HELSINKI COMMISSION HELCOM RED LIST BIOTOPES 10/2013 RED LIST Biotope Expert Team Tenth Meeting Helsinki, Finland, April 2013

Similar documents
BIOTOPE INFORMATION SHEET

Baltic Sea monitoring near Lithuanian coast

Lecture Benthic Ecology

Appendix A. Depth limits of selected species

A Survey of Data Published on the Littoral Zoobenthos of the Gulf of Riga

Aquatic Plant Point-Intercept Survey for Pike Lake, Scott County, Minnesota

Animals of the Benthic Environment

MILJÖREDOVISNING BILAGA 2

Aquatic Plant Point-Intercept Survey for Cates Lake, Scott County, Minnesota

a) East Side of Middle and Upper Cook Inlet

Predator exclusion experiments in an intertidal mud flat

Ecosystem approach to marine spatial planning Polish marine areas and the Natura 2000 network

Bottom habitat mapping in Plateliai lake applying remote underwater video techniques

Oceana proposal for a Marine Protected Area

Species. Totals by region: Bivalves (counted as habitat). Species with no marine or estuarine life stage.

Experiments on epibenthic predation in the Wadden Sea K. REISE

BIG MARINE LAKE, WASHINGTON COUNTY: 2017 AQUATIC VEGETATION REPORT

Habitat Fact Sheets. Rocky habitats are dominated by seaweeds and often mussels, which rely on the rocks for attachment.

Focus Benthic habitats found at Gray s Reef National Marine Sanctuary

Dr. Prakash N. Mesta

Aquatic Plants of the Three Lakes

Biological Oceanography: Benthos

Introductory List to Local Marine Animals

Prof.Dr.Hanan M Mitwally, Marine Biology. Objectives

Nearshore Habitat Mapping in Puget Sound Using Side Scan Sonar and Underwater Video

EVALUATING THE EFFECTS OF BIVALVE SHELLFISH AQUACULTURE AND ITS ECOLOGICAL ROLE IN THE ESTUARINE ENVIRONMENT IN THE UNITED STATES

WEEK SEVEN LIFE IN THE OCEAN

A. Porifera (sponges): B. Cnidaria (jellies, hydra, sea anemones, and corals):

Mud Bay SLELO-PRISM Water Chestnut & Hydrilla Surveillance 2012

EU stomach tender. Datasets from the Baltic Sea

Benthic Habitat Assessment

GLOSSARY Connecticut

Sponges are considered the oldest of the animal phyla. The name Porifera means "pore bearer" in Latin.

Department of Marine Resources Site Review #

Chateaugay Lakes Milfoil Control Program

Glen Echo Lake Weed Biomass Study

FUJI NOZZLES & CONSUMABLES FEEDERS, SPARES AND SERVICE EQUIPMENT SPARES CATALOG NOVEMBER 2017

Seasearch survey of Drake s Island eelgrass Summary Report 19 June 2012

Tittabawassee River Assessment. Miles. Gladwin Smallwood Impoundment. Harrison. Clare. Midland. Mt. Pleasant. St. Louis. Saginaw.

Little Belt. Oceana proposal for a Marine Protected Area. Introduction

Justification for the Swedish method for BQE Macroalgae and angiosperms

ASSESSMENT OF THE OCEAN QUAHOG (ARCTICA ISLANDICA) STOCK IN SOUTHWEST NEW BRUNSWICK

Conservation proposals for ecologically important areas in the Baltic Sea. Baltic

TAXONOMIC (DICHOTOMOUS) KEYS

INTERTIDAL LIFE OF FAREWELL SPIT. by S.H.Anderson, C.A. Hammerton and F.M. Town SUMMARY

ì<(sk$m)=bdhehd< +^-Ä-U-Ä-U Scott Foresman Science 1.5 Food Chains Nonfiction Draw Conclusions Captions Labels Call Outs Glossary

DRAFT AMENDMENT 1. Introduction

A Guide to Selected Invasive Non-native Aquatic Species in Massachusetts

LESSON 3. LIFE AT THE EDGE OF A FERTILE SEA The Birthplace of Marine Science

New England Fishery Management Council MEMORANDUM

Animal Diversity. Kingdom Animalia

Water Habitat Model. Outcome: Materials: Teacher Instructions: : Identify the components of an animal habitat..

Lesson 10: Oyster Reefs and Their Inhabitants

Water Quality and Habitat in Shingle Creek

Luce Bay and Sands Special Area of Conservation

CHAPTER 11.1 THE WORLD OCEAN MARINE BIOMES NOTES

Seasearch Scotland 2015 Summary Report

Specimen Collection and Classification Activity

SUBCHAPTER 03I GENERAL RULES SECTION.0100 GENERAL RULES

GRASS CARP SPAWNING IN LAKE ERIE TRIBUTARIES: WHEN AND WHERE?

FUJI PICK AND PLACE CATALOG JUNE 2018 NOZZLES & CONSUMABLES FEEDERS, SPARES AND SERVICE EQUIPMENT SPARES

Mark L. Botton and Robert E. Loveland. The Importance of Horseshoe Crabs in the Ecology of Delaware Bay: More than Just Bird Food?

Component biotopes / species (biotope / common name)

Animals of the Benthic Environment II

COASTAL RESOURCE ASSESSMENTS AT QUONSET-DAVISVILLE, RHODE ISLAND: LOBSTERS AND MARINE HABITAT

Life in the Mud.! Benthic productivity versus pelagic productivity

Inchmarnock Island Survey Report September Owen Paisley Seasearch West Co-ordinator

Scientific Name: Ameiurus melas Common Name: Black bullhead BISON No.:

feeding - clear moderate-sized shallow streams with moderate vegetation spawning - nests in gravel, sand, or hard rock substrate

Effects of suction-dredging for cockles on non-target fauna in the Wadden Sea

Making the Most of Your Monitoring Using Macroinvertebrates

Status of Lake Erie s Western Basin Fish Populations: Trends and Environmental Conditions

Eelgrass and Macroalgae Presence/Absence Preliminary Surveys BHP Proposed Grays Harbor Potash Export Facility A Task 400

Burnham Laboratory Benthos Function

The Biology of Welsh Sandbanks - In Decline?

MARINE SCIENCE. Monday 16 Apr 2018

Barnacles attach to hard surfaces and use their legs to catch tiny particles of food, including plankton from the water around them.

Chapter 7. Marine Animals Without a Backbone

A DAY AT THE WHITNEY LAB The Whitney Laboratory for Marine Bioscience An Institute for Marine Research and Biotechnology

Coral Reef Basics and Its Impact on Ocean Life

Examples of estuaries include bays, sounds, salt marshes, mangrove forests, mud flats, swamps, inlets, and sloughs.

