Jodi M. Cossor and Bruce R. Mason Australian lnstitute of Sport Biomechanics Department, Canberra, Australia

Similar documents
WHAT CAN WE LEARN FROM COMPETITION ANALYSIS AT THE 1999 PAN PACIFIC SWIMMING CHAMPIONSHIPS?

COMPARISON STUDY BETWEEN THE EFFICIENY OF THE START TECHNIQUES IN THE ROMANIAN COMPETITIVE SWIMMING

Inter-analyst variability in swimming competition analysis

EVALUATING THE TECHNICAL RACE COMPONENTS DURING THE TRAINING SEASON

APPROACH RUN VELOCITIES OF FEMALE POLE VAULTERS

Sunday 5 February Warm Up 8.30am, Start 9.30am Dist. Stroke Division Age Friday 3 February Warm Up 6.00pm, Start 6.45pm Dist. Stroke Division Age

Stroke Rate & Stroke Count In The Daily Training Environment. Mike Parker England Programmes Officer & Open Water Technical Lead

BODY FORM INFLUENCES ON THE DRAG EXPERIENCED BY JUNIOR SWIMMERS. Australia, Perth, Australia

Summer Development Series

Effectively Improving Technique of Developing Swimmers. Ryan Atkison, MSc, CSCS Sport Biomechanist Canadian Sport Institute Ontario

Saturday 28 th October 2017 Sunday 29 th October 2017

Sprint Hurdles SPRINT HURDLE RACES: A KINEMATIC ANALYSIS

The effect of start block configuration and swimmer kinematics on starting performance in elite swimmers using the Omega OSB11 block

April 13th - 15th 2018

NEURAL AND SENSORY APPLICATIONS OF INTERVENTION IN IMPROVING TECHNIQUE AT HIGH SPEED AND RACE PACE ASCTA CONFERENCE - BROADBEACH MAY 2014

SIMULTANEOUS RECORDINGS OF VELOCITY AND VIDEO DURING SWIMMING

Vorgee Endurance 1000

April 13th - 15th 2018

2018 MELBOURNE VICENTRE WINTER SHORT COURSE MEET. Sunday 19 August 2018 Indoor Pool Melbourne Sports and Aquatic Centre Albert Park

Key words: biomechanics, injury, technique, measurement, strength, evaluation

University of Kassel Swim Start Research

2016 Swimming Australia Grand Prix 1-2 July Brisbane, Australia

The Effects of Specific Drills on the Flip Turns of Freestyle Swimmers Based on a Kinesiology Analysis

Deck Configuration and Jurisdiction for S&T Judges and CJ s during the CJ Role Playing:

The relationship between different age swimmers flip turn temporal and kinematic characteristics

TEMPORAL ANALYSIS OF THE JAVELIN THROW

Swimming Tasmania Trophies and Awards (COMMENCING IN

SI Swimming Qualification Log for New Officials

Braunstone Swimming Club Sprint Open Meet 2017

NSW State Open Championships Sydney Olympic Park Aquatic Centre March 2019

Autumn, Spring & Easter Qualifying Galas Meet Information

Swimming Nelson Marlborough 2014 Age Group Championships

FINALS TO FOLLOW HEATS

2017 McDonald s Queensland Championships Brisbane Aquatic Centre 9 15 December 2017 Event Details and Entry Procedure

THE EFFECTS OF VISUAL IMPAIRMENT ON COMPETITION SWIM PERFORMANCE

Machine mini olympics May 7-8, 2016 Sponsored by Machine Aquatics Swim Team Sanctioned by USA Swimming through Potomac Valley Swimming

LANE TIMER ASSIGNMENTS SESSION I

Competition Policy Regional and Club Meets

CRNOGORSKA SPORTSKA AKADEMIJA, Sport Mont časopis br. 43,44,45.

