Gases and Pressure. Main Ideas

Similar documents
Gases and Pressure SECTION 11.1

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion

Kinetic-Molecular Theory

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure.

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT:

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1

Gases CHAPTER 11. Online Chemistry. Why It Matters Video

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure =

Chapter 12. Properties of Gases

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

Unit 8: Gases and States of Matter

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases

Name Chemistry Pre-AP

Section 10-1: The Kinetic-Molecular Theory of Matter. 1) How does the word kinetic apply to particles of matter?

Gases. Edward Wen, PhD

Notes: Gas Laws (text Ch. 11)

Chemistry Chapter 11 Test Review

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 5. Pressure. Atmospheric Pressure. Gases. Force Pressure = Area

Completed ALL 2 Warm-up IC Kinetic Molecular Theory Notes. Kinetic Molecular Theory and Pressure Worksheet

Chemistry Chapter 12. Characteristics of Gases. Characteristics of Gases 1/31/2012. Gases and Liquids

CHEMISTRY - CLUTCH CH.5 - GASES.

Outcomes: Example the historical development of the measurement of pressure. Include: Galileo, Toricelli, von Gureick, Pascal, Huygens, Avogadro,

Unit 10: Gas Laws. Monday Tuesday Wednesday Thursday Friday. 10 Review for Cumulative Retest. 17 Chem Think Gas Laws Tutorial- Computer Lab-

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them.

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases.

Gases Chapter 8. Chapter 8

Gases. Chapter 8. Chapter 8. Gases Properties of Gases. We are surrounded by gases, but we are often

Chapter 10. Physical Characteristics of Gases

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Unit 8: Kinetic Theory Homework Packet (90 points)

A. What are the three states of matter chemists work with?

8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points.

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Gases. Chapter 5: Gas Laws Demonstration. September 10, Chapter 5 Gasses.notebook. Dec 18 10:23 AM. Jan 1 4:11 PM. Crushing 55 gallon drum

Chapter 10: Gases. Characteristics of Gases

Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops

4.) There are no forces of attraction or repulsion between gas particles. This means that

PSI Chemistry: Gases Multiple Choice Review

Gas Laws Chapter 14. Complete the following pressure conversion. Be sure to show how units cancel.

Chapter 14-Gases. Dr. Walker

Boyle s Law Practice

Chapter 5. Nov 6 1:02 PM

Lecture Handout 5: Gases (Online Text Chapter 6)

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Dalton s Law How is the total pressure of a mixture of gases related to the partial pressures of the component gases?

States of Matter Review

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2

B. As the gas particles move and strike a surface, they push on that surface 1. If we could measure the total amount of force exerted by gas

Student Edition. Program Preview. HMDScience.com

CHM Basics of Gases (r14) Charles Taylor 1/9

Chapter 9 Gases: Their Properties and Behavior

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation

Gas Laws. Directions: Describe what contribution each of the Scientist below made to the Gas Laws and include there gas law equation.

NOTES: Behavior of Gases

Gas Laws For CHM1020

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c).

Chapter 13: The Behavior of Gases

Chem 110 General Principles of Chemistry

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

Gilbert Kirss Foster. Chapter 10. Properties of Gases The Air We Breathe

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CHAPTER 1 KINETIC THEORY OF GASES (PART A)

CHAPTER 11: THE GASEOUS STATE

Determination of R: The Gas-Law Constant

Chapter 10: Properties of Gases: The Air We Breathe

2. Calculate the ratio of diffusion rates for carbon monoxide (CO) and carbon dioxide (CO2). υa = MB = 44 = 1.25

Chapter 12. The Gaseous State of Matter

Accelerated Chemistry Study Guide Chapter 13: Gases

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot?

Unit 7. Pressure in fluids

13.1!"#$#%"&'%()$*+%,+-.$+/*$#

Chemistry 1B Chapter 10 Worksheet - Daley. Name

Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses.