Consumers OCN201 Fall 2007

REQUEST FOR BID FOR DIVER ASSISTED SUCTION HARVESTING

LIFE BaĦAR for N2K Project Survey Findings. Leyla Knittweis on behalf of the LIFE BaĦAR for N2K Project

Water Snail Class Gastropoda

Dynamics of Marenzelleria viridis (Polychaeta: Spionidae) pelagic larvae in Pärnu Bay, NE Gulf of Riga, in

WHAT ARE ECOSYSTEMS? Dr. V. N. Nayak Professor of Marine Biology (Retd)

HOW BENTHIC HABITATS AND BOTTOM TRAWLING AFFECT TRAIT COMPOSITION IN THE DIET OF EUROPEAN PLAICE (PLEURONECTES PLATESSA) IN THE NORTH SEA

Bythotrephes longimanus (also known as Bythotrephes cederstroemi)

The benthic community of Owasco Lake as an indicator of lake ecosystem health

A5.37 Atlantic lower circalittoral mud

Delaware Estuary Aquatic Nuisance Species of Concern Summary of ANS Survey, Summer 2002 Kirstin Wakefield, DEP & Ann Faulds, PA Sea Grant

4- Potential Fish Food Items Present in Ichthyoplankton Samples and on Rock Groins

Keywords: marine habitat recovery, derelict fishing gear

A Guide to the P L A N T & A N I M A L D E B R I S of southern California sand beaches

Ocean Environmental Science Art Workshop

Oyster Reef in the Classroom A Hands-On Laboratory Approach

DOWNLOAD OR READ : WILT CHAMBERLAIN THE INSPIRING STORY OF ONE OF BASKETBALL 39 S GREATEST PLAYERS PDF EBOOK EPUB MOBI

Over the next few weeks, we will be learning all about the Coral Reef Ecosystems that surround much of the Australian coastline.

Restoration of Eelgrass to Upper Casco Bay: Feasibility Tests in Hilary A. Neckles US Geological Survey Augusta, ME

Transcription:

HELSINKI COMMISSION HELCOM RED LIST BIOTOPES 10/2013 RED LIST Biotope Expert Team Tenth Meeting Helsinki, Finland, 24-25 April 2013 Agenda Item 3 Finalisation of the Classification of Biotopes Document code: 3/3 rev.2 Date: 29.4.2013 Submitted by: Secretariat DRAFT OF FLOW-CHART OF THE CLASSIFICATION OF BIOTOPES This document presents the flow-chart and classification of the HELCOM HUB Helcom Underwater Biotope and habitat classification. The Meeting revised and amended the splitrules of the classification. After revising the flow-chart the Meeting finalized the classification. The Meeting is invited to: - consider the structure of the flow-chart, the use of symbols and the clarity of the split-rules, agree on the structure and logic of the flow-chart and provide guidance for the finalisation of the flow-chart. Note by Secretariat: FOR REASONS OF ECOMY, THE DELEGATES ARE KINDLY REQUESTED TO BRING THEIR OWN COPIES OF THE DOCUMENTS TO THE MEETING Page 1 of 1

Flow-chart HELCOM HUB - HELCOM Underwater Biotope and Habitat Classification

Advice for proceeding in the HUB flow-chart The classification has 6 levels On every page in the flow-chart the split-rules for moving from one level to the next is described All the split-rules for the pelagic biotopes are described first Benthic biotopes are described so that all biotopes associated with a substrate are presented together, and only when all Level 6 biotopes have been defined, the following substrate defined in the split on Level 3 will be described and all the biotopes on that substrate down to Level 6 will follow Bolded biotopes represent the last entitiy, i.e. the biotopes that are used in the Red List assessment When defining dominated by a taxon from data in the split rules between Level 4, it is recommended to use when available; >>coverage. It is however up to the expert doing the classification to determin which method is best to apply to the taxon The split-rule on Level 6 asking whether a taxon has - /mass, refers to the percentage of the characteristic community, which on has been defined through the 10% coverage split-rule, i.e. the does not refer to the total estimate for all organisms in a sample, but only to the fraction of the characteristic taxa Mixed epibenthic macrocommunities () can be composed of any mix of epibenthic organisms when no group reaches 10% coverage. Hard clay and shell gravel substrates with no community biotopes is supported by very little data, these units are included for the completion of the classification Finally please note, a finally lay-outed version of the HELCOM HUB will be produced during the summer 2013 2

Level 1 Level 2 A Baltic Benthic? AA Baltic Photic benthos photic? AB Baltic Aphotic benthos Ice associated? AC Baltic Sea Seasonal Ice Pelagic? AD Baltic Sea Photic Pelagic photic? AE Baltic Sea Aphotic Pelagic 3

Level 2 Level 3 AD Baltic Sea Photic Pelagic Above permanent halocline? AD.N Baltic Sea Photic Pelagic above halocline AE Baltic Sea Aphotic Pelagic Above permanent halocline? AE.N Baltic Sea Aphotic Pelagic above halocline AE.O Baltic Sea Aphotic Pelagic below halocline 4

Level 3 Level 4 AD.N Baltic Sea Photic Pelagic above halocline oxygenic? AD.N5 Baltic Sea Photic Pelagic above halocline oxygenic AE.N Baltic Sea Aphotic Pelagic above halocline oxygenic? AE.N5 Baltic Sea Aphotic Pelagic above halocline oxygenic AE.N6 Baltic Sea Aphotic Pelagic above halocline anoxic AE.O Baltic Sea Aphotic Pelagic below halocline oxygenic? AE.O5 Baltic Sea Aphotic Pelagic below halocline oxygenic AE.O6 Baltic Sea Aphotic Pelagic below halocline anoxic 5

Level 2 Level 3 AA Baltic Photic benthos rock/ boulders/ stones AA.A Select the dominating substrate hard clay AA.B Baltic photic hard clay 90 % coverage of a substratetype? marl AA.C Baltic photic marl (marlstone rock) Maerl beds AA.D Baltic photic maerl beds shell gravel AA.E Baltic photic shell gravel ferromanganese concretion bottoms AA.F Baltic photic ferromanganese concretion bottom Peat AA.G Baltic photic peat bottoms Soft sediment Mud AA.H Select the dominating substrate Coarse sediment AA.I anthropogenically created substrates? Hard dominates? sand AA.J Baltic photic sand AA.K Baltic photic hard anthropogenically created substrates AA.L Baltic photic soft anthropogenically created substrates AA.M 6

Level 3 Level 4 AA.A 10% coverage of vegetation or sessile epifauna? AA.A1 characterized by epibenthic biotic structures 0><10% coverage of vegetation or sessile epifauna? AA.A2 characterized by sparse epibenthic biotic structures no macrovegetation, no macro- epior infauna AA.A4 characterized by no biotic structures 7

Level 4 AA.A1 characterized by epibenthic biotic structures Perennial algae AA.A1C characterized by perennial algae Does any Perennial attached erect group have 10 % coverage Aquatic moss Bivalves AA.A1D characterized by aquatic moss AA.A1E characterized by epibenthic bivalves Select the dominant group (of the groups 10% coverage) Chordates Cnidarians AA.A1F characterized by epibenthic chordates AA.A1G characterized by epibenthic cnidarians Moss animals AA.A1H characterized by epibenthic moss animals (Bryozoa) Crustaceans AA.A1I characterized by epibenthic crustacea Sponges AA.A1J characterized by epibenthic sponges (Porifera) 10% coverage of soft crustose algae? AA.A1R characterized by soft crustose algae 10% coverage of annual algae? AA.A1S characterized by annual algae AA.A1V characterized by mixed epibenthic macrocommunity 8

Level 4 AA.A2 characterized by sparse epibenthic biotic structures Microphytobenthic organisms and grazing snails dominate? AA.A2W characterized by microphytobenthic organisms and grazing snails AA.A2T characterized by sparse epibenthic macrocommunity AA.A4 characterized by no biotic structures AA.A4U characterized by no macrocommunity 9

Level 6 AA.A1C characterized by perennial algae Fucus spp? AA.A1C1 dominated by Fucus spp. perennial nonfilamentous corticated red algae? AA.A1C2 dominated by perennial non-filamentous corticated red algae perennial foliose red algae? AA.A1C3 dominated by perennial foliose red algae kelp? AA.A1C4 dominated by kelp, stop on perennial filamentous algae? AA.A1C5 dominated by perennial filamentous algae 10

