Understanding Lobe Blowers Roots Blowers. Article written by Technical Team of EVEREST GROUP

Similar documents
CHAPTER 3 : AIR COMPRESSOR

Applied Fluid Mechanics

GLOSSARY OF TERMS. Adiabatic Compression Compression process when all heat of compression is retained in the gas being compressed.

ME1251 THERMAL ENGINEERING UNIT IV AIR COMPRESSORS

The Discussion of this exercise covers the following points: Pumps Basic operation of a liquid pump Types of liquid pumps The centrifugal pump.

Fundamentals of Compressed Air Systems. Pre-Workshop Assignment

Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE)

Exercise 4-2. Centrifugal Pumps EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Pumps

Offshore Equipment. Yutaek Seo

NEW POLYTECHNIC, KOLHAPUR

Theoretical and Experimental Study on Energy Efficiency of Twin Screw Blowers Compared to Rotary Lobe Blowers

Introduction to Pumps

Compressors. Basic Classification and design overview

PNEUMATIC CONVEYOR OVERVIEW

Advanced Management of Compressed Air Systems Pre-Workshop Assignment

Crab and Lobster Live Holding System Part II (Water Pumps, Air Pumps and Pipework)

FLUID DYNAMICS Ch.E-204 Umair Aslam Lecturer Department of Chemical Engineering

Selection of gas compressors: part 2

Vision Painting Inc Safety Management System

PROCESS ROTATING EQUIPMENT (CENTRIFUGAL PUMPS )

A centrifugal pump consists of an impeller attached to and rotating with the shaft and a casing that encloses the impeller.

CHAPTER 3 AUTOMOTIVE AIR COMPRESSOR

OIL SUPPLY SYSTEMS ABOVE 45kW OUTPUT 4.1 Oil Supply

Unit 24: Applications of Pneumatics and Hydraulics

Air Amplifiers & SYSTEMS

Acoustical Modeling of Reciprocating Compressors With Stepless Valve Unloaders

ANNEX AMENDMENTS TO THE INTERNATIONAL CODE FOR FIRE SAFETY SYSTEMS (FSS CODE) CHAPTER 15 INERT GAS SYSTEMS

NOTES ON WATER HAMMER. 55

The most common terms rating air flow capacity are ICFM, FAD, ANR, SCFM or nl/min

Air Operated Hydraulic Pumping Systems to 50,000 psi

Multifunctional Screw Compressor Rotors

solids Rotary Valves Type ZRS

(Refer Slide Time: 2:16)

Daily Investment on Pneumatic Conveyor

Pneumatic Conveying Principles BSH&E SEMINAR

OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD

Earlier Lecture. In the earlier lecture, we have seen Kapitza & Heylandt systems which are the modifications of the Claude System.

Vacutrans Instructions

Design Enhancements on Dry Gas Seals for Screw Compressor Applications

Quick Reference Technical Data

ASSIGNMENT-1 HYDROPOWER PLANT

Best Practices Pneumatics Machine & Design. Written by Richard F. Bullers, CFPPS as published in Fluid Power Journal, July/August 2016

MECHANICAL EQUIPMENTS: COMPRESSORS, PUMPS, SEALS, SPEED DRIVES, CONTROL VALVES & ACTUATORS & SAFETY RELIEF VALVES

Case 12 Multistage Centrifugal Refrigeration System Halocarbon Refrigerant

Tradition & Technology

Third measurement MEASUREMENT OF PRESSURE

Simplicity in VRU by using a Beam Gas Compressor

Title: Abrasive Blasting Effective Date: 11/17/2014 Control Number: THG_0034 Revision Number: 1 Date: 10/22/2015 Annual Review Completed: 5/13/2015

Understanding Centrifugal Compressor Capacity Controls:

CHECK-VALVES Automatically Position Themselves by the Natural Forces of the Conveying Air. A PNEUMATIC CONVEYING SYSTEM PATENT #: 5,160,222

Technical Bulletin 161. How Deep Can I Design my Aeration Tanks? by:

pumping gases JET PUMP TECHNICAL DATA

Unit 24: Applications of Pneumatics and Hydraulics

ENGINEERING AUSTRALIA PTY. LTD.

Another convenient term is gauge pressure, which is a pressure measured above barometric pressure.

To plot the following performance characteristics; A pump is a device, which lifts water from a lower level to a higher

CHAPTER-2 IMPACT OF JET

The Compact, Portable, Efficient and Economical Solution to boost Shop Compressed Air Pressure by 2 or 3 times

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE

then the work done is, if the force and the displacement are in opposite directions, then the work done is.

