PEIRCE-SMITH CONVERTER HOOD DESIGN ANALYSIS USING COMPUTATIONAL FLUID DYNAMICS MODELING. 111 Ferguson Court, Suite 103 Irving, Texas 75062, U.S.A.

Similar documents
EFFECTIVE DESIGN OF CONVERTER HOODS. 111 Ferguson Ct. Suite 103 Irving, Texas U.S.A. 400 Carlingview Dr. Toronto, ON M9W 5X9 Canada.

Airborne Activity Sampling and Monitoring at Hinkley Point A Site. David Williams, Hinkley Point A Site

Injector Dynamics Assumptions and their Impact on Predicting Cavitation and Performance

CFD and Physical Modeling of DSI/ACI Distribution

Kansas State University Fume Hood Operation

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision

Optimized Local Exhaust Solution for Working Place

Dust Control Strategies for Continuous Miners in High Mining Areas and Longwall Shearers

Transitional Steps Zone in Steeply Sloping Stepped Spillways

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN

Computer Simulation Helps Improve Vertical Column Induced Gas Flotation (IGF) System

TechTalk. Purging for Delayed Coking. Understanding purging system design in heavy-fouling applications. Outline

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT

ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006

Redesign of Centrifugal PLACE FOR Compressor TITLE. Impeller by means of Scalloping

A Study on the Effects of Wind on the Drift Loss of a Cooling Tower

ANALYSES OF THERMAL COMFORT AND INDOOR AIR QUALITY UNDER STRATUM, DISPLACEMENT, AND MIXING VENTILATION SYSTEMS

IGO GROUP SAFETY STANDARD 30 - WORKPLACE VENTILATION INDEPENDENCE GROUP NL

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

Comparison of Methods and Devices for High Pressure Vessel Passivation B. Zitouni (1), L. Denies (1),M. Peukert (1)

OPTIMIZATION OF INERT GAS FLOW INSIDE LASER POWDER BED FUSION CHAMBER WITH COMPUTATIONAL FLUID DYNAMICS. Abstract. Introduction

PLEA th Conference, Opportunities, Limits & Needs Towards an environmentally responsible architecture Lima, Perú 7-9 November 2012

Application of CFD for Improved Vertical Column Induced Gas Flotation (IGF) System Development

Laser Cutting. Nitrogen Solutions for

Sizing of extraction ventilation system and air leakage calculations for SR99 tunnel fire scenarios

CROSS CONTAMINATION OF IN-SUITE MURB VENTILATION SYSTEMS

Fire safety of staircases in multi-storey buildings The results of measurements in Buildings and Simulations

LABORATORY FUME HOOD SPECIFICATION AND MAINTENANCE PROGRAM

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK

Gas Accumulation Potential & Leak Detection when Converting to Gas

OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD

Workshop 1: Bubbly Flow in a Rectangular Bubble Column. Multiphase Flow Modeling In ANSYS CFX Release ANSYS, Inc. WS1-1 Release 14.

Bio-Effluents Tracing in Ventilated Aircraft Cabins

A. M. Dalavi, Mahesh Jadhav, Yasin Shaikh, Avinash Patil (Department of Mechanical Engineering, Symbiosis Institute of Technology, India)

AIRFLOW AND TEMPERATURE FIELD CALCULATIONS FOR WINTER SPORTS FACILITIES

A Research on the Airflow Efficiency Analysis according to the Variation of the Geometry Tolerance of the Sirocco Fan Cut-off for Air Purifier

OPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL. Rehan Yousaf 1, Oliver Scherer 1

Study by numerical simulations on the breathing effect in a semi-underground highway with beams and a roof above it

Flow and Mixing in the Liquid between Bubbles

Measurement and simulation of the flow field around a triangular lattice meteorological mast

AN IMPROVED CROSS VENTILATION MODEL IN WINDY REGIONS

At the end of this lesson, you will be able to do the following:

Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects

OPTIMIZATION OF RECUPERATER FIN GEOMETRY FOR MICRO GAS TURBINE

Designing a Traffic Circle By David Bosworth For MATH 714

A COMPARATIVE STUDY OF MIX FLOW PUMP IMPELLER CFD ANALYSIS AND EXPERIMENTAL DATA OF SUBMERSIBLE PUMP

Development of virtual 3D human manikin with integrated breathing functionality

MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent

Efficiency Improvement of Rotary Compressor by Improving the Discharge path through Simulation

EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS

ANALYSIS OF HEAT TRANSFER THROUGH EXTERNAL FINS USING CFD TOOL

Effect of Nozzle Twisted Lance on Jet Behavior and Spitting Rate in Top Blown Process

"LABORATORY SAFETY SERIES"

Aalborg Universitet. Published in: Proceedings of Offshore Wind 2007 Conference & Exhibition. Publication date: 2007

Surrounding buildings and wind pressure distribution on a high rise building

HYDROGEN RISK ANALYSIS FOR A GENERIC NUCLEAR CONTAINMENT VENTILATION SYSTEM

EXPERIMENTAL INVESTIGATION OF LIFT & DRAG PERFORMANCE OF NACA0012 WIND TURBINE AEROFOIL

Fire and Safety for Offshore drilling and production Ajey Walavalkar ANSYS Inc.

Linear Compressor Discharge Manifold Design For High Thermal Efficiency

Optimization of Ejector's Performance With a CFD Analysis. Amanda Mattos Karolline Ropelato Ricardo Medronho

CFD Analysis of Giromill Type Vertical Axis Wind Turbine

Natural Ventilation Applications in Hot-humid Climate: A Preliminary Design for the College of Design at NTUST

CFD Modelling of LPG dispersion

CFD ANALYSIS AND COMPARISON USING ANSYS AND STAR-CCM+ OF MODEL AEROFOIL SELIG 1223

SAFETY AND HEALTH IN THE USE OF CHEMICALS AT WORK

System REITHER A Patented Venturi Scrubber

Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle

New Technologies applied to the design and optimization of tunnel ventilation systems

THEORETICAL EVALUATION OF FLOW THROUGH CENTRIFUGAL COMPRESSOR STAGE

Akasison Flow phenomena of a siphonic roof outlet

MODELING STUDY OF THE BEHAVIOR OF LIQUID FIRE SUPPRESSION AGENTS IN A SIMULATED ENGINE NACELLE

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water

MODELLING OF FUME EXTRACTORS C. R.

Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study

VENTILATION EFFICIENCIES OF A DESK-EDGE-MOUNTED TASK VENTILATION SYSTEM

Ventilation of Small Multispan Greenhouse in Relation to the Window Openings Calculated with CFD

Experimental Characterization and Modeling of Helium Dispersion in a ¼-Scale Two-Car Residential Garage

The routine maintenance and inspection of local exhaust ventilation (LEV)

BASIC OXYGEN FURNACES

CFD Analysis and Experimental Study on Impeller of Centrifugal Pump Alpeshkumar R Patel 1 Neeraj Dubey 2

Copyright by Turbomachinery Laboratory, Texas A&M University

Deborah Houssin-Agbomson, Jean-Yves Letellier, Philippe Renault, Simon Jallais

01 18/11/2013 correction of the reference of the product 1 4 5

WIND LOADS / MOORING & FISH TAILING. Arjen Koop, Senior Project Manager Offshore Rogier Eggers, Project Manager Ships

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE

Traffic circles. February 9, 2009

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure

SEMFWE305 HY20 04 Welding materials by the Semi-Automatic MIG/MAG and Flux Cored Arc processes

CFD Simulation of the Flow Through Reciprocating Compressor Self-Acting Valves

Overview: Curriculum Goals: Materials: Explore:

