A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Similar documents
Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Electronic Supplementary Information

Supporting Information

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

noble-metal-free hetero-structural photocatalyst for efficient H 2

Supporting information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI)

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Electronic Supplementary Information

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Supporting Information

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Supporting Information

Supporting Information

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Supporting Information for

Supporting Information

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Supporting Information

Supporting Information

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Supplementary Information

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Supporting Information

Supplementary Information

Supplementary Material

Electronic Supplementary Information (ESI)

Electronic Supplementary Information

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

state asymmetric supercapacitors

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Supporting Information

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Supporting Information for

Supplementary Information

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Supporting Information

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Supporting information

Electronic Supplementary Information (ESI)

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supporting Information

Electronic Supporting Information (ESI)

Electronic Supplementary Information

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Supporting Information

Supporting information. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Complex Systems and Applications

Supporting Information

Supporting Information

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

Applied Medical Parasitology By LI CHAO PIN, ZHANG JIN SHUN ZHU BIAN SUN XIN

Imaging Spectrometer. Technologies and Applications PROCEEDINGS OF SPIE. International Symposium. Detection and Imaging on Photoelectronic

Supporting Information

Highly enhanced performance of spongy graphene as oil sorbent

Supplementary Information

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Supporting Information

Supporting Information

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

Flexible porous coordination polymers constructed by 1,2-bis(4-pyridyl)hydrazine via solvothermal in situ reduction of 4,4 -Azopyridine

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 ISSN SUPPORTING INFORMATION

A tribute to Guosen Yan

LC-MS-Guided Isolation of Insulin Secretion-promoting. Monoterpenoid Carbazole Alkaloids from Murraya

Supporting Information

Supplementary Information

ION Publication List

HONG KONG CHINA BODYBUILDING & FITNESS ASSOCIATION IS A MEMBER OF THE WBPF, ABBF & EABBF AND RECOGNISED BY THE SPORTS FEDERATION & OLYMPIC COMMITTEE O

Electronic Supplementary Information

Curriculum Vitae. Yu (Will) Wang

Three-Dimensional Plasmonic Hydrogel Architecture: Facile Synthesis and Its Macro Scale Effective Space

Supplementary Information

Hawaiienols A D, Highly Oxygenated p-terphenyls from an. Insect-Associated Fungus Paraconiothyrium hawaiiense

Supporting Information. High-performance nonfullerene polymer solar cells based on fluorinated wide

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

Bafilomycins and Odoriferous Sesquiterpenoids from Streptomyces albolongus Isolated from Elephas maximus Feces

Fortunoids A C, Three Sesquiterpenoid Dimers with. Different Carbon Skeletons from Chloranthus fortunei

Zhao Bao Tai Chi Kung Fu (English/Chinese Edition) (English And Chinese Edition) By Wayne Peng

Transcription:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 216 Electronic Supplementary Information A mitochondria-targeted near-infrared probe for colorimetric and ratiometric fluorescence detection of hypochlorite in living cells Junchao Xu, ac Houqun Yuan, b Caiqin Qin, a Lintao Zeng* ac and Guang-Ming Bao* b a Department of Chemistry and Materials Sciences, Hubei Engineering University, Xiaogan 4321, P.R. China. E-mail: zlt1981@126.com (L. Zeng). b College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 3345, P.R. China. Email: bycb25@gmail.com (G.-M. Bao). c School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 3384, P.R. China. Contents 1. 1 H NMR, 13 C NMR and HR-MS spectra of CMBI 2. Summary of photophysical properties 3. Ratiometric response of CMBI toward ClO at low concentrations 4. Selectivity of CMBI toward ClO 5. Kinetics research for CMBI towards ClO, HSO3 and HS 6. Proposed mensing mechanism 7. Cell toxicity test of CMBI 8. Comparison of ratiometric fluorescent probes for ClO 9. 1 H NMR spectra of compounds 1 and 2

1. 1 H NMR, 13 C NMR and HR-MS spectra of CMBI Fig. S1 1 H NMR spectrum of CMBI in DMSO-d6 (4 MHz). Fig. S2 13 C NMR spectrum of CMBI in DMSO-d6 (1 MHz).