Name: Chapter 13: Gases

Kinetic-Molecular Theory of Matter

Gases Chapter 11 (and 10)

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases.

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Chapter 10 Fluids. Which has a greater density? Ch 10: Problem 5. Ch 10: Problem Phases of Matter Density and Specific Gravity

Kinetic Molecular Theory

Chapter 10: Properties of Gases: The Air We Breathe

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas.

Solids, Liquids, and Gases

Unit 9: Gas Laws REGENTS CHEMISTRY

Fluids. How do fluids exert pressure? What causes objects to float? What happens when pressure in a fluid changes? What affects the speed of a fluid?

GASES. Unit #8. AP Chemistry

Problem Solving. Gas Laws

Expand to fill their containers, are highly compressible, have extremely low densities.

1 Fluids and Pressure

General Properties of Gases

Honors Chemistry Unit 7 Gas Laws Notes

Behavior of Gases. Gases are mostly The molecules in a gas are separate, very small and very

Chemistry 51 Chapter 7 PROPERTIES OF GASES. Gases are the least dense and most mobile of the three phases of matter.

Transcription:

Gases and Pressure Key Terms pressure millimeters of mercury partial pressure newton atmosphere of pressure Dalton s law of partial pressures barometer pascal In the chapter States of Matter, you read about the kinetic-molecular theory, which is based on the idea that particles of matter are always in motion. In this section, you will study the implications of the kinetic-molecular theory of gases. You have learned that the temperature of a gas is related to the kinetic energy of the gas molecules. Now you will learn about other properties of gases, including pressure, volume, and amount of gas present, and about the relationships among these properties. Main Idea 9C Collisions of air molecules generate pressure. If you pump air into an automobile tire, the pressure in the tire will increase. The pressure increase is caused by the increase in the number of collisions of molecules of air with the inside walls of the tire. The collisions cause an outward push, or force, against the inside walls. Gas molecules exert pressure on any surface with which they collide. The pressure exerted by a gas depends on volume, temperature, and the number of molecules present. Pressure (P) is defined as the force per unit area on a surface. The equation defining pressure is shown in Figure 1.1. Main Ideas Collisions of air molecules generate pressure. Pressure depends on force and area. The total pressure of a gas mixture is the sum of the pressures of the gases in it. 9A describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as described by Boyle s law, Charles law, Avogadro s law, Dalton s law of partial pressure, and the ideal gas law; 9C describe the postulates of kinetic molecular theory. Figure 1.1 Section 1 9A, 9C Pressure and Area of Contact Because force is constant, the pressure the ballet dancer exerts against the floor depends on the area of contact. Pressure = Force Area Force = 500 N Force = 500 N Force = 500 N The larger the area of contact, the lower the pressure. The smaller the area of contact, the greater the pressure. Area of contact = 325 cm 2 Area of contact = 13 cm 2 Area of contact = 6.5 cm 2 (a) Pressure = _ 500 N 325 cm 2 = 1.5 N/cm2 (b) Pressure = _ 500 N 13 cm 2 = 38.5 N/cm2 (c) Pressure = _ 500 N 77 N/cm2 6.5 cm2 = Gases 349