External Tank- Drag Reduction Methods and Flow Analysis

Evaluation of the optimum conditions for a local ventilation system in connection with the mine ventilation network

Wind tunnel tests of a non-typical stadium roof

Experimental determination of deflagration explosion characteristics of methane air mixture and their verification by advanced numerical simulation

Application of Computational Fluid Dynamics to Compressor Efficiency Improvement

The Effect of Impeller Width on the Location of BEP in a Centrifugal Pump

Transcription:

PEIRCE-SMITH CONVERTER HOOD DESIGN ANALYSIS USING COMPUTATIONAL FLUID DYNAMICS MODELING Paykan Safe 1 and Robert L. Stephens 2 1 Gas Cleaning Technologies, Inc. 111 Ferguson Court, Suite 103 Irving, Texas 75062, U.S.A. 2 Cominco Research P.O. Box 2000, Trail, British Columbia Canada V1R 4S4 Abstract Computational Fluid Dynamic (CFD) modeling provides a powerful tool to assist with the design of ventilation and fume control systems in smelters and other high temperature metallurgical facilities. For this paper, this tool has been used to analyze the off-gas flow pattern exiting the mouth of a Peirce-Smith converter into a water-cooled hood and drop out box. The effects of various process and physical plant design parameters on process gas and fume capture and potential build up on the converter hoods was examined, and the optimum design and operating parameters were determined. EPD Congress 2000 Edited by P.R. Taylor The Minerals, Metals & Materials Society, 2000 51

Introduction Despite the commercialization of various new converting technologies for copper matte such as Ausmelt Technology 1, Mitsubishi s continuous converting technology 2, the Kennecott-Outokumpu flash converting process 3, and the continued use of Hoboken converters at several installation, the Peirce-Smith converter is still the dominant converting technology for the production of blister copper and nickel-copper matte. A Peirce-Smith converter consists of a horizontally orientated refractory lined cylinder as shown schematically in Figure 1. Figure 1: Schematic of a Peirce-Smith Converter. The large mouth of the converter is a critical region for the vessel. Molten material is poured into the converter from large ladles to fill the vessel. Molten material is also later skimmed from the converter through the mouth into ladles. Fluxes, reverts, and scrap are also fed through the converter mouth often while the vessel is in the blowing position 4. All process gases also exit the vessel through the mouth and are captured in hoods that are designed to fit over the converter mouth. Because the mouth is located so close to the molten bath within the furnace and intense splashing is caused by the injection of air through the tuyeres, the off-gas contains a great number of molten particles. These molten particles can cause both very high localized heat transfer to the hood surface when they impact on the surface of the hood and accretions that increase the weight of the hoods and impede the gas flow into the gas handling system. The molten particles and pouring of molten material also result in the formation of accretions around the converter mouth. The off-gas also contains a number of volatile metallic species such as lead, arsenic, and cadmium that are present as metallic vapor. These elements in particulate are heavily regulated due to their impact on the environment if they escape as fugitive emissions. In the US, all copper smelters with 52