Fig. S3 HR-MS (ESI) spectrum of CMBI. 2. Summary of photophysical properties Table S1 Spectroscopic properties of CMBI (1 μm) and CMBI (1 μm) with ClO (1 μm) in EtOH/PBS solution (v/v = 1/9, ph 7.4, 1 mm). Compound λabs (nm) λem (nm) Φ Δν (cm 1 ) CMBI 592 658.12 1694 CMBI + ClO 4 475.141 3947 3. Ratiometric response of CMBI toward ClO at low concentrations Fluorescence Intensity 2 15 1 5 (a) 7.5 μm [ClO ] 7.5 μm 45 5 55 6 65 7 Wavelength (nm) F 475 /F 658.6.5.4.3 2 4 6 8 [ClO ] (μm).2.1. (b)..5 1. 1.5 2. 2.5 4 2 F 475 /F 658 y =.1399x +.713 R 2 =.9922 [ClO ] (μm) Fig. S4 (a) Fluorescence spectra changes of 1 µm CMBI in EtOH/PBS solution (v/v = 1/9, ph 7.4, 1 mm) upon addition of increasing amount of ClO ( 7.5 μm). (b) Linear relationship between fluorescence intensity of 1. µm CMBI versus concentrations of ClO in EtOH/PBS solution (v/v = 1/9, ph 7.4, 1 mm). Each spectrum was recorded after 3 min.

4. Selectivity of CMBI toward ClO Absorbance.8.6.4.2. (a) CMBI CMBI + ClO CMBI + Anion CMBI + HSO 3 CMBI + SH CMBI + ONOO 3 4 5 6 7 Wavelength (nm) Fluorescence Intensity 25 2 15 1 5 (b) CMBI CMBI + ClO CMBI + Anion CMBI + HSO 3 CMBI + SH CMBI + ONOO 4 45 5 55 6 65 7 Wavelength (nm) 6 (c) 4 A 4 /A 592 2 Blank ClO F Cl Br N 3 NO 2 NO 3 AcO HCO 3 2 HPO 4 H 2 PO 4 SH 2 SO 3 2 SO 4 2 S 2 O 3 Cys Hcy GSH H 2 O 2 OH TBHP TBO O 2 1 O2 NO ONOO 1 Fig. S5 (a) UV-vis absorption, (b) fluorescence spectra changes and (c) UV-vis absorption ratios (A4/A592) of 1 μm CMBI in EtOH/PBS solution (v/v = 1/9, ph 7.4, 1 mm) in the presence of various small molecular species (5 μm) and ROS/RNS (1 μm). Each spectrum was recorded after 3 min.

5. Kinetics research for CMBI towards ClO, HSO3 and HS F 475 ln(1-f t /F max ) 25 2 15 1 5.2. -.2 -.4 -.6 -.8-1. -1.2-1.4 (a) 3 6 9 12 15 18 (c) CMBI + ClO CMBI + HSO 3 CMBI + SH Response Time (s) y =.139x.571 R 2 =.9916 CMBI + HSO 3 k' =.139 s 1 15 3 45 6 75 9 Response Time (s) ln(1-f t /F max ) ln(1-f t /F max ).5. -.5-1. -1.5-2. -2.5-3. -3.5.5. -.5-1. -1.5-2. -2.5-3. (b) y =.322x.186 R 2 =.9947 15 3 45 6 75 9 (d) CMBI + ClO k' =.322 s 1 Response Time (s) y =.29x.36 R 2 =.9971 CMBI + SH k' =.29 s 1 15 3 45 6 75 9 Response Time (s) Fig. S6 Time-resolved fluorescence responses (a) and Pseudo-first-order kinetic plot of 1 μm CMBI towards 1 µm ClO (b), HSO3 (c) and HS (d) in EtOH/PBS solution (v/v = 1/9, ph 7.4, 1 mm).

6. Proposed mensing mechanism [CMBI] + [1 + H] + Fig. S7 HR-MS (ESI) spectrum of CMBI with ClO. 7. Cell toxicity test of CMBI 1 Survival Rate (%) 8 6 4 2 1 2.5 5 1 15 2 [CMBI] (μm) Fig. S8 Cell toxicity effect of CMBI. HeLa cells were incubated with CMBI ( 2 μm) for 24 h. Results are mean ± SD, n = 3.

