Experimental Investigation of Sprocket Tooth Form Effect on Dynamic Tension of Silent Chain

Similar documents
Center Distance Change of Silent Chain Drive Effect on Sprocket Tooth Profile Modification Wei Sun 1,a, Xiaolun Liu 1,b, Jiajun Liu 1 and Wei Zhang 1

CHAIN DRIVE Introduction Merits and demerits of chain drives Merits Demerits

Chain Drives. 1. As no slip takes place during chain drive, hence perfect velocity ratio is obtained

Faults Diagnosis and Design of the Sprockets for Dispenser in Ginning Industries

Finite Element Modal Analysis of Twin Ball Screw Driving Linear Guide Feed Unit Table

Vibration Analysis and Test of Backup Roll in Temper Mill

Chain Drives ELEMEN MESIN II

Experimental research on instability fault of high-speed aerostatic bearing-rotor system

Comparison of Wind Turbines Regarding their Energy Generation.

Chain Drives. Chain Drives 759 C H A P T E R

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b

Instrumentation & Data Acquisition Systems

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS

Acoustical Modeling of Reciprocating Compressors With Stepless Valve Unloaders

machine design, Vol.6(2014) No.3, ISSN pp

Dynamic Characteristics of the End-effector of a Drilling Robot for Aviation

TOPICS TO BE COVERED

Influencing Factors Study of the Variable Speed Scroll Compressor with EVI Technology

Air Compressor Control System for Energy Saving in Manufacturing Plant

CFD Analysis and Experimental Study on Impeller of Centrifugal Pump Alpeshkumar R Patel 1 Neeraj Dubey 2

Analysis of Pressure Rise During Internal Arc Faults in Switchgear

ICE PRESSURE MEASUREMENT UNDER FLOWING CONDITIONS ON HARBIN REACH OF SONGHUA RIVER

Installation, Alignment, and Tensioning of a Silent Chain Drive

Two-way Fluid Structure Interaction (FSI) Analysis on the Suction Valve Dynamics of a Hermetic Reciprocating Compressor

HiPerMax LuK tooth chain for transmissions Reliable Power Flow in the Drive Train

Wind turbine Varying blade length with wind speed

Friction properties of the face of a hand-held tennis racket

Numerical Simulation of Fluid-Structure Interaction in the Design Process for a New Axial Hydraulic Pump

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL

Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge

Roller Chain and Sprocket Troubleshooting Guide

Residual Stresses in Railway Axles

Sprocket Selection Guidelines

WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET

Structural Design and Analysis of the New Mobile Refuge Chamber

Offshore platforms survivability to underwater explosions: part I

* SYED KAREEMULLA, C CHANDRUDU, A.V. HARIBABU. USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

Tapered Roller Bearings in X-life quality Customer Information. Business Unit TRB Schweinfurt, 2013

Computational Analysis of Cavity Effect over Aircraft Wing

The Estimation Of Compressor Performance Using A Theoretical Analysis Of The Gas Flow Through the Muffler Combined With Valve Motion

OMS, OMT and OMV Orbital Motors. Technical Information

OMS Technical Information Technical data

The Study on the Influence of Gust Wind on Vehicle Stability Chen Wang a, Haibo Huang b*, Shaofang Xu c

Test Method of Trap Performance for Induced Siphonage

Application of pushover analysis in estimating seismic demands for large-span spatial structure

Vibration measurement method of the ship propulsion shafting

CFD Analysis of Giromill Type Vertical Axis Wind Turbine

Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel

Essential ski characteristics for cross-country skis performance

The Effect Analysis of Rudder between X-Form and Cross-Form

Development of TEU Type Mega Container Carrier

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1

TESTING AND ANALYZING ON P-V DIAGRAM OF CO 2 ROLLING PISTON EXPANDER

DEVELOPING YOUR PREVENTIVE MAINTENANCE PROGRAM

Numerical simulation on down-hole cone bit seals

Kazuhiko TOSHIMITSU 1, Hironori KIKUGAWA 2, Kohei SATO 3 and Takuya SATO 4. Introduction. Experimental Apparatus

