OpenStax-CNX module: m Pascal's Principle. OpenStax. By the end of this section, you will be able to:

Similar documents
Variation of Pressure with Depth in a Fluid *

Fluid Statics. AP Physics 2

Pressure and Depth. In a static, non-moving fluid

Concept of Fluid. Density. Pressure: Pressure in a Fluid. Pascal s principle. Buoyancy. Archimede s Principle. Forces on submerged surfaces

Phase Changes * OpenStax

PHYS 101 Previous Exam Problems

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C

Gauge Pressure, Absolute Pressure, and Pressure Measurement

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.

In the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.

3 1 PRESSURE. This is illustrated in Fig. 3 3.

Properties of Fluids SPH4C

Archimedes' Principle

Section 3: Fluids. States of Matter Section 3. Preview Key Ideas Bellringer Pressure

MS.RAJA ELGADY/PRESSURE PAPER 3

Forces in Fluids. Pressure A force distributed over a given area. Equation for Pressure: Pressure = Force / Area. Units for Pressure: Pascal (Pa)

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey

Fluid Mechanics - Hydrostatics. AP Physics B

Gases and Pressure. Main Ideas

Page 1

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

11 FLUID STATICS. Learning Objectives. Introduction to Fluid Statics What Is a Fluid?

Fluid Mechanics - Hydrostatics. Sections 11 5 and 6

PRESSURE. 7. Fluids 2

Example A: A 400-N force is applied to a tabletop over a square area with side-length L = 20-cm.

Archimedes' Principle

Unit 7. Pressure in fluids

Longitudinal waves: Part 1

L 13 Fluid Statics [2] More on fluids. How can a steel boat float. A ship can float in a cup of water! Today s weather

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 9 Fluids and Buoyant Force

End of Chapter Exercises

Chapter 15 Fluids. Copyright 2010 Pearson Education, Inc.

Properties of Fluids. How do ships float?

LAB 13: FLUIDS OBJECTIVES

Slide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ

PHYS:1200 LECTURE 13 FLUIDS (2)

28 multiple choice, 4 wrong answers will be dropped Covers everything learned in Phys 105 and 106

Lecture 20. Static fluids

Chapter 9 Solids and Fluids

Liquids and Gases. 2/26/2012 Physics 214 Fall

Gases and Pressure SECTION 11.1

LAB 13: FLUIDS OBJECTIVES

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS PRE-IB PHYSICS

1/4/18. Density. Density. Density


3.4 Compression of Fluids

Pressure is defined as force per unit area. Any fluid can exert a force

Process Nature of Process

HW #10 posted, due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade)

Fluids. How do fluids exert pressure? What causes objects to float? What happens when pressure in a fluid changes? What affects the speed of a fluid?

Unit A: Mix and Flow of Matter

Chapter 10 Fluid Power Pneumatics (gas) & Hydraulics (liquid)

Kinetic-Molecular Theory

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

Physics 221, March 1. Key Concepts: Density and pressure Buoyancy Pumps and siphons Surface tension

Chapter 14. Fluids. A fluid a substance that can flow (in contrast to a solid)

Chapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle

End of Chapter Exercises

Chapter 9. Forces and Fluids

Fluids, Pressure and buoyancy

Gas volume and pressure are indirectly proportional.

Chapter 13. liquids. gases. 1) Fluids exert pressure. a) because they're made up of matter and therefore forces are applied to them

Lesson 12: Fluid statics, Continuity equation (Sections ) Chapter 9 Fluids

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Lab 10 - Fluids. Fluids are an important part of our body. To learn how some fundamental physical principles apply to fluids.

Physics General Physics. Lecture 19 - Fluids. Fall 2016 Semester Prof. Matthew Jones

SPH 4C Unit 4 Hydraulics and Pneumatic Systems

Old-Exam.Questions-Ch-14 T072 T071

09 - Choosing /sizing a cylinder and valve

Density and Specific Gravity

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Name: Date Due: Simple Machines. Physical Science Chapter 4

This Week.

PHYSICS - CLUTCH CH 17: FLUID MECHANICS.

From and

mass of container full of air = g mass of container with extra air = g volume of air released = cm 3

Pressures in the Body *

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1

Simulating Microgravity with Buoyancy A Space School Lesson Plan

then the work done is, if the force and the displacement are in opposite directions, then the work done is.

Mechanical Advantage 1

Bernoulli's Principle

Conceptual Physics Fundamentals

13.1!"#$#%"&'%()$*+%,+-.$+/*$#

P5 PRESSURE IN FLUIDS AND ATMOSPHERIC PRESSURE

9A Gas volume and pressure are indirectly proportional.

Force Pressure = Area

Problem Solving. Gas Laws

Science 8 Chapter 9 Section 1

PHY131H1S - Class 23. Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle. A little pre-class reading quiz

Lecture 19 Fluids: density, pressure, Pascal s principle and Buoyancy.

