sound constant of 331.4 m/s (the speed of sound at sea level and at one degree

71 centigrade). This total gives you the actual speed of sound in metres per second at the current room temperature. Example: v = 331.4 m/s, T = 24, X = 165mm, Y = 490mm Wavelength: 490-165=325 325 x 2 = 650 Speed of sound in m/s: 331.4 + (0.61 x 24) = 332.8 m/s Figure 21.10: Now you know that sound will be traveling this calculated distance in one second, and you know the length of the wave, so just divide the total distance that the sound will travel in one second by the wavelength to get the number of waves (cycles) in on second. This is the frequency of this tuning fork. Fig.21.11. Figure 21.11: Your figures should be close to 512 Hz. Example: (332.86 metres = 332,860 mm) 332,860/650 = 512 Hz