Level 6 AA.A1E characterized by epibenthic bivalves Mytilidae? A.A1E1 dominated by Mytilidae, stop at Dreissena polymorpha? AA.A12 dominated by zebra mussel (Dreissena polymorpha) AA.A1F characterized by epibenthic chordates sea squirts? AA.A1F1 dominated by sea squirts (Ascidiacea), stop at AA.A1G characterized by epibenthic cnidarians kelp? AA.A1G1 dominated by hydroids (Hydrozoa), stop at AA.A1H characterized by epibenthic moss animals (Bryozoa) crustose moss animals? AA.A1H1 dominated by crustose moss animals (Electra crustulenta), stop at erect moss animals? AA.A1H2 dominated by erect moss animals (Flustra foliacea) AA.A1I characterized by epibenthic crustacea barnacles? AA.A1I1 dominated by barnacles (Balanidae), stop at 11

Level 3 Level 4 AA.B Baltic photic hard clay 10% coverage of vegetation or sessile epifauna? AA.B1 Baltic photic hard clay characterized by epibenthic biotic structures 0><10% coverage of vegetation or sessile epifauna? AA.B2 Baltic photic hard clay characterized by sparse epibenthic biotic structures no macrovegetation, no macro- epior infauna AA.B4 Baltic photic hard clay characterized by no biotic structures 12

Level 4 AA.B1 Baltic photic hard clay characterized by epibenthic biotic structures Bivalves AA.B1E Baltic photic hard clay characterized by epibenthic bivalves Does any Perennial attached erect group have 10 % coverage Select the dominant group (of the groups 10% coverage) AA.B1V Baltic photic hard clay characterized by mixed epibenthic macrocommunity AA.B2 Baltic photic hard clay characterized by sparse epibenthic biotic structures AA.B2T Baltic photic hard clay characterized by sparse epibenthic macrocommunity AA.B4 Baltic photic hard clay characterized by no biotic structures AA.B4U Baltic photic hard clay characterized by no macrocommunity 13

Level 6 AA.B1E Baltic photic hard clay characterized by epibenthic bivalves Mytilidae? AA.B1E1 Baltic photic hard clay dominated by Mytilidae, stop at 14

Level 3 Level 4 AA.E Baltic photic shell gravel 10% coverage of vegetation or sessile epifauna? AA.E1 Baltic photic shell gravel characterized by epibenthic biotic structures 0><10% coverage of vegetation or sessile epifauna? AA.E2 Baltic photic shell gravel characterized by sparse epibenthic biotic structures no macrovegetation, no macro- epi- or infauna AA.E4 Baltic photic shell gravel characterized by no biotic structures 15

Level 4 AA.E1 Baltic photic shell gravel characterized by epibenthic biotic structures Perennial attached algae AA.E1C Baltic photic shell gravel characterized by perennial algae Does any Perennial attached erect group have 10 % coverage Bivalves AA.E1E Baltic photic shell gravel characterized by epibenthic bivalves Select the dominant group (of the groups 10% coverage) Chordates AA.E1F Baltic photic shell gravel characterized by epibenthic chordates AA.E1V Baltic photic shell gravel characterized by mixed epibenthic macrocommunity AA.E2 Baltic photic shell gravel characterized by sparse epibenthic biotic structures AA.E2T Baltic photic shell gravel characterized by sparse epibenthic macrocommunity AA.E4 Baltic photic shell gravel characterized by no biotic structures AA.E4U Baltic photic shell gravel characterized by no macrocommunity 16

Level 6 AA.E1C Baltic photic shell gravel characterized by perennial algae kelp? AA.E1C4 Baltic photic shell gravel dominated by kelp, stop at AA.E1E Baltic photic shell gravel characterized by epibenthic bivalves Mytilidae? AA.E1E1 Baltic photic shell gravel dominated by Mytilidae, stop at AA.E1F Baltic photic shell gravel characterized by epibenthic chordates vase tunicate? AA.E1F1 Baltic photic shell gravel dominated by vase tunicate (Ciona intestinalis), stop at 17

Level 3 Level 4 AA.H 10% coverage of vegetation or sessile epifauna? AA.H1 characterized by epibenthic biotic structures infauna present, no macrovegetation or epibenthic macrofauna? AA.H3 characterized by infaunal biotic structures no macrovegetation, no macro- epior infauna AA.H4 characterized by no biotic structures 18

Level 4 AA.H1 characterized by epibenthic biotic structures Emergent vegetation AA.H1A characterized by emergent vegetation Does any Perennial attached erect group have 10 % coverage Select the dominant group (of the groups 10% coverage) Submerged rooted plants Bivalves Polychaetes AA.H1B characterized by submerged rooted plants AA.H1E characterized by epibenthic bivalves AA.H1K characterized by epibenthic polychaetes 10% coverage perennial unattched algae? AA.H1Q characterized by stable aggregations of unattached perennial vegetation 10% coverage of annual algae? AA.H1S characterized by annual algae AA.H1V characterized by mixed epibenthic macrocommunity 19

Level 4 AA.H3 characterized by infaunal biotic structures Biomass of infaunal bivalves dominates? AA.H3L characterized by infaunal bivalves Biomass of infaunal polychaetes dominates? AA.H3M characterized by infaunal polychaetes Biomass of infaunal crustacea dominates? AA.H3N characterized by infaunal crustaceans Biomass of infaunal echinoderms dominates? AA.H3O characterized by infaunal echinoderms Biomass of infaunal insect larvae dominates AA.H3P characterized by infaunal insect larvae AA.H4 characterized by no biotic structures AA.H4U characterized by no macrocommunity 20

Level 6 AA.H1A characterized by emergent vegetation common reed? AA.H1A1 dominated by common reed (Phragmites australis), stop at sedges? AA.H1A2 Baltic photic muddy sediment dominated by sedges (Cyperaceae) AA.H1B characterized by submerged rooted plants pondweed? AA.H1B1 dominated by pondweed (Potamogeton perfoliatus and/or Stuckenia pectinata) Zannichelia ssp, Ruppia spp, Zostera noltii? AA.H1B2 dominated by Zannichellia spp. and/or Ruppia spp. and/or Zostera noltii watermilfoil? AA.H1B3 dominated by watermilfoil (Myriophyllum spicatum and/or Myriophyllum sibiricum) charales? AA.H1B4 dominated by Charales spiny naiad? AA.H1B5 dominated by spiny naiad (Najas marina) Ranunculus spp? AA.H1B6 dominated by Ranunculus spp. common eelgrass? AA.H1B7 dominated by common eelgrass (Zostera marina), stop on spikerush? AA.H1B8 dominated by spikerush (Eleocharis spp.) 21

Level 6 AA.H1E characterized by epibenthic bivalves Mytilidae? AA.H1E1 dominated by Mytilidae zebra mussel? AA.H1E2 dominated by zebra mussel (Dreissena polymorpha), stop at valve snail? AA.H1E3 dominated by valve snails (Valvata spp.) AA.H1K characterized by epibenthic polychaetes tube building polychaetes (Maldanidae spp. and/or Terebellida spp.)? AA.H1K1 dominated by tube building polychaetes, stop at 22

Level 6 AA.H1Q characterized by stable aggregations of unattached perennial vegetation stable aggregations of unattached Fucus spp. (typical form)? AA.H1Q1 dominated by stable aggregations of unattached Fucus spp. (typical form) stable aggregations of unattached Fucus spp. (dwarf form)? AA.H1Q2 dominated by stable aggregations of unattached Fucus spp. (dwarfform) Furcellaria lumbricalis? AA.H1Q3 dominated by stable aggregations of unattached Furcellaria lumbricalis rigid hornwort? AA.H1Q4 dominated by stable aggregations of unattached rigid hornwort (Ceratophyllum demersum), stop at lake ball? AA.H1Q5 dominated by stable unattached aggregations of lake ball (Aegagropila linnaei) AA.H1S characterized by annual algae Vaucheria spp.? AA.H1S3 Baltic photic photic muddy sediment dominated by Vaucheria spp., stop at 23