SPECTRAL CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A SEPARATE TWIN-BOX DECK WITH CENTRAL SLOT

Modal Analysis of Propulsion Shafting of a 48,000 tons Bulk Carrier

A L T R A I N D U S T R I A L M O T I O N. Synchronous Drives

Design and Analysis of Rotary Lawn Mower

Offshore Wind Turbine monopile in 50 year storm conditions

MTS Restan. Automatic System for Residual Stress Measurement by Hole-Drilling

Copyright by Turbomachinery Laboratory, Texas A&M University

EEF. Fatigue Testing Unit PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION. Engineering and Technical Teaching Equipment

Analysis of the Impact of Rotor Rigidity on the Aerodynamic Performance of Vertical Axis Wind Turbines

The Criticality of Cooling

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Influence of the Number of Blades on the Mechanical Power Curve of Wind Turbines

A Numerical Simulation of Fluid-Structure Interaction for Refrigerator Compressors Suction and Exhaust System Performance Analysis

Cost reduction for conveyor systems through self-adjusting chain wheel

Learn more at

Fluid Machinery Introduction to the laboratory measurements

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS

Dual displacement motor A10VM Plug-in dual displacement motor A10VE for open and closed circuit applications

Short-pitch transmission precision roller and bush chains, attachments and associated chain sprockets

The Study of Half-tooth Master Gear Structure Optimization Yazhou Xie a, Zhiliang Qian b

Guideline No.M-05(201510) M-05 AIR COMPRESSOR. Issued date: 20 October China Classification Society

Special edition paper

EMPIRICAL FORMULA OF DISPERSION RELATION OF WAVES IN SEA ICE

ADVANCES IN NDT TECHNIQUES FOR FRICTION STIR WELDING JOINTS OF AA2024

Downloaded from SAE International by Universiti Teknologi Malaysia, Monday, October 05, 2015

Keywords: contra-rotating fan, air pressure, deformation of blades.

OMS Technical Information. Versions OMS. Versions

FORECASTING OF ROLLING MOTION OF SMALL FISHING VESSELS UNDER FISHING OPERATION APPLYING A NON-DETERMINISTIC METHOD

Experimental investigation of the check valve behaviour when the flow is reversing

Standing Waves in a String

Wind Turbine on Telecom Tower

Modeling of Hydraulic Hose Paths

A COMPARATIVE STUDY OF MIX FLOW PUMP IMPELLER CFD ANALYSIS AND EXPERIMENTAL DATA OF SUBMERSIBLE PUMP

DESIGN OPTIMIZATION OF WORK ROLL CHOCK AND BACKUP ROLL CHOCK IN COLD ROLLING MILL

Application of Simulation Technology to Mitsubishi Air Lubrication System

Visual Observation of Nucleate Boiling and Sliding Phenomena of Boiling Bubbles on a Horizontal Tube Heater

Technical Data Sheet TI-F50 Locking Units series KFH

The Performance of Vertical Tunnel Thrusters on an Autonomous Underwater Vehicle Operating Near the Free Surface in Waves

6. EXPERIMENTAL METHOD. A primary result of the current research effort is the design of an experimental

Studies on mass distribution profile of detached fibre fringe in a comber

Efficiency Improvement of a New Vertical Axis Wind Turbine by Individual Active Control of Blade Motion

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model

Transcription:

Research journal of Applied Sciences, Engineering and Technology 4(7): 846-85, 212 ISSN: 24-7467 Maxwell Scientific Organization, 212 Submitted: December 13, 211 Accepted: January 13, 212 Published: April 1, 212 Experimental Investigation of Sprocket Tooth Form Effect on Dynamic Tension of Silent hain Wei Sun, Xiaolun Liu and Jianfang Liu ollege of Mechanical Science and Engineering, Jilin University, hangchun, 1325, hina Abstract: The study's aim was to get ANSI sprocket tooth profile and involute sprocket tooth profile for effects on dynamic tension of chains in the silent chain drive, and analyse and compare the advantages and disadvantages of the different tooth profiles to choose more practical tooth profile from the two sprockets. urrent collector was used to test the dynamic tension when straight sprocket and involute sprocket engaged with the same silent chain. And experimental data measured were analyzed in the amplitude domain and frequency domain. Test results indicate that the probability of tension appearing in the different numerical size and power spectral densities of load in the different frequencies of the involute tooth form are better than of straight tooth form, which show that the involute sprocket has been good working properties. In addition, taking the advantages of involute tooth profile into account in the process, the involute tooth form is recommended in universal sprocket tooth form of the actual use. Key words: urrent collector, dynamic tension, silent chain drive, sprocket tooth form INTRODUTION Sprocket is an important basic part in a silent chain drive system, and it has a direct impact on the working performance of the entire transmission system. General silent chain drive system is non-conjugated transmission (Zhengzhi et al., 1984; Liu et al., 1997), the feature of which is not high to the accuracy of the sprocket, and not strictly require the curve of a particular tooth form. Standards of silent chain sprocket mainly were: (ANSI B29.2M, 27; DIN 8191, 1998). The ANSI B29.2M of which provided that working tooth profile of silent chain sprocket was a straight line, and the DIN8191 provides that working tooth profile of silent chain sprocket was involute. So far, there were yet no unified ISO standards of silent chain sprocket, national standards of transmission silent chain and sprocket were most the same as using the American standard ANSI B29.2M and were established in principle(ansi B29.2M, 27; DIN 8191, 1998; ISO66, 24). hain tension and its changing laws were a comprehensive reflection of the force condition in work processes of the silent chain drive. A complete wave curve of chain tension could clearly show the Start-up shock of chain drive, tension change of slack/tight span, meshing impact, and dynamic loads and abnormal changes of loads caused by polygon effect (alvo et al., 26; Soviero and Lavagna, 1997; Wang et al., 1992). Such a curve with the corresponding frequency and amplitude of a variety of loads could be drawn by spectral processing. Figure 1 shows the typical change curve of silent chain tension (Zhengzhi et al., 1984). Many scholars (Meng, 28; Liu, 1994; Wada et al., 1999; Ward and Dwyer-Joyce, 21) for the sprocket tooth profile did the theoretical analysis and experimental research, but qualitative research was basically used for some meshing characteristic of sprocket tooth profile, lack of quantitative analysis and comparison, In particular, experimental comparative analysis of the different sprocket tooth profile for effects on dynamic tension of silent chain in the chain drive. Therefore, under existing conditions, current collector was used to test the dynamic tension of chains which ANSI sprocket and involute sprocket engaged with, and the experimental results were analyzed and compared to get the advantages and disadvantages of the two tooth profiles, then choose more practical tooth profile from the two sprockets. Meanwhile, to promote the improvement of chain drive technology and develop universal standards of sprocket cutters, experimental verification report was provided. EXPERIMENTAL METHODOLOGY Figure 2 shows block diagram of the dynamic measurement system of current collector. When the dynamic tension of chains was measured, hain rotated along a closed loop (rotation frequency f = V / L), this required rotor of current collector at the speed of n = 6 f synchronously operated with chain. And a flexible whipwire was used to connect the strain gauge sensor and the orresponding Author: Jianfang Liu, ollege of Mechanical Science and Engineering, Jilin University, hangchun, 1325, hina 846