ASSIGNMENT-1 HYDROPOWER PLANT

Hours / 100 Marks Seat No.

Pumping Systems for Landscaping Pumps, Controls and Accessories. Mark Snyder, PE

An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD

Analysis of Pumping Characteristics of a Multistage Roots Pump

Performance Monitoring Examples Monitor, Analyze, Optimize

Pneumatic Conveying Systems Theory and Principles Session 100

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.

COMPRESSED AIR SYSTEMS A-Z COMP AIR COMPRESSOR TRAINIBG

THE INNER WORKINGS OF A SIPHON Jacques Chaurette p. eng. January 2003

TECHNICAL BULLETIN DESIGNING A FUNCTIONAL COMPRESSED AIR SYSTEM

COMPRESSED AIR SYSTEMS AND ENERGY SAVINGS

Displacement 12, , Maximum flow rate (at 1450 rpm) bar.

OPERATION MANUAL NTF-60 Plus

The Discussion of this exercise covers the following points:

The origin of gas pulsations in rotary PD compressors: ΔP or ΔU?

APPLICATION OF DRYACIDE DUST FOR THE STRUCTURAL TREATMENT OF GRAIN SILOS, BINS AND GRAIN STORES

Vacuum Systems and Cryogenics for Integrated Circuit Fabrication Technology 01

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles

Guideline No.M-05(201510) M-05 AIR COMPRESSOR. Issued date: 20 October China Classification Society

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL ONLINE CERTIFICATION COURSE. On Industrial Automation and Control

How Inlet Conditions Impact Centrifugal Air Compressors

Characterizers for control loops

Let s examine the evolution and application of some of the more popular types. Cascading Pressure Type

TUTORIAL. NPSHA for those who hate that stuffy word. by Jacques Chaurette p. eng. copyright 2006

ENGINEERING FLUID MECHANICS

A Twin Screw Combined Compressor And Expander For CO2 Refrigeration Systems

OPERATION MANUAL NTF-15

Fan and air movement essentials

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio

ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Squire-Cogswell

TECHNICAL DATA. Q = C v P S

THE WAY THE VENTURI AND ORIFICES WORK

X-Series WITTIG Rotary Vane Gas

IMPROVING PLANT AERATION USING GAS INFUSION TECHNOLOGY

Körting Liquid Jet Vacuum Ejectors

1 Exam Prep NSF/ANSI Tabs and Highlights

3 1 PRESSURE. This is illustrated in Fig. 3 3.

Dean Pump Self-Priming Chemical Process Pumps

Pump-Fan-Compressor Sizing

Transcription:

Understanding Lobe Blowers Roots Blowers Article written by Technical Team of EVEREST GROUP ompressors and Fans are essentially pumps for gases. Although they differ in construction from liquid handling machines, the principles of operations are similar. Gases being compressible, a large portion of the energy of compression Cis dissipated in form of heat to the gas. This limits the operation of the compressor unless suitable cooling is effected. Various gas machines can be classified depending upon their compression ratio i.e. ratio of final pressure P to suction pressure P1. CENTRIFUGAL BLOWERS & FANS: This Range covers various types of Centrifugal and Axial Flow Fans, which have relatively high air displacement but low compression ratios. They are either of Centrifugal type, Axial flow types or Regenerative types. As their internal clearances are relatively high, the discharge pressures are limited to few inches of water only. These types are generally used for applications requiring high volumes but low pressures such as in Air-conditioning, in furnaces, Low pressure Cooling, Dust or Fume extraction systems, lean phase pneumatic conveying etc. c EVEREST BLOWERS Web: www.everestblowers.com E-mail: info@everestblowers.com Rev1 - Feb - 01 Page: 1-9

BASIC FAN LAWS: oc 1. Volume Operating Speed V = V 1 rpm1 rpm. a) Pressure Changes oc (Speed) p rpm p = 1 ( rpm1) b) p D p = 1 Hp Hp 1 = D1. a) Power Changes oc (Speed) Hp rpm = Hp 1 ( rpm1) b) D D1 Volume flow changes directly with speed. Change in density has no effect. Pressure changes as square of speed ratio. Pressure changes with density ratio. HP varies with cube of speed ratio. HP varies with density ratio. POSITIVE DISPLACEMENT BLOWERS (Roots Blowers):- Twin Lobes and Three Lobes type Blowers fall under this category. They have higher efficiency at moderate compression ratios and are most efficient in the compression ratios of 1.1 to. They find use in applications, which require relatively constant flow rate at varying discharge pressures. These are generally available f o r c a p a c i t i e s 1 0 m / h r 10,000m /hr for pressures up to 1Kg/cm (g) in single stage c o n s t r u c t i o n. T h e y a r e e x t e n s i v e l y u s e d i n a p p l i c a t i o n s s u c h a s Pneumatic Conveying, Aeration in ETP, Cement plants, Water Treatment plants for filter backwash, Aquaculture, aeration etc. Fig : Everest Twin Lobe Positive Displacement Roots Blower c EVEREST BLOWERS Web: www.everestblowers.com E-mail: info@everestblowers.com Rev1 - Feb - 01 Page: -9