Activity Sheet 1 What determines the amount of friction between two surfaces?

AP B Fluids Practice Problems. Multiple Choice. Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43

Module 2, Add on Lesson Depth Sensor. Teacher. 90 minutes

Chapter 10 Fluids. Which has a greater density? Ch 10: Problem 5. Ch 10: Problem Phases of Matter Density and Specific Gravity

Quiz name: Chapter 13 Test Review - Fluids

Review: Fluids. container into which it has been poured. changes gases are compressible. pressure changes

Transcription:

OpenStax-CNX module: m55212 1 Pascal's Principle OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 Learning Objectives By the end of this section, you will be able to: Dene pressure. State Pascal's principle. Understand applications of Pascal's principle. Derive relationships between forces in a hydraulic system. Pressure is dened as force per unit area. Can pressure be increased in a uid by pushing directly on the uid? Yes, but it is much easier if the uid is enclosed. The heart, for example, increases blood pressure by pushing directly on the blood in an enclosed system (valves closed in a chamber). If you try to push on a uid in an open system, such as a river, the uid ows away. An enclosed uid cannot ow away, and so pressure is more easily increased by an applied force. What happens to a pressure in an enclosed uid? Since atoms in a uid are free to move about, they transmit the pressure to all parts of the uid and to the walls of the container. Remarkably, the pressure is transmitted undiminished. This phenomenon is called Pascal's principle, because it was rst clearly stated by the French philosopher and scientist Blaise Pascal (16231662): A change in pressure applied to an enclosed uid is transmitted undiminished to all portions of the uid and to the walls of its container. : A change in pressure applied to an enclosed uid is transmitted undiminished to all portions of the uid and to the walls of its container. Pascal's principle, an experimentally veried fact, is what makes pressure so important in uids. Since a change in pressure is transmitted undiminished in an enclosed uid, we often know more about pressure than other physical quantities in uids. Moreover, Pascal's principle implies that the total pressure in a uid is the sum of the pressures from dierent sources. We shall nd this factthat pressures addvery useful. Blaise Pascal had an interesting life in that he was home-schooled by his father who removed all of the mathematics textbooks from his house and forbade him to study mathematics until the age of 15. This, of course, raised the boy's curiosity, and by the age of 12, he started to teach himself geometry. Despite this early deprivation, Pascal went on to make major contributions in the mathematical elds of probability theory, number theory, and geometry. He is also well known for being the inventor of the rst mechanical digital calculator, in addition to his contributions in the eld of uid statics. Version 1.2: Jul 14, 2015 2:50 pm +0000 http://creativecommons.org/licenses/by/4.0/

OpenStax-CNX module: m55212 2 2 Application of Pascal's Principle One of the most important technological applications of Pascal's principle is found in a hydraulic system, which is an enclosed uid system used to exert forces. The most common hydraulic systems are those that operate car brakes. Let us rst consider the simple hydraulic system shown in Figure 1. Figure 1: A typical hydraulic system with two uid-lled cylinders, capped with pistons and connected by a tube called a hydraulic line. A downward force F 1 on the left piston creates a pressure that is transmitted undiminished to all parts of the enclosed uid. This results in an upward force F 2 on the right piston that is larger than F 1 because the right piston has a larger area.

OpenStax-CNX module: m55212 3 3 Relationship Between Forces in a Hydraulic System We can derive a relationship between the forces in the simple hydraulic system shown in Figure 1 by applying Pascal's principle. Note rst that the two pistons in the system are at the same height, and so there will be no dierence in pressure due to a dierence in depth. Now the pressure due to F 1 acting on area is simply P 1 = F1, as dened by P = F A. According to Pascal's principle, this pressure is transmitted undiminished throughout the uid and to all walls of the container. Thus, a pressure P 2 is felt at the other piston that is equal to P 1. That is P 1 = P 2. But since P 2 = F2, we see that F1 = F2. This equation relates the ratios of force to area in any hydraulic system, providing the pistons are at the same vertical height and that friction in the system is negligible. Hydraulic systems can increase or decrease the force applied to them. To make the force larger, the pressure is applied to a larger area. For example, if a 100-N force is applied to the left cylinder in Figure 1 and the right one has an area ve times greater, then the force out is 500 N. Hydraulic systems are analogous to simple levers, but they have the advantage that pressure can be sent through tortuously curved lines to several places at once. Example 1: Calculating Force of Slave Cylinders: Pascal Puts on the Brakes Consider the automobile hydraulic system shown in Figure 2.