Main Idea Pressure depends on force and area. CHECK FOR UNDERSTANDING Explain Why is it easier to pop a balloon with a sharp object than by squeezing it between your hands? Use the term pressure in your explanation. The SI unit for force is the newton (N). The newton is the force that will increase the speed of a one-kilogram mass by one meter per second each second that the force is applied. At Earth s surface, gravity has an acceleration of 9.8 m/s 2. Consider a ballet dancer with a mass of 51 kg, as shown in Figure 1.1 (on the previous page). A mass of 51 kg exerts a force of 500 N (51 kg 9.8 m/s 2 ) on Earth s surface. No matter how the dancer stands, she exerts the same force 500 N against the floor. But the pressure exerted against the floor depends on the area of contact. When the dancer rests her weight on the soles of both feet, as shown in Figure 1.1a, the area of contact with the floor is about 325 cm 2. The pressure, or force per unit area, when she stands in this manner is 500 N/325 cm 2, or roughly 1.5 N/cm 2. When she stands on her toes, as in Figure 1.1b, the total area of contact with the floor is only 13 cm 2. The pressure exerted is then equal to 500 N/13 cm 2 roughly 38 N/cm 2. And when she stands on one toe, as in Figure 1.1c, the pressure exerted is twice that, or about 77 N/cm 2. Thus, the same force applied to a smaller area results in a greater pressure. Figure 1.2 Atmospheric Pressure Air molecules collide with Earth s surface, creating pressure. Atmospheric Pressure The atmosphere the shell of air surrounding Earth exerts pressure. Figure 1.2 shows that atmospheric pressure at sea level is about equal to the weight of a 1.03 kg mass per square centimeter of surface, or 10.1 N/cm 2. The pressure of the atmosphere can be thought of as caused by the weight of the gases that compose the atmosphere. The atmosphere contains about 78% nitrogen, 21% oxygen, and 1% other gases, including argon and carbon dioxide. Atmospheric pressure is the sum of the individual pressures of the various gases in the atmosphere. Force Oxygen molecule, O 2 Nitrogen molecule, N 2 of pressure is the force of 10.1 N on 1 cm 2 Pressure Planetary Visions Ltd./Photo Researchers, Inc 350 Chapter 11

The Barometer A barometer is a device used to measure atmospheric pressure. The first type of barometer, illustrated in Figure 1.3, was introduced by Evangelista Torricelli during the early 1600s. Torricelli wondered why water pumps could raise water to a maximum height of only about 34 feet. He thought that the height must depend somehow on the weight of water compared with the weight of air. He reasoned that liquid mercury, which is about 14 times as dense as water, could be raised only 1/14 as high as water. To test this idea, Torricelli sealed a long glass tube at one end and filled it with mercury. Holding the open end with his thumb, he inverted the tube into a dish of mercury without allowing any air to enter the tube. When he removed his thumb, the mercury column in the tube dropped to a height of about 30 in. (760 mm) above the surface of the mercury in the dish, just as he predicted. Figure 1.3 Torricelli s Barometer Torricelli discovered that the pressure of the atmosphere supports a column of mercury about 760 mm above the surface of the mercury in the dish. Vacuum Pressure exerted by the column of mercury Atmospheric pressure Oxygen molecule, O 2 760 mm Nitrogen molecule, N 2 How a Barometer Works The space above the mercury in the tube of a barometer is nearly a vacuum. The mercury in the tube pushes downward because of gravitational force. The column of mercury in the tube is stopped from falling beyond a certain point because the atmosphere exerts a pressure on the surface of the mercury outside the tube. This pressure is transmitted through the fluid mercury and is exerted upward on the column of mercury. The exact height of the mercury in the tube depends on the atmospheric pressure, or force per unit area. The pressure is measured in terms of the mercury column s height in the barometer tube. From experiments like Torricelli s, it is known that at sea level at 0 C, the average pressure of the atmosphere can support a 760 mm column of mercury. The atmospheric pressure at any given place depends on the elevation and the weather conditions. If the atmospheric pressure is greater than the average at sea level, the height of the mercury column in a barometer will be greater than 760 mm. If the atmospheric pressure is less, the height of the mercury column will be less than 760 mm. Using a Manometer All gases exert pressure. A device called a manometer can be used to measure the pressure of an enclosed gas sample (see Figure 1.4). The difference in the height of mercury in the two arms of the -tube is a measure of the oxygen gas pressure in the container. Figure 1.4 Oxygen gas molecules exert a force Surface of mercury Measuring the Pressure of a Gas Sample In the manometer below, the pressure of the oxygen gas in the flask pushes on the mercury column. Vacuum Pressure of oxygen gas in mm Hg Oxygen molecules Mercury Gases 351