Swimming Stroke Mechanics

INTERNATIONAL SWIMMING SPRINT FESTIVAL ANYKŠČIAI 2018 MAY 3 5, 2018 ANYKŠČIAI

TYNEMOUTH ASC WINTER GALA

Lesson Plan Main Pool Lane 2

The effect of deliberate practice on the technique of national calibre swimmers

SWIMMER PATHWAYS (SQUADS)

JUDGE OF STROKES & INSPECTOR OF TURNS - QUIZ

Long Course Level 1 Licensed Open Meet 13 th /14 th January 2018

400-Meter Hurdle Theory By Ralph Lindeman

RULES SWIMMING A.C.T. INC

DIFFERENCE BETWEEN TAEKWONDO ROUNDHOUSE KICK EXECUTED BY THE FRONT AND BACK LEG - A BIOMECHANICAL STUDY

AMERICAN AGE GROUP CLASSIC Hosted by the Clearwater Aquatic Team (CAT) April 4-7, 2018

60bbm and less 60-50bbm 50-30bbm 30-20bbm 20-10bbm (incorporates a significant aerobic component)

Swimmer of the Year. All awards recognise performances from 1 May to 30 April on an annual basis

January Last Chance Time Trial ENTRY PACK. If you need further help please don t hesitate to call or look us up on the Internet at

NBSL INVITATIONAL MEET

SPRINTING CHARACTERISTICS OF WOMEN S 100 METER FINALS AT THE IAAF WORLD CHAMPIONSHOPS DAEGU 2011

Arlington Aquatic Club Winter Gator Mini Meet February 16-17, 2019

AMERICAN AGE GROUP CLASSIC Hosted by the Clearwater Aquatic Team (CAT) April 4-7, 2018

THE PLAYING PATTERN OF WORLD S TOP SINGLE BADMINTON PLAYERS

Icebreaker Open Gala

2016 LA84 Foundation Summer Swim Program Swim Coaches Packet

City of Peterborough Swimming Club COPS Last Chance Age Group Regional Qualifier (Licence Number : 3ERxxxxxx- Level 3 Meet)

BENDIGO EAST SWIMMING CLUB INC. Reg No 000A281 RACING RULES

Judge Level 2 Course. Hints & Tips

Biomechanical comparison of the track start and the modified one handed track start in competitive swimming: an intervention study

ISB / SAS SWIMVITATIONAL 2016 October 28-30, 2016

NBSL INVITATIONAL MEET

This inter club ribbon gala is a fun, friendly, competitive event to enable young swimmers to gain experience in competitive swimming.

THE TECHNICAL ECONOMY INDEX: A tool for cyclic sports

2013 Victorian Age Short Course Championships Information Booklet

BMSC Summer Sprints. Saturday 30 th June & Sunday 1 st July Alfreton Leisure Centre

1 Introduction 2 Methods Table 1. Gold Times used in this paper 3 Results and discussion

RUNNING VELOCITY DYNAMICS IN 100 M SPRINT: COMPARATIVE ANALYSIS OF THE WORLD TOP AND ESTONIAN TOP MALE SPRINTERS

Arlington Aquatic Club Fall Gator Mini Meet October 27-28, 2018

Original Article. Department of Sport, School of Physical Education and Sport, University of São Paulo, BRAZIL

STROKES AS DESCRIBED BY SWIMMING CANADA

WWSC NEWSLETTER No 18

A COMPARISON OF SELECTED BIOMECHANICAL PARAMETERS OF FRONT ROW SPIKE BETWEEN SHORT SET AND HIGH SET BALL

23/06/ Long Term Athlete Development (LTAD) -Priorities in Swimmers Training -Aerobic Development -Examples of LTAD.

Gender Differences in Competition: Evidence from Swimming Data Shoko Yamane 1 Ryohei Hayashi 2

Grangemouth Amateur Swimming Club (Affiliated to SASA) The 37 th Annual M.A.G.S Meet (Under FINA Rules & Scottish Swimming Regulations)

Analysis of recent swim performances at the 2013 FINA World Championship: Counsilman Center, Dept. Kinesiology, Indiana University

MAKO HOLIDAY INVITATIONAL DECEMBER 1-2, 2012

The effect of cognitive intervention on stroke distance in age-group swimmers

Grangemouth Amateur Swimming Club (Affiliated to SASA) The 17 th Annual J.A.G.S Meet (Under FINA Rules & Scottish Swimming Regulations)

This Selection Policy is to be read in conjunction with the Selection Guidelines.