Peirce-Smith converters are working diligently to minimize the emissions of these elements to avoid the regulatory impact of being declared a major source for these Hazardous Air Pollutant (HAPs) elements and to minimize exposure of their workforces. Asarco El Paso had taken the approach sealing the entire converter aisle to minimize impact on the environment but this had resulted in poor working conditions for plant operators. Most other plants have attempted to prevent fugitive emissions at the converter mouth. As noted by Drummond and Deakin 5, there is a clear movement within the industry from air-cooled hoods to water-cooled hoods in an effort to improve the capture of the converter off-gases. In some European smelter, plants have been designed with tertiary hooding systems to ensure very low emissions to the environment. However, the design of the hoods and associated gas handling equipment immediately adjacent to the converter is critical to ensure that full benefit is gained from the investment in the water-cooled hoods. Computational Fluid Dynamic (CFD) Modeling for Metallurgical Plants Computational fluid dynamic (CFD) modeling is a powerful tool that can be used to develop velocity, temperature, and contaminant concentration profiles to assist in designing ventilation and fume control systems. It can be used to predict and evaluate: Performance of ventilation systems Airflow pattern and contaminant migration paths Hood designs and configurations for optimum capture of contaminants Worker heat and contaminant exposure levels Combustion efficiency for a given geometry To implement the modeling technique, a three-dimensional model of the heat and mass transfer and fluid flow occurring in the system is developed. Appropriate thermal, momentum, and mass transfer boundary conditions and the domain of calculation are chosen to mirror physical reality. The transport equations are then solved numerically using a control volume finite difference method based on commercially available codes such as PHOENICS or FLUENT. These packages are also then used to graphically display the solution so that calculation results can be visualized. In some cases, physical measurements are undertaken on an existing process so that the model can be calibrated to mirror the existing conditions before it is modified to predict the behavior of the process when operating parameters or the design of the equipment is changed. CFD modeling can provide: A tool for evaluation of design alternatives by calculating the effect on the design objectives as each design parameter is modified In-depth understanding of the problem by graphical display of the air flows that help the user understand the mechanisms by which contaminants and heat migrate through a process or the building in which the process is housed Verification of measurements by supplying data to check and explain unusual measurement results Reduce costs by reducing the need for scale and physical model testing Shorter design times by reducing the need for scale model testing 53

In this application, CFD modeling provides an integrated analysis of environmental impacts, worker comfort, and indoor air quality that results in optimized process and building fume and contaminant control. Case Study: CFD Modeling of a Copper Converter Off-Gas System To illustrate the results that can be obtained by CFD modeling, a case study has been completed. In this case study, a CFD model has been constructed and used to study the off-gas flow pattern exiting a Peirce-Smith converter mouth into a water-cooled hood and dropout box. Present Conditions The model was calibrated under the existing conditions that are summarized below: Converter: Blast rate: 23,420 Nm 3 /hr (13,785 scfm) Process gas temperature: 1,200C (2,200F) Mouth opening 2.28 m 2 (75% of the original 1.7 m x 1.8 m mouth) Hood apron gap: 15.2 cm (6 in) Sliding Door Gap: 3.8 cm (1.5 in) Dropout Hopper: Opened (air infiltration: converter process gas = 1 : 1) Dropout Box: Outlet off-gas flow rate of 176,750 m 3 /h (actual) (104,000 acfm) The CFD model results are shown in Figure 2 and the following observations can be drawn from these results: Velocity profile: The velocity profile shows a high converter process gas velocity of 15.8 m/s (3,110 fpm) exiting the converter mouth directed toward the hood sliding door area. Recirculation in the dropout hoppers is predicted, leading to impaction on the surfaces by molten particles. Both of these phenomena will cause accretions to form on these surfaces. Temperature profile: The off-gas temperature profile at the converter water-cooled hood shows a significant heat load at the front (sliding door) and the roof of the hood. The off-gas temperature at the outlet of the drop out box is predicted to be well mixed at about 445C (830F). This predicted temperature is close to the field measurement of 433C (812F). Pressure profile: The pressure profile shows that there is insufficient draft at the converter hood uptake. The gap area between the sliding door and the water-cooled hood is under positive pressure and a fugitive emission of 3,700 Nm 3 /h (2,300 scfm) is predicted. Particle tacking: Particles in the range 30-800 µm and specific gravity of 1.0 to 4.0 are spread around the converter free board area. The CFD model predicts that some particle flow with the gas and hit the edge of the converter mouth. At the operating temperature of between 600 and 750C (1,100 and 1,380F), some of these particles are still semi-molten and are likely to stick at the converter mouth. The profile also shows some impingement of particles at the front sliding door area. As noted above, both of these phenomena will lead to the formation of accretions that will result in operating difficulties. 54