Res. J. Appl. Sci. Eng. Technol., 4(7): 846-85, 212 Fig. 1: hange curve of silent chain tension Fig. 2: sensor synchronizer collector dynamic strain gauge recorder Block diagrams of the dynamic measurement system of current collector Fig. 3: The stepless adjustment synchronizer rotor to lead the output signals of sensor. If the rotation speed of chain and one of the rotor of current collector were not synchronized, which made the whip - wire wrapped, even broken. Therefore, the rotor of current collector needed to be stepless speed to achieve synchronous operation. Figure 3 shows a stepless adjustment Synchronizer, PIV continuously variable transmission and A adjustable speed motor were used by the device, so very wide range of stepless adjustment could be obtained. Experimental Instruments and Equipments: omponent parameters of the chain drive: To contrast the change of sprocket tooth form influencing on the chain tension under the same experimental conditions, therefore, the relevant experimental conditions (such as processing and installation of sprockets, chain tension, etc.) to the two profile was kept consistent. Test objects were straight sprocket and involute sprocket. And test parameters pitch P = 15.875 mm, chain link number L p = 122, sprocket tooth number Z 1 = Z 2 = 26. Test chain were pre-running 1 min, and oil - spray lubrication method was used. Measuring point, arrangement and bridge connection: Figure 4 shows the experimental schematic diagram of arrangement and bridge connection of strain gauge. As the chain structure and size limits, it was difficult to symmetrically post strain gauge at both sides of the outer plate to eliminate the influence of bending deformation when the chain was forced, thus, this experiment only at the outside of the outer plate attached two strain gauge. In order to improve placement accuracy and efficiency, T - type strain rosette was used, the strain rosette employed foil strain gages with sensitive grid of which effective area of 2 1 mm 2. Full-bridge circuit shown in Fig. 4 was consisted of strain rosette and two standard resistors. Test calibration: Because the measure was not the purpose of determining the point of stress, but was to determine the force acting on the chain. Therefore, direct calibration method of force was made use of to test chain tension. The method not only could simplify the calibration work, and could improve the measurement accuracy. Gradual loading, unloading, read of force values and record corresponding strain values were scheduled when the calibration was done, and the calibration curve of force was plotted based on the force and strain values corresponding. From the calibration 847

Res. J. Appl. Sci. Eng. Technol., 4(7): 846-85, 212.5 (a) Straight tooth from, n 1 = 3 rpm Fig. 4: Arrangement and bridge connection of strain gauge on the plate.5 5 4 Load Unload F (kg) 3 2 1 2 4 6 8 1 12 14 (Number) Fig. 5: alibration curve of the tested chain (b) Involute tooth from, n 1 = 3 rpm.5 curve shown in Fig. 5, under the given test specifications, test system was essentially linear State, so the test could be prepared for. EXPERIMENTAL RESULTS AND ANALYSIS Tension signal was picked up by the dynamic strain gauge, recorded on the tape recorder, and then fed to the FFT dual-channel dynamic signal analyzers. Experimental data measured were respectively processed in the amplitude domain and frequency domain. Analysis results were as follows: Amplitude domain analysis: Figure 6 shows the experimental probability density curve of the chain tension. The horizontal axis represented the tension in the figure, and the vertical axis represented the probability of tension appearing in the different numerical size. From the figure could be seen visually the distribution of the silent chain tension under the same experimental conditions. The difference between the probability of the larger chain tension appearing and that of smaller one for involute tooth form was smaller than that for straight tooth form, which indicated that the chain meshing with (c) Straight tooth from, n 2 = 5 rpm.5 (d) Involute tooth from, n 2 = 5 rpm Fig. 6: Probability density curve of the silent chain tension 848

Res. J. Appl. Sci. Eng. Technol., 4(7): 846-85, 212.5 (a) Straight tooth from, n 1 = 3 rpm.2 involute tooth form was better than that with straight tooth form in the capacity of resistance to fatigue failure. This was because in the loop operation of the chain, constantly undergoing repeated effect of the larger tight side tension and smaller slack side tension, chain plate was under varying load, after a certain number of cycles, fatigue failure in the stress concentration zone on both sides of the plate hole would occur. Frequency domain analysis: Figure 7 respectively shows the experimental power spectral density curves Horizontal axis represented different frequencies in the figure, and the vertical axis represented the power spectral density. The values quantitatively reflected the distribution conditions of various loads in different frequencies..2 PWR SP A LIN 2 Hz (b) Involute tooth from, n 1 = 3 rpm PWR SP A LIN 2 Hz.2 (c) Straight tooth from, n 2 = 5 rpm The figure shows frequency structure of the experimental curve to the two tooth profile was consistent under the same experimental conditions. Frequencies Under different peak were multiples of the first peak frequency (Basically equivalent to rotation frequency under the two speed conditions, where: n 1 = 3 rpm, f = 1.7 Hz; n 2 = 5 rpm, f = 1.78 Hz). Two tooth forms compared against amplitude (voltage value) at the same frequency, on the whole, the values of straight tooth form was larger than that of involute tooth profile, in particular, under the first peak. From amplitude corresponds to the first peak frequency caused by a higher wheel speed of view, straight tooth form was greater than involute tooth form. In other words, with the speed increase of the driving sprocket, dynamic load of chain transmission composed of straight tooth form was higher than that of involute tooth form when chain and sprocket meshed. The amplitude corresponding to the first peak was equal to that of dynamic load under rotation frequency of chains, and it could reflect the tension of tight span of chains meshing sprocket in work processes of the chain drive. The value for wear and fatigue of the silent chain was of great significance. PWR SP A LIN 2 Hz (d) Involute tooth from, n 2 = 5 rpm Fig. 7: Power spectral density curves of the silent chain tension ONLUSION By the above analysis, judged from the difference of sprocket tooth profile effects on dynamic tension of silent chain, involute tooth form was better than straight tooth form. If the processing of tooth profile were further considered, for straight tooth form as sprocket tooth profile, supplementary information of US standard ANSI 849