Level 6 AA.H3L characterized by infaunal bivalves baltic tellin? AA.H3L1 dominated by Baltic tellin (Macoma balthica) ocean quahog? AA.H3L3 dominated by ocean quahog (Arctica islandica) Unionidae? AA.H3L6 dominated by Unionidae, stop at Unionidae? AA.H3L8 dominated by Abra spp. AA.H3M characterized by infaunal polychaetes Marenzelleria spp.? AA.H3M3 dominated by Marenzelleria spp., stop at Polydora ciliata and/or Lagis koreni and/or Capitella capitata and/or Scoloplos (Scoloplos) armiger? AA.H3M6 dominated by various opportunistic polychaetes) AA.H3N characterized by infaunal crustaceans Monoporeia affinis? AA.H3N1 dominated by Monoporeia affinis, stop at mud shrimp? AA.H3N2 dominated by mud shrimps (Corophiidae) AA.H3P characterized by infaunal insect larvae midge larvae? AA.H3P1 dominated by midge larvae (Chironomidae), stop at AA.H4U characterized by no macrocommunity meiofauna? AA.H4U1 dominated by meiofauna (Oligochaeta, Ostracoda, Nematoda), stop at 24

Level 3 Level 4 AA.I 10% coverage of vegetation or sessile epifauna? AA.I1 characterized by epibenthic biotic structures 0><10% coverage of vegetation or sessile epifauna? AA.I2 characterized by sparse epibenthic biotic structures infauna present, no macrovegetation or epibenthic macrofauna? AA.I3 characterized by infaunal biotic structures no macrovegetation, no macro- epior infauna AA.I4 characterized by no biotic structures 25

Level 4 AA.I1 characterized by epibenthic biotic structures Emergent vegetation AA.I1A characterized by emergent vegetation Does any Perennial attached erect group have 10 % coverage Select the dominant group (of the groups 10% coverage) Submerged rooted plants Attached perennial algae AA.I1B characterized by submerged rooted plants AA.I1C characterized by perennial algae Aquatic moss AA.I1D characterized by aquatic moss Bivalves AA.I1E characterized by epibenthic bivalves 10% coverage perennial unattched algae? AA.I1Q characterized by stable aggregations of unattached perennial vegetation 10% coverage of annual algae? AA.I1S characterized by annual algae AA.I1V characterized by mixed epibenthic macrocommunity AA.I2 characterized by sparse epibenthic biotic structures Microphytobenthic organisms and grazing snails dominate? AA.I2W characterized by microphytobenthic organisms and grazing snails AA.I2T characterized by sparse epibenthic macrocommunity 26

Level 4 AA.I3 characterized by infaunal biotic structures Biomass of infaunal bivalves dominates? AA.I3L characterized by infaunal bivalves Biomass of infaunal polychaetes dominates? AA.I3M characterized by infaunal polychaetes Biomass of infaunal crustacea dominates? AA.I3N characterized by infaunal crustaceans Biomass of infaunal echinoderms dominates? AA.I3O characterized by infaunal echinoderms Biomass of infaunal insect larvae dominates AA.I3P characterized by infaunal insect larvae AA.I4 characterized by no biotic structures AA.I4U characterized by no macrocommunity 27

Level 6 AA.I1A characterized by emergent vegetation common reed? AA.I1A1 dominated by common reed (Phragmites australis), stop at sedges? AA.I1A2 Baltic photic coarse sediment dominated by sedges (Cyperaceae) AA.I1B characterized by submerged rooted plants pondweed? AA.I1B1 Baltic coarse sediment dominated by pondweed (Potamogeton perfoliatus and/or Stuckenia pectinata) Zannichelia ssp, Ruppia spp, Zostera noltii? AA.I1B2 dominated by Zannichellia spp. and/or Ruppia spp. and/or Zostera noltii charales? AA.I1B4 dominated by Charales Ranunculus spp? AA.I1B6 dominated by Ranunculus spp., stop at common eelgrass? AA.I1B7 dominated by common eelgrass (Zostera marina) AA.I1C characterized by perennial algae Fucus spp? AA.I1C1 dominated by Fucus spp. perennial nonfilamentous corticated red algae? AA.I1C2 dominated by perennial nonfilamentous corticated red algae perennial foliose red algae? AA.I1C3 dominated by perennial foliose red algae kelp? AA.I1C4 dominated by kelp, stop at perennial filamentous algae? 28 AA.I1C5 dominated by perennial filamentous algae

Level 6 AA.I1E characterized by epibenthic bivalves Mytilidae? AA.I1E1 dominated by Mytilidae, stop at AA.I1Q characterized by stable aggregations of unattached perennial vegetation stable aggregations of unattached Fucus spp. (typical form)? AA.I1Q1 dominated by stable aggregations of unattached Fucus spp. (typical form) stable aggregations of unattached Fucus spp. (dwarf form)? AA.I1Q2 dominated by stable aggregations of unattached Fucus spp. (dwarfform), stop at Furcellaria lumbricalis? AA.I1Q3 dominated by stable aggregations of unattached Furcellaria lumbricalis AA.I1S characterized by annual algae Chorda filum and/or Halosiphon tomentosus? AA.I1S2 dominated by Chorda filum and/or Halosiphon tomentosus, stop at AA.I3L characterized by infaunal bivalves 10 % of Ophelia spp. and Travisia forbesi disregarding the of bivalves? AA.I3L11 dominated by multiple infaunal polychaete species including Ophelia spp., stop at Macoma calcarea and/or Mya truncata and/or Astarte spp. and/or Spisula spp. (at least 2 species)? AA.I3L10 dominated by multiple infaunal bivalve species: Macoma calcarea, Mya truncata, Astarte spp., Spisula spp. AA.I3N characterized by infaunal crustaceans, stop at sand digger shrimp? AA.I3N3 dominated by sand digger shrimp (Bathyporeia pilosa) 29

Level 3 Level 4 AA.J Baltic photic sand 10% coverage of vegetation or sessile epifauna? AA.J1 Baltic photic sand characterized by epibenthic biotic structures infauna present, no macrovegetation or epibenthic macrofauna? AA.J3 Baltic photic sand characterized by infaunal biotic structures no macro- or microvegetation, no macro- epior infauna AA.J4 Baltic photic sand characterized by no biotic structures 30

Level 4 AA.J1 Baltic photic sand characterized by epibenthic biotic structures Emergent vegetation AA.J1A Baltic photic sand characterized by emergent vegetation Does any Perennial attached erect group have 10 % coverage Submerged rooted plants AA.J1B Baltic photic sand characterized by submerged rooted plants Select the dominant group (of the groups 10% coverage) bivalves AA.J1E Baltic photic sand characterized by epibenthic bivalves 10% coverage perennial unattched algae? AA.J1Q Baltic photic sand characterized by stable aggregations of unattached perennial vegetation 10% coverage of annual algae? AA.J1S Baltic photic sand characterized by annual algae AA.J1V Baltic photic sand characterized by mixed epibenthic macrocommunity 31