55

Evaluation of Various Configurations Given the predicted operating difficulties associated with the first design of both accretion formation and the production of fugitive gases, several configurations were evaluated to seek a more optimum operating and design strategy. Three strategies that are expected to improve the present situation have been investigated. They are: 1. Close the dropout hopper openings to reduce air infiltration into the system. 2. Close the dropout hopper openings and change the orientation of the converter mouth from the current 12 to 20. In practice, this would require altering the tuyere line position relative to the mouth so that the converter is rolled further to get it into stack. However, the implementation of water-cooled hood systems is usually associated with rebuilding of the converter so both changes can be implemented at the same time. 3. Close the dropout hopper openings and enlarge the converter mouth to 1.9 m x 2 m, which assumes only 20% buildup at the converter mouth. The results of the CFD calculations for each of the three (3) new configurations are shown in Figures 3 through 5 respectively and are summarized in Table 1. Configuration No. 1: The process parameters for this configuration are similar to those for the present configuration except that air infiltration into the system is reduced by closing the dropout hoppers. The model predicts high converter off-gas flow directed upwards onto the front sliding door area but no fugitive emissions will be observed. This will result in high heat flues to the water-cooled hoods that must be incorporated in the thermal design of the hood. The draft at the converter hood uptake is improved for this configuration with a predicted air infiltration through the sliding door gap of around 2,660 Nm 3 /h (1,650 scfm). Elimination of the air flow into the dropout hopper through the open bottom will result in more gas recirculation in the hopper. Particle impingement at the converter mouth and on the hood is still observed. Configuration No. 2: This configuration is similar to the last configuration except that the angle of the converter mouth is changed to more closely align the process off-gas flow with the available angle for the converter hood. The model predicts an increased air infiltration rate of 7,260 Nm 3 /h (4.500 scfm) through the sliding door opening. The velocity profiles show less impingement on the front and roof of the water-cooled hood, which will reduce the heat fluxes in these regions. Particle tracking predicts less particle impingement on the water-cooled hood but more impingement at the converter mouth. This will require more cleaning of the converter mouth with associated poor refractory performance in this region as will as difficulties skimming molten material from the converter. Configuration No. 3: In this configuration, the converter mouth is enlarged to 3.06 m 2. All other parameters are similar to those in configuration No. 1. The CFD model predicts an air infiltration rate of 4,350 Nm 3 /h (2.700 scfm) through the sliding door opening. The velocity profile shows that the converter process gas exits the converter mouth at a lower velocity of 11.8 m/s (2.332 fpm), which helps increase the draft at the hood uptake. The pressure profile also shows better draft than for configuration No. 1. Because the overall velocity is lowered, there is less particle impingement at both the converter mouth and the front and roof of the water-cooled hood. 56