Meet Referee: Rick Tobin

ISB / SAS SWIMVITATIONAL 2015 October & November 1

The level from the 200 meter events compared to the 100 meter events in Danish swimming.

ASA AWARDS SCHEME TEST CONDITIONS

June 6, To all coaches and team representatives:

SOUTH ISLAND 2017 South Island Country & Town Competition Saturday 1-2 April 2017, Moana Pool, DUNEDIN

ANALYZE OF RESULTS OF THE KOSOVO SWIMMERS ALONG EIGHT YEAR PERIOD, BREASTSTROKE TECHNIQUE AT DISCIPLINES 50 AND 200 METERS

SCOTTISH SWIMMING GRAND PRIX. Round 2. Friday 16. Tollcross International Swimming Centre - Glasgow Long Course L1/454/WD/JAN15

2018 SWIMMING CARNIVAL

BERMUDA AMATEUR SWIMMING ASSOCIATION SHARKS SPRINT MEET OCTOBER 13 th, 2012 R U L E S SHARKS SWIM CLUB

Technical Rules for Swim Strokes and Relays

The KING S Medium Term Plan Swimming

H 2 O S W I M C L U B S H O R T C O U R S E A U T U M N C U P

2018 CCAA. STROKE and TURN TEST

Transcription:

B~omechanics Symposia 2001 / Unlversily of San Francisco SWIM START PERFORMANCES AT THE SYDNEY 2000 OLYMPIC GAMES Jodi M. Cossor and Bruce R. Mason Australian lnstitute of Sport Biomechanics Department, Canberra, Australia The starting performance of finalists and semi-finalists in the swimming competition at the 2000 Olympic Games was analyzed. Start times were shown to consist of between 0.8% and 26.1% of the overall race time depending on the event. The start time was then broken into various phases to determine the significance of each phase on the overall start time. It was shown that the most significant variables in determining a fast start time were the underwater distance and time for both the male and female events. However, individual differences were found for all events so coaches must take these into account when training the start phase of a race with their swimmers. KEY WORDS: competition analysis, swimming, starts, elite performance, Olympics INTRODUCTION: Over the last five years, competition or race analysis has become a regular feature in most international calibre swim meets. Swim start information from the race analysis has generally been limited to providing the time it takes for the swimmer to reach a set distance after the start signal (15 m in the Australian competition analysis) and possibly the time the swimmer takes to leave the blocks. Although each swimmer has a unique start distance for each start, a set distance is used to define all swim starts in competition analysis in order to enable comparisons to be made between swimmers. The international rules for swimming competition dictate that swimmers must re-surface from the under water phase of starts by the 15 m mark from the wall in all strokes. This makes the 15 m mark an ideal location to set the finish of the start phase distance. Swimming starts have previously been researched by many scientists looking at the differences in the grab versus the conventional start (Bloom et al., 1978; Nelson 8 Pike, 1978; Havriluk 8. Ward, 1979). Others have reported on the importance of the start in its contribution to the overall race performance (Mason 8 Cossor, 2000). Bloom et al. (1978) measured the reaction time as the time of the first visible movement after the starting signal but included a movement time, which was the time a swimmer's feet left the block. The flight phase was defined as that period between the swimmer leaving the blocks until the time that the swimmer's hands reached the predetermined 10 foot mark (Bloom et al, 1978). Havriluk and Ward (1979) measured a response time that was defined as the time from the starting signal until when the swimmer left the block, but also divided this into two separate phases - reaction time and movement time. Mills and Gehlson (1996) also measured flight time in their analysis of starts but did not define this phase. A more detailed analysis of the start in elite competition would lead to a better understanding of the techniques used by the best starters in each event. Therefore, this study set out to determine and define the various sub phases of the start in a swimming race in which time, distance and velocity parameters could be measured easily and accurately in a competition environment. The relationship between these parameters and overall start time would then be examined. METHOD: Competition analysis was conducted at the Sydney 2000 Olympic Games by the Australian Institute of Sport (AIS) Biomechanics Department using the Australian Format for the presentation of the results. Five Sony TRV-9OOE cameras were located on the gantry directly above the pool and were used to gather data for the competition analysis. Information derived from these cameras included stroke length, stroke frequency, interval velocity and start, turn and finish times, as well as the 25 m split times (Mason 8. Cossor, 2000). To examine the start, critical pieces of information were examined including: the time that it takes for the swimmer to leave the block, the time and distance that the swimmer is in flight, 70