Level 4 AA.J3 Baltic photic sand characterized by infaunal biotic structures Biomass of infaunal bivalves dominates? AA.J3L Baltic photic sand characterized by infaunal bivalves Biomass of infaunal polychaetes dominates? AA.J3M Baltic photic sand characterized by infaunal polychaetes Biomass of infaunal crustacea dominates? AA.J3N Baltic photic sand characterized by infaunal crustaceans Biomass of infaunal insect larvae dominates AA.J3P Baltic photic sand characterized by infaunal insect larvae AA.J4 Baltic photic sand characterized by no biotic structures AA.J4U Baltic photic sand charachterized by no macrocommunity 32

Level 6 AA.J1A Baltic photic sand characterized by emergent vegetation common reed? AA.J1A1 Baltic photic sand dominated by common reed (Phragmites australis), stop at sedges? AA.J1A2 Baltic photic sand dominated by sedges (Cyperaceae) AA.J1B Baltic photic sand characterized by submerged rooted plants pondweed? AA.J1B1 Baltic photic sand dominated by pondweed (Potamogeton perfoliatus and/or Stuckenia pectinata) Zannichelia ssp, Ruppia spp, Zostera noltii? AA.J1B2 Baltic photic sand dominated by Zannichellia spp. and/or Ruppia spp. and/or Zostera noltii watermilfoil? AA.J1B3 Baltic photic sand dominated by watermilfoil (Myriophyllum spicatum and/or Myriophyllum sibiricum) charales? AA.J1B4 Baltic photic sand dominated by Charales spiny naiad? AA.J1B5 Baltic photic sand dominated by spiny naiad (Najas marina) Ranunculus spp? AA.J1B6 Baltic photic sand dominated by Ranunculus spp. common eelgrass? AA.J1B7 Baltic photic sand dominated by common eelgrass (Zostera marina), stop at spikerush? AA.J1B8 Baltic photic sand dominated by spikerush (Eleocharis spp.) AA.J1E Baltic photic sand characterized by epibenthic bivalves Mytilidae? AA.J1E1 Baltic photic sand dominated by Mytilidae, stop at 33

Level 6 AA.J1Q Baltic photic sand characterized by stable aggregations of unattached perennial vegetation stable aggregations of unattached Fucus spp. (typical form)? AA.J1Q1 Baltic photic sand dominated by stable aggregations of unattached Fucus spp. (typical form) stable aggregations of unattached Fucus spp. (dwarf form)? AA.J1Q2 Baltic photic sand dominated by stable aggregations of unattached Fucus spp. (dwarfform), stop at Furcellaria lumbricalis? AA.J1Q3 Baltic photic sand dominated by stable aggregations of unattached Furcellaria lumbricalis AA.J1S Baltic photic sand characterized by annual algae Chorda filum and/or Halosiphon tomentosus? AA.J1S2 Baltic photic sand dominated by Chorda filum and/or Halosiphon tomentosus, stop at Vaucheria spp.? AA.J1S3 Baltic photic sand dominated by Vaucheria spp. 34

Level 6 AA.J3L Baltic photic sand characterized by infaunal bivalves 10 % of Ophelia spp. and Travisia forbesi disregarding the of bivalves? AA.J3L11 Baltic photic sand dominated by multiple infaunal polychaete species including Ophelia spp. and Travisia forbesii baltic tellin? AA.J3L1 Baltic photic sand dominated by Baltic tellin (Macoma balthica) cockles? AA.J3L2 Baltic photic sanddominated by cockles (Cerastoderma spp) ocean quahog? AA.J3L3 Baltic photic sand dominated by ocean quahog (Arctica islandica) sand gaper? AA.J3L4 Baltic photic sand dominated by sand gaper (Mya arenaria) multiple infaunal bivalve species: Cerastoderma spp., Mya arenaria, Astarte borealis, Arctica islandica, Macoma balthica? AA.J3L9 Baltic photic sand dominated by multiple infaunal bivalve species: Cerastoderma spp., Mya arenaria, Astarte borealis, Arctica islandica, Macoma balthica, stop at multiple infaunal bivalve species: Macoma calcarea, Mya truncata, Astarte spp., Spisula spp? AA.J3L10 Baltic photic sand dominated by multiple infaunal bivalve species: Macoma calcarea, Mya truncata, Astarte spp., Spisula spp. AA.J3M Baltic photic sand characterized by infaunal polychaetes lugworms? AA.J3M2 Baltic photic sand dominated by lugworms (Arenicola marina), stop at multiple infaunal polychete species: Pygospio elegans, Marenzelleria spp., Hediste diversicolor? AA.J3M5 Baltic photic sand dominated by multiple infaunal polychaete species: Pygospio elegans, Marenzelleria spp., Hediste diversicolor) AA.J3N Baltic photic sand characterized by infaunal crustaceans, stop at AA.JK3P Baltic photic sand characterized by infaunal insect larvae digger shrimp? midge larvae? AA.J3N3 Baltic photic sand dominated by sand digger shrimp (Bathyporeia pilosa) AA.J3P1 Baltic photic sand dominated by midge larvae (Chironomidae), stop at level 5 35

Level 3 Level 4 AA.M 10% coverage of vegetation or sessile epifauna? AA.M1 characterized by epibenthic biotic structures 0><10% coverage of vegetation or sessile epifauna? AA.M2 characterized by sparse epibenthic biotic structures no macrovegetation, no macro- epior infauna AA.M4 characterized by no biotic structures 36

Level 4 AA.M1 characterized by epibenthic biotic structures Emergent vegetation AA.M1A characterized by emergent vegetation Submerged rooted plants AA.M1B characterized by submerged rooted plants Does any Perennial attached erect group have 10 % coverage Select the dominant group (of the groups 10% coverage) Attached perennial algae Aquatic moss Bivalve AA.M1C characterized by perennial algae AA.M1D characterized by aquatic moss AA.M1E characterized by epibenthic bivalves Chordates AA.M1F characterized by epibenthic chordates Cnidarians AA.M1G characterized by epibenthic cnidarians Moss animals AA.M1H characterized by epibenthic moss animals (Bryozoa) Crustacea AA.M1I characterized by epibenthic crustacea 10% coverage perennial unattched algae? Sponges AA.M1J characterized by epibenthic sponges (Porifera) AA.M1Q characterized by stable aggregations of unattached perennial vegetation 10% coverage of soft crustose algae? 10% coverage of annual algae? AA.M1R characterized by soft crustose algae AA.M1S characterized by annual algae AA.M1V characterized by mixed epibenthic macrocommunity 37

Level 4 AA.M2 characterized by sparse epibenthic biotic structures Microphytobenthic organisms and grazing snails dominate? AA.M2W characterized by microphytobenthic organisms and grazing snails AA.M2T characterized by sparse epibenthic macrocommunity AA.M4 characterized by no biotic structures AA.M4U characterized by no macrocommunity 38

AA.M1A characterized by emergent vegetation common reed? Level 6 AA.M1A1 dominated by common reed (Phragmites australis), stop at level 5 sedges? AA.M1A2 dominated by sedges (Cyperaceae) AA.M1B characterized by submerged rooted plants pondweed? AA.M1B1 dominated by pondweed (Potamogeton perfoliatus and/or Stuckenia pectinata) Zannichelia ssp, Ruppia spp, Zostera noltii? AA.M1B2 dominated by Zannichellia spp. and/or Ruppia spp. and/or Zostera noltii watermilfoil? AA.M1B3 dominated by watermilfoil (Myriophyllum spicatum and/or Myriophyllum sibiricum) charales? AA.M1B4 dominated by Charales, stop at common eelgrass? AA.M1B7 dominated by common eelgrass (Zostera marina) AA.M1C characterized by perennial algae Fucus spp? AA.M1C1 dominated by Fucus spp. perennial nonfilamentous corticated red algae? AA.M1C2 dominated by perennial non-filamentous corticated red algae perennial foliose red algae? AA.M1C3 dominated by perennial nonfilamentous corticated red algae kelp? AA.M1C4 dominated by kelp, stop at perennial filamentous algae? AA.M1C5 dominated by perennial filamentous 39 algae