57

58

59

TABLE 1 CFD MODEL SUMMARY OF VARIOUS CONFIGURATIONS PROCESS PARAMETERS PRESENT CONDITION CONFIGURATION #1 CONFIGURATION #2 CONFIGURATION #3 CONVERTER: Blast Rate [Nm 3 /hr] 23,420 23,420 23,420 23,420 [scfm] 14,500 14,500 14,500 14,500 [acfm] 76,400 76,400 76,400 76,400 Process Gas Temperature [ C] 1200 1200 1200 1200 [ F] 2200 2200 2200 2200 Mouth Size [m 2 ] 3.06 (1.80m x 1.70m) 3.06 (1.80m x 1.70m) 3.06 (1.80m x 1.70m) 3.8 (1.90m x 2.0m) Available Mouth Opening [m 2 ] 2.28 2.28 2.28 3.06 Process Gas Velocity @ mouth [m/s] 15.82 15.82 15.82 11.78 [fpm] 3110 3110 3110 2320 Mouth-Hood Orientation / Angle 12 12 20 12 SLIDING DOOR GAP: 3.8 cm (1.5in) 3.8 cm (1.5in) 3.8 cm (1.5in) 3.8 cm (1.5in) HOPPER: opened closed closed closed (100 % air infiltration) (no air infiltration) (no air infiltration) (no air infiltration) DROPOUT BOX Exit Off-gas Flow Rate [Nm 3 /hr] 66,000 49,500 54,100 51,190 [scfm] 41,000 30,700 33,550 31,750 [acfm] 104,000 104,000 104,000 104,000 Exit Off-gas Temperature [ C] 445 677 596 648 [ F] 830 1250 1105 1200 CFD RESULTS: Leakage @ sliding door gap [Nm 3 /hr] 3700 none none none Infiltration @ sliding door gap [Nm3/hr] none 2660 7260 4350 Mouth Velocity and Buildup - High process gas velocity at the - High process gas velocity at the - High process gas velocity at the - Low process gas velocity at the converter mouth (15.82 m/s) converter mouth (15.82 m/s) converter mouth (15.82 m/s) converter mouth (11.78 m/s) - Inadequate draft at the hood uptake - Adequate draft at the hood uptake - Adequate draft at the hood uptake - Adequate draft at the hood uptake - moderate dust impingement at due to closing the dropout hoppers due to closing the dropout hoppers due to closing the dropout hoppers converter mouth - moderate dust impingement at - High dust impingement at - Lowest dust impingement at converter mouth converter mouth converter mouth Gas Impingement on Water-cooled Hood - High gas impingement at the sliding - High gas impingement at the sliding - Lowest gas impingement at the sliding - Moderate gas impingement at the door area at the water-cooled hood door area at the water-cooled hood door area at the water-cooled hood sliding door area at the water-cooled hood 60

Conclusions For the case study presented in this paper, it was predicted that: Sealing the dropout box hopper openings will significantly improve the converter draft to the point that there is no fugitive emissions Sealing the dropout box hopper opening and changing the mouth angle to 20 from the current 12 will reduce process gas impingement on the sliding section of the converter hood. However, since the mouth will be closer to the bath level, particle impingement at the mouth of the converter will be increased. No process gas fugitive emissions are predicted. Sealing the dropout box hopper opening and increasing the mouth opening to 1.9 m x 2.0 m while keeping the current mouth angle of 12 will result in improved converter draft and reduce particle impingement at the mouth. As with the previous two (2) configurations, no fugitive process gas emissions are predicted. This case study also demonstrates the opportunities offered by applying CFD modeling techniques to the design and optimization of process gas handling and building ventilation systems for metallurgical industries. References 1. E.N Mounsey, J.M Floyd, and B.R. Baldock, Copper converting at Bindura Nickel Corporation Using Ausmelt Technology, in J.A. Asteljoki and R.L. Stephens (eds.), Sulfide Smelting 98: Current and Future Practices, TMS, Warrendale, PA, 287-301 (1998) 2. E. Oshima, T. Igarashi, N. Hasegawa, and H. Kumada, Recent Operation for Treatment of Secondary Materials at Mitsubishi Process, in J.A. Asteljoki and R.L. Stephens (eds.), Sulfide Smelting 98: Current and future Practices, TMS, Warrendale, PA, 597-606 (1998) 3. P. Hanniala, I.V. Kojo, and M. Kyto, Kennecott-Outokumpu Flash Converting Process Copper by Clean Technology, in J.A. Asteljoki and R.L. Stephens (eds.), Sulfide Smelting 98: Current and Future Practices, TMS, Warrendale, PA, 239-247 (1998) 4. T. Maruyama, T. Saito, and M. Kato, Improvements of the Converter s Operation at Tamano smelter, in J.A. Asteljoki and R. L. Stephens (eds.), Sulfide Smelting 98: Current and Future Practices, TMS, Warrendale, PA, 219-226 (1998) 5. W. Drummond and J. Deakin, A Water-Cooled Hood System for Peirce-Smith Converters and Similar Vessels, JOM, 51, 5, 40-41 (1999) 61