Res. J. Appl. Sci. Eng. Technol., 4(7): 846-85, 212 B29.2M provided that each pitch silent chain sprocket (z = 17 to 15) requires seven sprocket hobs to hob respectively, thereby which increased the number of tools and made processing property poor. While for involute tooth profile as tooth profile of sprocket, the German standard DIN 8191 (1998) provided hobs were the straight tooth form, and the tooth top section and working segment of sprocket being cut were completely involute. And using a hob could process different tooth number of sprockets for a specification of the chain, which made manufacturing technology of sprocket hob simplified greatly, could directly reference a method of manufacturing gear hob to reduce manufacturing costs, made processing property improved greatly, and had obvious advantages. Therefore, involute tooth profile should be selected to universal sprocket tooth form in silent chain drive. A ANSI DIN f F FFT F d ISO L L p n 1 n 2 P PIV t V Z 1 Z 2 NOMENLATURE = Alternating current = American National Standards Institute = German Industrial standards = Rotation frequency, Hz = Effective circle force, N = Fast Fourier Transform Algorithm = Dynamic load, N = International Standardization Organization = Entire chain length, mm = hain link number = Driving sprocket speed,rpm = Driving sprocket speed,rpm = Pitch, mm = Positive infinitely variable drives = Time, s = hain speed, m / s = Driving sprocket tooth number = Driven sprocket tooth number REFERENES ANSI B29.2M, 27. Inverted Tooth (Silent) hains and Sprockets, the American Society of Mechanical Engineers. DIN 8191, 1998. German Industrial standards. alvo, J.A., V. Diaz, J.L. San Roman and M. Ramirez, 26. ontrolling the timing chain noise in diesel engines. Int. J. Vehicle Noise Vib., 2(1): 75-89. Meng, F.Z., 28. The Meshing Principle of Silent hain. hina Machine Press, Beijing. ISO66, 24. Short-pitch transmission precision roller and bush chains, attachments and associated chain sprockets. Soviero, P.A.O. and L.G.M. Lavagna, 1997. A numerical model for thin airfoils in unsteady motion. RBM- J. Brazi. Soc. Mech. Sci., 19(3): 332-34. Liu, S.P., 1994. Impact dynamics of chain drive systems. Ph.D. Thesis, Department of Engineering Science and Mechanics, Penn State University. Liu, S.P., K.W. Wang, S.I. Hayek, M.W. Trethewey and K.H.K. hen, 1997. A global-local integrated study of roller chain meshing dynamics, J. Sound Vib., 23 (1):41-62. Wada, M., S. Ide, S. Miki and A. Ehira., 1999. Development of a Small Pitch Silent hain for a Single-Stage am Drive System, SAE Technical Paper, Warrendale, PA. Wang, K.W, S.P. Liu, S.I. Hayek and F.H.K. hen, 1992. On the Impact Intensity of Axially Moving Vibrating Roller hains. J. Vib. Acoust., 114(3): 397-43. Ward, A. and R.S. Dwyer-Joyce, 21. Model Experiments on Automotive hain Drive Systems, Proceeding of 27th Leeds-Lyon Symposiom, pp: 851-861. Zhengzhi, F., X. Wangyi and H. haibang, 1984. hain drive. Machinery Industry Press, Beijing. AKNOWLEDGMENT This study is financially supported by the National Natural Science Foundation of hina under Grant No. 5175181. 85