. the time and distance traveled under the water the time taken to reach the predetermined set distance Bbmechanics Symposia 2001 /University of San Francisco Two additional cameras located at approximately 5 m from either start end of the pool were used to monitor this information. Only lanes 5-8 at the 100 m start end and lanes 1-4 at the 50 m start end were analyzed due to the obstruction of views from this position. The starts were divided into sub phases using the AIS start and turn analysis computer program. All cameras operated at 25 frames per second with the analysis utilizing 50 fields per second. The time that the swimmer left the block and the time and distance information of the swimmer's head was collected when the swimmer entered the water and re-surfaced during the start. Leave block time was the time between the starting signal and the time when the swimmer's feet left the blocks. This information was provided by the official competition timing system. The flight phase was defined as that interval between leaving the blocks and the head making contact with the water. The underwater phase was defined as the interval between head contact with the water and the head re-surfacing. The above water phase consisted of the interval from head resurface until the center of the head reached the 15 m mark. Total start time was calculated as the time from the starting signal until the time the swimmer's head passed the 15 m mark. Pearson Product Moment Correlation statistics were used to determine the relationship of the various starting sub phases with the total start time (the criterion measure). RESULTS AND DISCUSSION: Men's Events: Time Spent Leaving the Block. In the Men's competition, the only events that displayed a significant positive correlation, for the leave block time with the 15 m start time, were the 100 m Butterfly and 400 m Individual Medley events. These correlations indicated that the slower the time to leave the blocks, then the slower was the 15 m start time. Leave block time would obviously be more crucial in the sprint events than the distance races. Time and Distance Traveled Underwater. Underwater distance was negatively correlated at a significant level for the 200 m Butterfly, 100 m Backstroke and 100 m Freestyle races (Table 1). Therefore, as the distance of the underwater phase increased, the 15 m start time decreased. A similar significant negative correlation was displayed for the time of the underwater phase with the 15 m start time in the 100 m and 200 m Butterfly events, 100 m Backstroke and 100 m Freestyle events. In the 200 m Butterfly and 100 m Freestyle events significant negative correlations were found for the underwater distance and time parameters with total start time. Underwater Velocity. A significant negative correlation was also displayed between the underwater velocity and the 15 m start time in the 100 m Backstroke and 100 m Breaststroke events. This would suggest that the greater the underwater velocity that a swimmer maintained in these events, the faster their total start time. Start Velocity. A significant correlation was also seen in the 200 m Freestyle race for the post start velocity with the 15 m start time. This indicated a tendency for the faster starters to 15 m to also be able to maintain higher post start free swim velocities. Women's Events: Time Spent Leaving the Block. In the women's 100 m Breaststroke event, the leave block time displayed a significant positive correlation with the time to reach the 15 m mark. Swimmers that took longer to leave the blocks also took a greater time to reach the 15 m mark.