Level 6 AA.M1E characterized by epibenthic bivalves Mytilidae? AA.M1E1 dominated by Mytilidae, stop at Dreissena polymorpha? AA.M1E2 dominated by zebra mussel (Dreissena polymorpha) AA.M1F characterized by epibenthic chordates sea squirts? AA.M1F1 dominated by sea squirts (Ascidiacea), stop at AA.M1G characterized by epibenthic cnidarians kelp? AA.M1G1 dominated by hydroids (Hydrozoa), stop at AA.M1H characterized by epibenthic moss animals (Bryozoa) crustose moss animals? AA.M1H1 dominated by crustose moss animals (Electra crustulenta), stop at erect moss animals? AA.M1H2 dominated by erect moss animals (Flustra foliacea) AA.M1I characterized by epibenthic crustacea barnacles? AA.M1I1 dominated by barnacles (Balanidae), stop at 40

Level 6 AA.M1Q substrate characterized by stable aggregations of unattached perennial vegetation stable aggregations of unattached Fucus spp. (typical form)? AA.M1Q1 dominated by stable aggregations of unattached Fucus spp. (typical form) stable aggregations of unattached Fucus spp. (dwarf form)? AA.M1Q2 dominated by stable aggregations of unattached Fucus spp. (dwarfform) Furcellaria lumbricalis? AA.M1Q3 dominated by stable aggregations of unattached Furcellaria lumbricalis, stop at rigid hornwort? AA.M1Q4 dominated by stable aggregations of unattached rigid hornwort (Ceratophyllum demersum) AA.M1S characterized by annual algae filamentous annual algae? AA.M1S1 dominated by filamentous annual algae, stop at Chorda filum and/or Halosiphon tomentosus? AA.M1S2 dominated by Chorda filum and/or Halosiphon tomentosus 41

Level 2 Level 3 AB Baltic Aphotic benthos rock/ boulders /stones AB.A Baltic aphotic rock and boulders 90 % coverage of a substratetype? Select the dominating substrate hard clay marl AB.B Baltic aphotic hard clay AB.C Baltic aphotic marl (marlstone rock) Maerl beds AB.D Baltic aphotic maerl beds Shell gravel AB.E Baltic aphotic shell gravel ferromanganese concretion bottoms AB.F Baltic aphotic ferromanganese concretion bottom Soft sediment Peat AB.G Baltic aphotic peat bottoms Mud AB.H Select the dominating substrate Coarse sediment AB.I Baltic aphotic coarse sediment sand AB.J Baltic aphotic sand Anthropogenically created substrate Hard dominates? AB.K Baltic aphotic hard anthropogenically created substrates AB.L Baltic aphotic sof anthropogenically created substrates AB.M Baltic aphotic mixed substrate 42

Level 3 Level 4 AB.A Baltic aphotic rock and boulders 10% coverage of sessile epifauna? AB.A1 Baltic aphotic rock and boulder characterized by epibenthic biotic structures 0><10% coverage of sessile epifauna AB.A2 Baltic aphotic rock and boulder not characterized by sparse epibenthic biotic structures no macro- epior infauna AB.A4 Baltic aphotic rock and boulder characterized by no biotic structures 43

Level 4 AB.A1 Baltic aphotic rock and boulder characterized by epibenthic biotic structures Bivalves AB.A1E Baltic aphotic rock and boulders characterized by epibenthic bivalves Does any Perennial attached erect group have 10 % coverage Select the dominant group (of the groups 10% coverage) Chordates Cnidarians AB.A1F Baltic aphotic rock and boulders characterized by epibenthic chordates AB.A1G Baltic aphotic rock and boulders characterized by epibenthic cnidarians Moss animals AB.A1H Baltic aphotic rock and boulders characterized by epibenthic moss animals (Bryozoa) Crustaceans AB.A1I Baltic aphotic rock and boulders characterized by epibenthic crustacea Sponges AB.A1J Baltic aphotic rock and boulders characterized by epibenthic sponges (Porifera) AB.A1V Baltic aphotic rock and boulder characterized by mixed epibenthic macrocommunity AB.A2 Baltic aphotic rock and boulder characterized by sparse epibenthic biotic structures AB.A2T Baltic aphotic rock and boulders characterized by sparse epibenthic macrocommunity AB.A4 Baltic aphotic rock and boulder characterized by no biotic structures AB.A4U Baltic aphotic rock and boulders characterized by no macrocommunity 44

Level 6 AB.A1E Baltic aphotic rock and boulders characterized by epibenthic bivalves Mytilidae? AB.A1E1 Baltic aphotic rock and boulder dominated by Mytilidae, stop at level 5 AB.A1F Baltic aphotic rock and boulders characterized by epibenthic chordates sea squirts? AB.A1F1 Baltic aphotic rock and boulders dominated by sea squirts (Ascidiacea), stop at AB.A1G Baltic aphotic rock and boulders characterized by epibenthic cnidarians hydroids? AB.A1G1 Baltic aphotic rock and boulders dominated by hydroids (Hydrozoa) sea anemones? AB.A1G2 Baltic aphotic rock and boulders dominated by sea anemons (Actiniarida) stone corals? AB.A1G3 Baltic aphotic rock and boulders dominated stone corals (Scleractinida), stop at soft corals? AB.A1G4 Baltic aphotic rock and boulders dominated by soft corals (Alcyonacea) AB.A1H Baltic aphotic rock and boulders characterized by epibenthic moss animals (Bryozoa) corticated moss animals? AB.A1H1 Baltic aphotic rock and boulders dominated by corticated moss animals (Electra crustulenta), stop at erect moss animals? AB.A1H1 Baltic aphotic rock and boulders dominated by erect moss animals (Flustra foliacea) AB.A1I Baltic aphotic rock and boulders characterized by epibenthic crustacea barnacles? AB.A1I1 Baltic aphotic rock and boulders dominated by barnacles (Balanidae), stop at 45

Level 3 Level 4 AB.B Baltic aphotic hard clay 10% coverage of vegetation or sessile epifauna? AB.B1 Baltic aphotic hard clay characterized by epibenthic biotic structures 0><10% coverage of sessile epifauna? AB.B2 Baltic aphotic hard clay characterized by sparse epibenthic biotic structures no macro- epior infauna AB.B4 Baltic aphotic hard clay characterized by no biotic structures 46

Level 4 AB.B1 Baltic aphotic hard clay characterized by epibenthic biotic structures Bivalves AB.B1E Baltic aphotic hard clay characterized by epibenthic bivalves Does any Perennial attached erect group have 10 % coverage Select the dominant group (of the groups 10% coverage) AB.B1V Baltic aphotic hard clay characterized by mixed epibenthic macrocommunity AB.B2 Baltic aphotic hard clay characterized by sparse epibenthic biotic structures AB.B2T Baltic aphotic hard clay characterized by sparse epibenthic macrocommunity AB.B4 Baltic aphotic hard clay characterized by no biotic structures AB.B4U Baltic aphotic hard clay characterized by no macrocommunity 47

Level 6 AB.B1E Baltic aphotic hard clay characterized by epibenthic bivalves Mytilidae? AB.B1E1 Baltic aphotic hard clay dominated by Mytilidae, stop at Astarte spp.? AB.B1E4 Baltic aphotic hard clay dominated by Astarte spp. 48