8. Comparison of ratiometric fluorescent probes for ClO Table S2 Comparison of ratiometric fluorescent probes for ClO Probes Phenanthroimidazole Probe 1 [1] 1b [2] λex /nm 394 54 464 Cou-Rho-HOCl [3] 41 BODIPY-DCDHF 465 Probe 1 [4] Cy7-NR1 [5] 54 Z2 [6] 46 CDH [7] 316 41 HRS1 [8] 554 DPNO [9] 35 DPH [1] 344 CMCY [11] 46 Coumarin-Pyridinium 42 Probe 1 [12] 1,8-diaminonaphthalene [13] 325 Coumarin-Rhodamine 41 Probe 2 [14] λem /nm 439 59 585 55 473 594 629 52 78 566 59 6 376 456 51 578 354 43 495 375 631 48 631 488 44 518 58 47 Reagents Detection Response limit/nm time/s Application ph 9. PBS Within (8% DMF) MCF-7 cells (Ex) 2 < 6 (2% DMF) Ex = exogenous Bel 772 cells (Ex) (5% DMF) 52 < 6 En = endogenous (1% EtOH,.1 % 5 ~ 4 RAW 264.7 cells (Ex, En) Triton X-1) (.5% DMF) 19.5 ~ 36 HeLa cells (Ex) 63 < 12 Test paper ph 7.4 HEPES 17 < 6 (4% CH 3CN) TLC plate strips ph 8.5 PBS (4% DMF) 24 < 6 ph 7.4 HEPES 56 < 6 (6% CH 3CN) TLC plate strips ph 7.4 HEPES (5% EtOH) 35 8 < 12 HeLa cells (Ex) 93 ~ 2 (75% THF) ph 7. HEPES 2 < 2 HepG2 cells (Ex) ph 5. PBS (4% DMF) < 5

BTHT [15] 365 562 476 ph 7.4 HEPES (5% CH 3CN) 14 < 48 TLC plate strips NIR-1 thiospirolactone Probe 1 [16] 43 65 486 77 (3% CH 3CN) 4 Within HeLa cells (Ex) TAM [17] 43 63 485 ph 7.1 H 2O (4% THF) 7 ~ 1 TLC plate strips PBMCs (Ex) Dansyl-Rhodamine Probe 1 [18] 4 494 578 ph 8. PBS (1% CH 3CN) 113 < 12 Test paper PMN-TPP [19] 41 522 64 ph 7.3 PBS (.5% DMSO, 1 mm Triton X-1) 43 Few Nude mouse (En) Naph-Rh [2] 35 44 585 ph 6. PBS (3% EtOH) 1 < 5 RMClO-2 [21] 412 54 476 57 (.1% DMSO).84 Within Normal and cancer cells HPQ-Cy2 [22] 365 575 435 (.5% EtOH) 28 < 5 A375 cells (En) CRSH [23] 35 47 58 ph 5. PBS (5% EtOH) 21 ~ 6 STBR [24] 37 514 595 ph 7.5 PBS (2% CH 3CN) 22 TLC plate strips Baker s yeast (Ex) AETU-HOCl [25] 38 533 473 (5% EtOH) 3.9 ~ 6 QC1 [26] 4 482 381 ph 7.4 HEPES (1% DMSO) 41 Naphthalimide-Indolium Probe 1 [27] 43 62 515 ph 7. HEPES (5% MeOH) 53 ~ 5 HepG2 cells (Ex) HES-BODIPY [28] 48 562 532 ph 7.1 PBS (1% EtOH) 43 Within BRT [29] 525 54 58 ph 5. PBS (6% EtOH) 38 ~ 15 CARSH [3] 35 49 58 ph 5. PBS (5% EtOH) 2 ~ 6 Lyso-HA [31] 42 45 586 ph 5. PBS (3% DMSO) 11 Within HeLa cells (Ex)