Biomechanics Symposia 2001 /University of San Francisco Table 1 Significant (0.05) Correlations Between the Various Starting Phase Parameters with 15 m Total Start Time for Men. - Men Start I00 rn 100 rn 100 m I00 m Ib0 m 200 rn 400 rn-- Leave Block 0.629 Time Flight Dist Flight Time UMI Dist. -0.843-0.665-0.886 UMI Time -0.602-0.650-0.614-0.737 UMI Vel. -0.818-0.734 Post Swim -0.634 Time and Distance Traveled Underwater. The underwater distance, time and velocity displayed a significant negative correlation with the 15 m start time in the 200 m Butterfly. In the 200 m Breaststroke event there was also a significant negative correlation for the underwater distance and velocity with the start time to 15 m. Similar to the men's events, those swimmers who spent a longer time and traveled a greater distance underwater had faster 15 m start times. Time Spent in Flight. Flight distance and flight time displayed a significant positive correlation and underwater distance and velocity displayed a significant negative correlation with the 15 m start time in the 100 m Backstroke. In other words, the further out that the swimmer entered the water and the longer it took before entry, the slower was the overall start. On the other hand, the further that the swimmer traveled underwater and the greater average velocity attained during this phase, the faster was the start. The 200 m Individual Medley event analysis also indicated that the further the distance attained in the flight phase, the faster the 15 m time. Table 2 Significant (0.05) Correlations Between the Various Starting Phase Parameters with the 15 rn Start Time for the Women's Events "- Women Start 100 m 100 m 200 m 200 m 200 rn 200 rn 400 rn Back Breast Fly Breast Free P" --- Leave Block 0.711 Time Flight Dist 0.662 Flight Time 0.751 UMI Dist. -0.646-0.942-0.651-0.653 UMI Time -0.895-0.605 UMI Vel. -0.894-0.699-0.780 Post Swim The freestyle events only showed significant correlations in the 200 m and 400 m events. The 200 rn Freestyle demonstrated a significant, negative correlation for the underwater distance and time with the 15 m start time. The start time in the 400 m events were most related to the flight time and distance. In the lesser distance events faster entry times were related to the swimmer reaching the 15 m mark faster. The underwater phase was a major contributor to superior start performance. An indication of the time and distance contributions is provided in Figure 1. From this it can be seen that the 72

Biomechanics Symposia 2001 /University of San Francisco ratio of the underwater distance to start distance is greater than the ratio of the underwater time to start time in the longer events. In events where both the men and women showed significant correlations with the start time, the men were able to utilize the underwater phase of the start better than the women. Figure 1 - MlOOFh M 1011Baik W 300 Ban M 400 Brs WIOIBrs M2ODFly WZOOFly W2mfne MZOIIFre W2OU Fre WZmlU WlOOFre Ma0 1M Event Underwater distance as a percentage of total start distance and underwater time as a percentage of total start time. CONCLUSION: There are various parameters that are used to examine performance in the Australian swimming competition analysis and these include the overall start, turn and finish times as well as stroke length, stroke frequency and free swim velocity for each 25 m race section. A more detailed analysis of the start phase was believed to be necessary in order to determine the sub phases within a start that most influence the overall starting time. The level of importance of the underwater phase as a percentage of the 15 m start time was also highlighted (Figure 1). By examining the influence of the time and distance parameters for the leave block phase, flight phase, underwater phase and above water phase in relation to the 15 m start time, it was possible to determine using correlation statistics that the underwater phase of the start had the greatest influence on the time of the race start phase. Future studies should examine the maximum depth that a swimmer reaches during their dive phase and how this influences the 15 m start time. Larger sample sizes in future would also increase the possibility of finding more significant correlations. REFERENCES: Bloom, J.A., Hosler, Wm.W., & Disch, J.G. (1978). Differences in flight, reaction and movement time for the grab and conventional Starts. Swimming Technique, 15(2), 34-36. Havriluk, R., & Ward, T. (1979). A cinematographic analysis of three grab starts. Swimming Technique, 16(2), 50-52. Mason, 0. B Cossor, J. (2000). What can we learn from competition analysis at the 1999 Pan Pacific swimming championships? In R. Sanders B Y. Hong, (Eds.) Proceedings of XVlll International Symposium on Biomechanics in Sports: Swimming (pp. 75-82). Hong Kong: Chinese University Press. Mills, B.D., B Gehlsen, G. (1996). A multidisciplinary investigation of the relation of state sport confidence with preference and velocity of swimming starts. Perceptual and Motor Skills, 83(1),

Biomechanics Symposia ZOO1 /University of San Francisco Nelson. R.C. & Pike, N.L. (1978). Analysis and comparison of swimming starts and strokes. In B. Eriksson & B. Furberg (Eds.) Swimming Medicine IV (pp. 347-360). Baltimore: University Park Press. ACKNOWLEDGMENTS: This research project would not have been possible without the support of Pfizer and the IOC Medical Commission in Sports Science for the research grant that was provided.