Level 3 Level 4 AB.E Baltic aphotic shell gravel 10% coverage of vegetation or sessile epifauna? AB.E1 Baltic aphotic shell gravel characterized by epibenthic biotic structures 0><10% coverage of sessile epifauna? AB.E2 Baltic aphotic shell gravel characterized by sparse epibenthic biotic structures no macro- epi- or infauna AB.E4 Baltic aphotic shell gravel characterized by no biotic structures 49

Level 4 AB.E1 Baltic aphotic shell gravel characterized by epibenthic biotic structures Does any Perennial attached erect group have 10 % coverage Select the dominant group (of the groups 10% coverage) Bivalves Chordates AB.E1E Baltic aphotic shell gravel characterized by epibenthic bivalves AB.E1F Baltic aphotic shell gravel characterized by epibenthic chordates AB.E1V Baltic aphotic shell gravel characterized by mixed epibenthic macrocommunity AB.E2 Baltic aphotic shell gravel characterized by sparse epibenthic biotic structures AB.E2T Baltic aphotic hard clay characterized by sparse epibenthic macrocommunity AB.E4 Baltic aphotic shell gravel characterized by no biotic structures AB.E4U Baltic aphotic shell gravel characterized by no macrocommunity 50

Level 6 AB.E1E Baltic aphotic shell gravel characterized by epibenthic bivalves Mytilidae? AB.E1E1 Baltic aphotic shell gravel dominated by Mytilidae, stop at AB.E1F Baltic aphotic shell gravel characterized by epibenthic chordates vase tunicate? AB.E1F1 Baltic aphotic shell gravel dominated by vase tunicate (Ciona intestinalis), stop at 51

Level 3 Level 4 AB.H Baltic aphotic muddy sediment 10% coverage of sessile epifauna? AB.H1 characterized by epibenthic biotic structures 0><10% coverage of sessile epifauna? AB.H2 characterized by sparse epibenthic biotic structures infauna present, no epibenthic macrofauna? AB.H3 characterized by infaunal biotic structures no macro- epior infauna AB.H4 characterized by no biotic structures 52

Level 4 AB.H1 characterized by epibenthic biotic structures Bivalves AB.H1E characterized by epibenthic bivalves Does any Perennial attached erect group have 10 % coverage Cnidarians AB.H1G characterized by epibenthic cnidarians Select the dominant group (of the groups 10% coverage) Crustaceans AB.H1I characterized by epibenthic crustacea Polychaetes AB.H1K characterized by epibenthic polychaetes AB.H1V characterized by mixed epibenthic macrocommunity AB.H2 characterized by sparse epibenthic biotic structures AB.H2T characterized by sparse epibenthic macrocommunity 53

Level 4 AB.H3 characterized by infaunal biotic structures Biomass of infaunal bivalves dominates? AB.H3L characterized by infaunal bivalves Biomass of infaunal polychaetes dominates? AB.H3M characterized by infaunal polychaetes Biomass of infaunal crustacea dominates? AB.H3N characterized by infaunal crustaceans Biomass of infaunal echinoderms dominates? AB.H3O characterized by infaunal echinoderms Biomass of infaunal insect larvae dominates AB.H3P characterized by infaunal insect larvae AB.H4 characterized by no biotic structures AB.H4U characterized by no macrocommunity 54

Level 6 AB.H1E characterized by epibenthic bivalves Mytilidae? AB.H1E1 dominated by Mytilidae, stop at AB.H1I characterized by epibenthic crustacea Haploops spp.? AB.H1I2 dominated by Haploops spp., stop at AB.H1K characterized by epibenthic polychaetes tube building polychaetes (Maldanidae spp. and/or Terebellida spp.)? AB.H1K1 dominated by tube-building polychaetes, stop at AB.H2T characterized by sparse epibenthic macrocommunity Conspicuous populations of seapens (in visual sampling) AB.H2T1 dominated by seapens, stop at AB.H3L characterized by infaunal bivalves baltic tellin? AB.H3L1 dominated by Baltic tellin (Macoma baltica) ocean quahog? AB.H3L3 dominated by ocean quahog (Arctica islandica), stop at Astarte spp.? AB.H3L5 dominated by Astarte spp. 55

Level 6 AB.H3M characterized by infaunal polychaetes Scoloplos (Scoloplos) armiger? Marenzelleri a spp.? AB.H3M1 dominated by Scoloplos (Scoloplos) armiger AB.H3M3 dominated by Marenzelleria spp., stop at Polydora ciliata and/or Lagis koreni and/or Capitella capitata and/or Scoloplos (Scoloplos) armiger? AB.H3M6 dominated by various opportunistic polychaetes AB.H3N characterized by infaunal crustaceans Monoporeia affinis ad/or Pontoporeia femorata? AB.H3N1 dominated by Monoporeia affinis and/or Pontoporeia femorata, stop at AB.H3O characterized by infaunal echinoderms Amphiura filiformis? AB.H3O1 dominated by Amphiura filiformis, stop at Brissopsis lyrifera and Amphiura chiajei? AB.H3O2 dominated by Brissopsis lyrifera and Amphiura chiajei AB.H3P characterized by infaunal insect larvae midge larvae? AB.H3P1 dominated by midge larvae (Chironomidae), stop at, stop at level 5 AB.H4U characterized by no macrocommunity oxygenic? Meiofauna dominates? AB.H4U1 dominated by meiofauna AB.H4U2 dominated by anaerobic organisms 56

Level 3 Level 4 AB.I Baltic aphotic coarse sediment 10% coverage of sessile epifauna? AB.I1 Baltic aphotic coarse sediment characterized by epibenthic biotic structures infauna present, no epibenthic macrofauna? AB.I3 Baltic aphotic coarse sediment characterized by infaunal biotic structures no macro- epior infauna AB.I4 Baltic aphotic coarse sediment characterized by no biotic structures 57

Level 4 AB.I1 Baltic aphotic coarse sediment characterized by epibenthic biotic structures AB.I1E Baltic aphotic coarse sediment characterized by epibenthic bivalves Bivalves Does any Perennial attached erect group have 10 % coverage Select the dominant group (of the groups 10% coverage) AB.I1V Baltic aphotic coarse sediment characterized by mixed epibenthic macrocommunity AB.I3 Baltic aphotic coarse sediment characterized by infaunal biotic structures Biomass of infaunal bivalves dominates? AB.I3L Baltic aphotic coarse sediment characterized by infaunal bivalves Biomass of infaunal polychaetes dominates? AB.I3M Baltic aphotic coarse sediment characterized by infaunal polychaetes Biomass of infaunal crustacea dominates AB.I3N Baltic aphotic coarse sediment characterized by infaunal crustaceans AB.I4 Baltic aphotic coarse sediment characterized by no biotic structures AB.I4U Baltic aphotic coarse sediment chracterized by no macrocommunity 58

Level 6 AB.I1E Baltic aphotic coarse sediment characterized by epibenthic bivalves Mytilidae? AB.I1E1 Baltic aphotic coarse sediment dominated by Mytilidae, stop at AB.I3L Baltic aphotic coarse sediment characterized by infaunal bivalves Disregarding the of bivalves, 10 % of Ophelia spp. and Travisia forbesi disregarding the? AB.I3M4 Baltic aphotic coarse sediment dominated by multiple infaunal polychaet-species including Ophelia spp. Macoma calcarea and/or Mya truncata and/or Astarte spp. and/or Spisula solida (at least 2 species)? AB.I3L9 Baltic aphotic coarse sediment dominated by multiple infaunal bivalve species: Macoma calcarea, Mya truncata, Astarte spp., Spisula spp., stop at AB.I3M Baltic aphotic coarse sediment characterized by infaunal polychaetes AB.I3N Baltic aphotic coarse sediment characterized by infaunal crustaceans sand digger shrimp? AB.I3N3 Baltic aphotic coarse sediment dominated by sand digger shrimp (Bathyporeia pilosa),stop at AB.I4U Baltic aphotic coarse sediment chracterized by no macrocommunity meiofauna? AB.I4U1 Baltic aphotic coarse sediment dominated by meiofauna, stop at 59