MTPE-M [32] 34 Py-Cy [33] 43 CMBI (This work) 585 39 595 498 613 47 658 475 (1% DMSO, 1mM CTAB) (5% DMSO) (1% EtOH) 47 ~ 18 35 42 Zebrafish (En) HeLa cells (Ex) 33 ~ 9 HeLa cells (Ex) 1 W. Lin, L. Long, B. Chen and W. Tan, Chem. Eur. J., 29, 15, 235. 2 L. Yuan, W. Lin, J. Song and Y. Yang, Chem. Commun., 211, 47, 12691. 3 L. Yuan, W. Lin, Y. Xie, B. Chen, J. Song, Chem. Eur. J., 212, 18, 27. 4 J. Park, H. Kim, Y. Choi and Y. Kim, Analyst, 213, 138, 3368. 5 Z. Lou, P. Li, P. Song and K. Han, Analyst, 213, 138, 6291. 6 Q. Wang, C. Liu, J. Chang, Y. Lu, S. He, L. Zhao and X. Zeng, Dyes Pigm., 213, 99, 733. 7 S. Goswami, S. Paul and A. Manna, Dalton Trans., 213, 42, 197. 8 L. Long, D. Zhang, X. Li, J. Zhang, C. Zhang and L. Zhou, Anal. Chim. Acta, 213, 775, 1. 9 S. Goswami, A. Manna, S. Paul, C. K. Quah and H.-K. Fun, Chem. Commun., 213, 49, 11656. 1 C.-C. Zhang, Y. Gong, Y. Yuan, A. Luo, W. Zhang, J. Zhang, X. Zhang and W. Tan, Anal. Methods, 214, 6, 69. 11 J. Zha, B. Fu, C. Qin, L. Zeng and X. Hu, RSC Adv., 214, 4, 4311. 12 L. Wang, L. Long, L. Zhou, Y. Wu, C. Zhang, Z. Han, J. Wang and Z. Da, RSC Adv., 214, 4, 59535. 13 Y. Yang, C. Yin, F. Huo, J. Chao, Y. Zhang and S. Jin, Sens. Actuators, B, 214, 199, 226. 14 Y.-R. Zhang, X.-P. Chen, J. Shao, J.-Y. Zhang, Q. Yang, J.-Y. Miao and B.-X. Zhao, Chem. Commun., 214, 5, 14241. 15 A. Manna and S. Goswami, New J. Chem., 215, 39, 4424. 16 S. Ding, Q. Zhang, S. Xue and G. Feng, Analyst, 215, 14, 4687. 17 S. Goswami, K. Aich, S. Das, B. Pakhira, K. Ghoshal, C. K. Quah, M. Bhattacharyya, H.-K. Fun and S. Sarkar, Chem. Asian J., 215, 1, 694. 18 H. J. Lee, M. J. Cho and S.-K. Chang, Inorg. Chem., 215, 54, 8644. 19 H. Xiao, J. Li, J. Zhao, G. Yin, Y. Quan, J. Wang and R. Wang, J. Mater. Chem. B, 215, 3, 1633. 2 Y.-R. Zhang, N. Meng, J.-Y. Miao and B.-X. Zhao, Chem. Eur. J. 215, 21, 1958. 21 J.-T. Hou, K. Li, J. Yang, K.-K. Yu, Y.-X. Liao, Y.-Z. Ran, Y.-H. Liu, X.-D. Zhou and X.-Q. Yu, Chem. Commun., 215, 51, 6781. 22 L. Zhou, D.-Q. Lu, Q. Wang, S. Hu, H. Wang, H. Sun and X. Zhang, Spectrochim. Acta A, 216, 166, 129. 23 Y.-R. Zhang, Z.-M. Zhao, L. Su, J.-Y. Miao and B.-X. Zhao, RSC Adv., 216, 6, 1759. 24 A. Manna, D. Sarkar, S. Goswami, C. K. Quah and H.-K. Fun, RSC Adv., 216, 6, 57417. 25 W. Shu, P. Jia, X. Chen, X. Li, Y. Huo, F. Liu, Z. Wang, C. Liu, B. Zhu, L. Yan and B. Du, RSC Adv., 216, 6, 64315. 26 L. Wang, Y. Hu, Y. Qu, J. Xu and J. Cao, Dyes Pigm., 216, 128, 54. 27 J. Li, P. Li, F. Huo, C. Yin, T, Liu, J. Chao and Y. Zhang, Dyes Pigm., 216, 13, 29. 28 X. Wang, L. Zhou, F. Qiang, F. Wang, R. Wang and C. Zhao, Anal. Chim. Acta, 216, 911, 114. 29 Y. Liu, Z.-M. Zhao, J.-Y. Miao and B.-X. Zhao, Anal. Chim. Acta, 216, 921, 77. 3 Y.-R. Zhang, Z.-M. Zhao, J.-Y. Miao and B.-X. Zhao, Sens. Actuators, B, 216, 229, 48. 31 M. Ren, B. Deng, K, Zhou, X. Kong, J.-Y. Wang, G. Xu and W. Lin, J. Mater. Chem. B, 216, 4, 4739. 32 Y. Huang, P. Zhang, M. Gao, F. Zeng, A. Qin, S. Wu and Z. Tang, Chem. Commun.,216, 52, 7288. 33 Y. Wu, J. Wang, F. Zeng, S. Huang, J. Huang, H. Xie, C. Yu and S. Wu, ACS Appl. Mater. Interfaces, 216, 8, 1511.

9. 1 H NMR spectra of compounds 1 and 2 Fig. S9 1 H NMR spectrum of compound 1 in CDCl3 (4 MHz). Fig. S1 1 H NMR spectrum of compound 2 in DMSO-d6 (4 MHz).