OpenStax-CNX module: m55212 4 Figure 2: Hydraulic brakes use Pascal's principle. The driver exerts a force of 100 N on the brake pedal. This force is increased by the simple lever and again by the hydraulic system. Each of the identical slave cylinders receives the same pressure and, therefore, creates the same force output F 2. The circular cross-sectional areas of the master and slave cylinders are represented by and, respectively A force of 100 N is applied to the brake pedal, which acts on the cylindercalled the master through a lever. A force of 500 N is exerted on the master cylinder. (The reader can verify that the force is 500 N using techniques of statics from Applications of Statics, Including Problem-Solving Strategies 1.) Pressure created in the master cylinder is transmitted to four so-called slave cylinders. The master cylinder has a diameter of 0.500 cm, and each slave cylinder has a diameter of 2.50 cm. Calculate the force F 2 created at each of the slave cylinders. Strategy We are given the force F 1 that is applied to the master cylinder. The cross-sectional areas and can be calculated from their given diameters. Then F1 = F2 can be used to nd the force F 2. Manipulate this algebraically to get F 2 on one side and substitute known values: Solution 1 "Applications of Statics, Including Problem-Solving Strategies" <http://cnx.org/content/m55179/latest/>

OpenStax-CNX module: m55212 5 Pascal's principle applied to hydraulic systems is given by F1 = F2 : F 2 = F 1 = πr2 2 F 1 = (1.25cm)2 (0.250cm) 2 500 N = 1.25 104 N. (1) πr 2 1 Discussion This value is the force exerted by each of the four slave cylinders. Note that we can add as many slave cylinders as we wish. If each has a 2.50-cm diameter, each will exert 1.25 10 4 N. A simple hydraulic system, such as a simple machine, can increase force but cannot do more work than done on it. Work is force times distance moved, and the slave cylinder moves through a smaller distance than the master cylinder. Furthermore, the more slaves added, the smaller the distance each moves. Many hydraulic systemssuch as power brakes and those in bulldozershave a motorized pump that actually does most of the work in the system. The movement of the legs of a spider is achieved partly by hydraulics. Using hydraulics, a jumping spider can create a force that makes it capable of jumping 25 times its length! : Conservation of energy applied to a hydraulic system tells us that the system cannot do more work than is done on it. Work transfers energy, and so the work output cannot exceed the work input. Power brakes and other similar hydraulic systems use pumps to supply extra energy when needed. 4 Section Summary Pressure is force per unit area. A change in pressure applied to an enclosed uid is transmitted undiminished to all portions of the uid and to the walls of its container. A hydraulic system is an enclosed uid system used to exert forces. 5 Conceptual Questions Exercise 1 Suppose the master cylinder in a hydraulic system is at a greater height than the slave cylinder. Explain how this will aect the force produced at the slave cylinder. 6 Problems & Exercises Exercise 2 (Solution on p. 7.) How much pressure is transmitted in the hydraulic system considered in Example 1 (Calculating Force of Slave Cylinders: Pascal Puts on the Brakes)? Express your answer in pascals and in atmospheres. Exercise 3 What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000-kg car (a large car) resting on the slave cylinder? The master cylinder has a 2.00-cm diameter and the slave has a 24.0-cm diameter. Exercise 4 (Solution on p. 7.) A crass host pours the remnants of several bottles of wine into a jug after a party. He then inserts a cork with a 2.00-cm diameter into the bottle, placing it in direct contact with the wine. He is amazed when he pounds the cork into place and the bottom of the jug (with a 14.0-cm diameter) breaks away. Calculate the extra force exerted against the bottom if he pounded the cork with a 120-N force.

OpenStax-CNX module: m55212 6 Exercise 5 A certain hydraulic system is designed to exert a force 100 times as large as the one put into it. (a) What must be the ratio of the area of the slave cylinder to the area of the master cylinder? (b) What must be the ratio of their diameters? (c) By what factor is the distance through which the output force moves reduced relative to the distance through which the input force moves? Assume no losses to friction. Exercise 6 (Solution on p. 7.) (a) Verify that work input equals work output for a hydraulic system assuming no losses to friction. Do this by showing that the distance the output force moves is reduced by the same factor that the output force is increased. Assume the volume of the uid is constant. (b) What eect would friction within the uid and between components in the system have on the output force? How would this depend on whether or not the uid is moving?

OpenStax-CNX module: m55212 7 Solutions to Exercises in this Module Solution to Exercise (p. 5) 2.55 10 7 Pa; or 251 atm Solution to Exercise (p. 5) 5.76 10 3 N extra force Solution to Exercise (p. 6) ( A (a) V = d i A i = d o A o d o = d i i Now, using equation: Finally, A o ). F 1 = F 2 F o = F i ( Ao A i ). (2) ( ) ( ) Fi A o di A i W o = F o d o = = F i d i = W i. (3) A i In other words, the work output equals the work input. (b) If the system is not moving, friction would not play a role. With friction, we know there are losses, so that W out = W in W f ; therefore, the work output is less than the work input. In other words, with friction, you need to push harder on the input piston than was calculated for the nonfriction case. Glossary Denition 1: Pascal's Principle a change in pressure applied to an enclosed uid is transmitted undiminished to all portions of the uid and to the walls of its container A o