Level 3 Level 4 AB.J Baltic aphotic sand 10% coverage of sessile epifauna? AB.J1 Baltic aphotic sand characterized by epibenthic biotic structures infauna present, no epibenthic macrofauna? AB.J3 Baltic aphotic sand characterized by infaunal biotic structures no macro- epior infauna AB.J4 Baltic aphotic sand characterized by no biotic structures 60

Level 4 AB.J1 Baltic aphotic sand characterized by epibenthic biotic structures Bivalves AB.J1E Baltic aphotic sand characterized by epibenthic bivalves Does any Perennial attached erect group have 10 % coverage Select the dominant group (of the groups 10% coverage) AB.J1V Baltic aphotic sand characterized by mixed epibenthic community AB.J3 Baltic aphotic sand characterized by infaunal biotic structures Biomass of infaunal bivalves dominates? AB.J3L Baltic aphotic sand characterized by infaunal bivalves Biomass of infaunal polychaetes dominates? AB.J3M Baltic aphotic sand characterized by infaunal polychaetes Biomass of infaunal crustacea dominates? AB.J3N Baltic aphotic sand characterized by infaunal crustacea Biomass of infaunal insect larvae dominates? AB.J3P Baltic aphotic sand characterized by infaunal insect larvae AB.J4 Baltic aphotic sand characterized by no biotic structures AB.J4U Baltic aphotic sand characterized by no macrocommunity 61

Level 6 AB.J1E Baltic aphotic sand characterized by epibenthic bivalves Mytilidae? AB.J1E1 Baltic aphotic sand dominated by unattached Mytilidae, stop at AB.J3L Baltic aphotic sand characterized by infaunal bivalves Disregarding the of bivalves, 10 % of Ophelia spp. and Travisia forbesi? AB.J3L11 Baltic aphotic sand dominated by multiple infaunal polychaete species including Ophelia spp. and Travisia forbesii baltic tellin? AB.J3L1 Baltic aphotic sand dominated by Baltic tellin (Macoma balthica) ocean quahog? AB.J3L3 Baltic aphotic sand dominated by ocean quahog (Arctica islandica) sand gaper? AB.J3L4 Baltic aphotic sand dominated by sand gaper (Mya arenaria) striped venus? AB.J3L7 Baltic aphotic sand dominated by striped venus (Chamelea gallina) multiple infaunal bivalve species: Cerastoderma spp., Mya arenaria, Astarte borealis, Arctica islandica, Macoma balthica? AB.J3L9 Baltic aphotic sand dominated by multiple infaunal bivalve species: Cerastoderma spp., Mya arenaria, Astarte borealis, Arctica islandica, Macoma balthica, stop at multiple infaunal bivalve species: Macoma calcarea, Mya truncata, Astarte spp., Spisula spp.? (at least 2 species) AB.J3L10 Baltic aphotic sand dominated by multiple infaunal bivalve species: Macoma calcarea, Mya truncata, Astarte spp., Spisula spp. 62

Level 6 AB.J3M Baltic aphotic sand characterized by infaunal polychaetes multiple infaunal polychaete species: Pygospio elegans, Marenzelleria spp., Hediste diversicolor? AB.J3M5 Baltic aphotic sand dominated by multiple infaunal polychaete species: Pygospio elegans, Marenzelleria spp., Hediste diversicolor, stop at AB.J3N Baltic aphotic sand characterized by infaunal crustacea Monoporeia affinis and Saduria entomon? AB.J3N1 Baltic aphotic sand dominated by Monoporeia affinis and Saduria entomon, stop at AB.J3P Baltic aphotic sand characterized by infaunal insect larvae midge larvae? AB.J3P1 Baltic aphotic sand dominated by midge larvae (Chironomidae), stop at AB.J4U Baltic aphotic sand chracterized by no macrocommunity meiofauna? AB.J4U1 Baltic aphotic sand dominated by meiofauna, stop at 63

Level 3 Level 4 AB.M Baltic aphotic mixed substrate 10% coverage of sessile epifauna? AB.M1 Baltic aphotic mixed substrate characterized by epibenthic biotic structures 0><10% coverage of sessile epifauna AB.M2 Baltic aphotic mixed substrate characterized by sparse epibenthic biotic structures no macro- epior infauna AB.M4 Baltic aphotic mixed substrate characterized by no biotic structures 64

Level 4 AB.M1 Baltic aphotic mixed substrate characterized by epibenthic biotic structures Bivalves AB.M1E Baltic aphotic mixed substrate characterized by epibenthic bivalves Does any Perennial attached erect group have 10 % coverage Select the dominant group (of the groups 10% coverage) Chordates Cnidarians Moss animals AB.M1F Baltic aphotic mixed substrate characterized by epibenthic chordates AB.M1G Baltic aphotic mixed substrate characterized by epibenthic cnidarians AB.M1H Baltic aphotic mixed substrate characterized by epibenthic moss animals (Bryozoa) Crustacea AB.M1I Baltic aphotic mixed substrate characterized by epibenthic crustacea Sponges AB.M1J Baltic aphotic mixed substrate characterized by epibenthic sponges (Porifera) AB.M1V Baltic aphotic mixed substrate characterized by mixed epibenthic macrocommunity AB.M2 Baltic aphotic mixed substrate characterized by sparse epibenthic biotic structures AB.M2T Baltic aphotic mixed substrate characterized by sparse epibenthic macrocommunity AB.M4 Baltic aphotic mixed substrate characterized by no biotic structures AB.M4U Baltic aphotic mixed substrate characterized by no macrocommunity 65

Level 6 AB.M1E Baltic aphotic mixed substrate characterized by epibenthic bivalves Mytilidae? AB.M1E1 Baltic aphotic mixed substrate dominated by Mytilidae, stop at AB.M1F Baltic aphotic mixed substrate characterized by epibenthic chordates sea squirts? AB.M1F1 Baltic aphotic mixed substrate dominated by sea squirts (Ascidiacea), stop at AB.M1G Baltic aphotic mixed substrate characterized by epibenthic cnidarians hydroids? AB.M1G1 Baltic aphotic mixed substrate dominated by hydroids (Hydrozoa) sea anemones? AB.M1G2 Baltic aphotic mixed substrate dominated by sea anemons (Actiniarida) stone corals? AB.M1G3 Baltic aphotic mixed substrate dominated stone corals (Scleractinida), stop at soft corals? AB.M1G4 Baltic aphotic mixed substrate dominated by soft corals (Alcyonacea) AB.M1H Baltic aphotic mixed substrate characterized by epibenthic moss animals (Bryozoa) corticated moss animals? AB.M1H1 Baltic aphotic mixed substrate dominated by corticated moss animals (Electra crustulenta), stop at erect moss animals? AB.M1H1 Baltic aphotic mixed substrate dominated by erect moss animals (Flustra foliacea) AB.M1I Baltic aphotic mixed substrate characterized by epibenthic crustacea barnacles? AB.M1I1 Baltic aphotic mixed substrate dominated by barnacles (Balanidae), stop at 66