Consider a can filled with air. The atmosphere exerts a pressure on the can. The air inside the can pushes outward and balances the atmosphere s inward-pushing force. If a vacuum pump removes the air from the can, the outward force is removed, and the atmospheric pressure crushes the can. CHECK FOR UNDERSTANDING Apply Why is 760 mm of mercury equal to osphere? Units of Pressure A number of different units are used to measure pressure. Because atmospheric pressure is often measured by a mercury barometer, pressure can be expressed in terms of the height of a mercury column. Thus, the common unit of pressure is millimeters of mercury, symbolized mm Hg. A pressure of 1 mm Hg is also called 1 torr to honor Torricelli for his invention of the barometer. The average atmospheric pressure at sea level at 0 C is 760 mm Hg. Pressures are often measured in units of atmospheres. One atmosphere of pressure (atm) is defined as being exactly equivalent to 760 mm Hg. In SI, pressure is expressed in derived units called pascals. The unit is named for Blaise Pascal, a French mathematician and philosopher who studied pressure during the seventeenth century. One pascal (Pa) is defined as the pressure exerted by a force of one newton (1 N) acting on an area of one square meter. In many cases, it is more convenient to express pressure in kilopascals (kpa). The standard atmosphere () is equal to 1.013 25 10 5 Pa, or 101.325 kpa. Several pressure units and common uses for them are summarized in Figure 1.5. Figure 1.5 Standard Temperature and Pressure To compare gas volumes, one must know the temperature and pressure at which they are measured. For purposes of comparison, scientists have agreed on standard conditions of pressure and 0 C. These conditions are called standard temperature and pressure, abbreviated STP. Units of Pressure Unit Symbol Definition/relationship Application pascal Pa SI pressure unit 1 Pa = _ 1 N m 2 millimeter of mercury mm Hg pressure that supports a 1 mm mercury column in a barometer scientific (kpa) blood pressure monitors torr torr 1 torr = 1 mm Hg vacuum pumps atmosphere atm average atmospheric pressure at sea level and 0 C = 760 mm Hg = 760 torr = 1.013 25 10 5 Pa = 101.325 kpa pounds per square inch psi 1 psi = 6.892 86 10 3 Pa = 14.700 psi atmospheric pressure tire gauges 352 Chapter 11

2G Converting Between Units of Pressure Sample Problem A The average atmospheric pressure in Denver, Colorado, is 0.830 atm. Express this pressure in (a) millimeters of mercury (mm Hg) and (b) kilopascals (kpa). Analyze Given: P of atmosphere = 0.830 atm 760 mm Hg = (definition); 101.325 kpa = (definition) Unknown: a. P of atmosphere in mm Hg b. P of atmosphere in kpa PLAN a. atm mm Hg; 760 mm Hg = mm Hg b. atm kpa; 101.325 kpa = kpa Solve a. P = 0.830 atm 760 mm Hg = 631 mm Hg b. P = 0.830 atm 101.325 kpa = 84.1 kpa CHECK YOUR WORK Units have canceled to give the desired units, and answers are expressed to the correct number of significant figures. The known pressure and the calculated pressures are about 80% of the atmospheric pressure, in the new units. Answers in Appendix E 1. Convert a pressure of 1.75 atm to kpa and to mm Hg. 2. The critical pressure of carbon dioxide is 72.7 atm. What is this value in units of pascals? Main Idea 9A The total pressure of a gas mixture is the sum of the pressures of the gases in it. John Dalton, the English chemist who proposed the atomic theory, also studied gas mixtures. He found that the pressure exerted by each gas in an unreactive mixture is independent of that exerted by other gases present. The pressure of each gas in a mixture is called the partial pressure of that gas. Dalton s law of partial pressures states that the total pressure of a gas mixture is the sum of the partial pressures of the component gases. The law is true regardless of the gases present in the mixture. Dalton s law may be expressed as follows. Dalton s law P T = P 1 + P 2 + P 3 +... In this equation, P T is the total pressure of the mixture. P 1, P 2, P 3, and so on are the partial pressures of component gases 1, 2, 3, and so on. Gases 353

Figure 1.6 Collecting Gas by Displacement Hydrogen can be collected by water displacement by reacting zinc with sulfuric acid. The hydrogen gas produced displaces the water in the gas-collecting bottle to the right. It now also contains some water vapor. critical thinking Infer As the gas accumulates in the collecting bottle, what will happen to the water it displaces? Dalton s Law and the Kinetic-Molecular Theory You can understand Dalton s law in terms of the kinetic-molecular theory. Each of the rapidly moving particles of gases in a mixture has an equal chance to collide with the container walls. Therefore, each gas exerts a pressure independent of that exerted by the other gases present. The total pressure is the result of the total number of collisions per unit of wall area in a given time. Vapor Pressure of Water Gases produced in the laboratory are often collected over water, as shown in Figure 1.6. The gas produced by the reaction displaces the water, which is more dense, in the collection bottle. You need to apply Dalton s law of partial pressures in calculating the pressures of gases collected in this way. A gas collected by water displacement is not pure but is always mixed with water vapor. That is because water molecules at the liquid surface evaporate and mix with the gas molecules. In a closed system, water vapor, like other gases, exerts a pressure known as vapor pressure. Suppose you wished to determine the total pressure of the gas and water vapor inside a collection bottle. You would raise the bottle until the water levels inside and outside the bottle were the same. At that point, the total pressure inside the bottle would be the same as the atmospheric pressure, P atm. According to Dalton s law of partial pressures, the following is true: P atm = P gas + P H 2 O To calculate the partial pressure of the dry gas collected, you would read the atmospheric pressure, P atm, from a barometer in the laboratory. Subtract the vapor pressure of the water at the given temperature from the total pressure. The vapor pressure of water varies with temperature. You need to look up the value of P H 2 O at the temperature of the experiment in a standard reference table (see Appendix B). 354 Chapter 11

9A Calculating Partial Pressure Sample Problem B Oxygen gas from the decomposition of potassium chlorate, KClO 3, was collected by water displacement. The barometric pressure and the temperature during the experiment were 731.0 torr and 20.0 C, respectively. What was the partial pressure of the oxygen collected? Analyze Given: P T = P atm = 731.0 torr Unknown: P H 2 O = 17.5 torr (vapor pressure of H 2O at 20.0 C; Table B-8 in App. B) P atm = P O 2 + P H 2 O P O 2 in torr PLAN The partial pressure of the collected oxygen is found by subtracting the partial pressure of water vapor from the atmospheric pressure, according to Dalton s law of partial pressures. P O 2 = P atm - P H 2 O Solve Substituting values for P atm and P H 2 O gives P O 2. P O 2 = 731.0 torr - 17.5 torr = 713.5 torr CHECK YOUR WORK As expected, the oxygen partial pressure is less than atmospheric pressure. It is reasonably close to an estimated value of 713, calculated as 730-17. Answers in Appendix E 1. Some hydrogen gas is collected over water at 20.0 C. The levels of water inside and outside the gas-collection bottle are the same. The partial pressure of hydrogen is 742.5 torr. What is the barometric pressure at the time the gas is collected? Section 1 Formative ASSESSMENT Reviewing Main Ideas 1. Define pressure. 2. What units are used to express pressure measurements? 3. What are standard conditions for gas measurements? 4. Convert the following pressures to pressures in standard atmospheres: a. 151.98 kpa b. 456 torr 5. A sample of nitrogen gas is collected over water at a temperature of 23.0 C. What is the pressure of the nitrogen gas if atmospheric pressure is 785 mm Hg? 6. Why can you calculate the total pressure of a mixture of gases by adding together the partial pressures of the component gases? 9A Critical Thinking 7. EVALUATING METHODS Clean rooms used for sterile biological research are sealed and operate at slightly above atmospheric pressure. Explain why. 8. INFERRING RELATIONSHIPS Why do ears pop when driving in the mountains, flying in the airplane, or riding the elevator in a skyscraper? Gases 355