Basic Laws for Roots Blowers - Everest Twin Lobe Type 1. Inlet Capacity = Vrev * ( N- Slip * P ) Vrev = Blower design constant, displacement per revolution N = Operating Speed Slip = Blower design constant due to internal clearance P = Total differential pressure across blower (P-P 1) For a given blower, working at a fixed Delta P, inlet Capacity oc Speed. Power : Power at blower shaft (BHP) Input Power = 0.0046* Vrev * N * FHP = Frictional loss P + FHP For a given blower, operating, at a fixed speed, input power oc Delta P. Temperature rise of Discharge air. Delta t oc P /P1 P = discharge abs. Pressure P 1 = discharge abs. Pressure Rise in temperature is proportional to compression ratio. COMPRESSORS: Reciprocating, Vane or Screw Type Compressors are the machines in which compression ratios are high generally more than.5. These are generally required for applications requiring low airflow but high pressures such as Pneumatic Tools, Solenoid Valves, Paint shops, Drilling rigs etc. BASIC TWIN LOBE ROTARY AIR BLOWER PRINCIPLE This article is focused on Twin Lobe Blowers also popularly know as Roots Blowers-on the name of its inventors. TWIN Lobe Rotary Air Blowers belong to the category of Positive Displacement Blowers. They consist of a pair of involute profiled (shape of 8) lobes/rotors rotating inside an oval shaped casing, closed at ends by side plates. One lobe is the driving lobe, which is driven by the external power while the driven lobe is driven by a pair of equal ratio gears. Both the lobes thus, rotate at same speed but in opposite direction. Fig : Operation of Everest Twin Lobe Positive Displacement Roots Blower c EVEREST BLOWERS Web: www.everestblowers.com E-mail: info@everestblowers.com Rev1 - Feb - 01 Page: -9

As the rotors rotate, air is drawn into inlet side of the cylinder and forced out the outlet side against the system pressure. With each revolution, four such volumes are displaced. The air, which is forced out, is not allowed to come back due to the small internal clearance within the internals of the machine except a very small amount called 'SLIP'. There is no change in the volume of the air within the machine but it merely displaces the air from the suction end to the discharge end, against the discharge system resistance i.e. no compression takes place in the machine. Since the lobes run within the casing with finite clearances, no internal lubrication is required. The air, thus, delivered is 100% Oil Free. These blowers deliver, practically, a constant flow rate independent of the discharge pressure conditions. The flow rate is dependent, largely on the operating speed. Due to these constructional features it has the following distinct characteristics. The flow is largely dependent on the operating speed The input Power is largely dependent on the total pressure across the machine. The Suction & Discharge pressures are determined by the system conditions. The temperature rise of the discharge air & machine is largely dependent on the differential pressures across it. SYSTEM PRESSURE / BACK PRESSURE ON BLOWER H THERE is no compression or change in volume within the machine but the blower works under system back pressure conditions. To illustrate further, let us consider a case when the discharge of a blower is connected to the bottom of a tank, having water to a depth of 'H' mm. The air-discharged accumulates in the discharge line until sufficient pressure is built (slightly over 'H' mm of WG), when it starts to escape out. The system resistance or the static load on the Blower is thus 'H' mm WG. The power consumed by the blower depends upon the flow rate and the total pressure head on the Blower. c EVEREST BLOWERS Web: www.everestblowers.com E-mail: info@everestblowers.com Rev1 - Feb - 01 Page: 4-9

P s DISCHARGE ACCESSORIES P a P i SUCTION ACCESSORIES SYSTEM DISCHARGE LINE P d P d P s Gauge Pressure PRESSURE P a P i SUCTION DROP Datum Line Atmospheric pressure (P ) a 14.7 PSI Absolute or 0 PSI Gauge The total pressure across the Blower is taken as the pressure across the inlet and the discharge port of the Blower. The pressure drop through inlet accessories and discharge accessories are a part of system drop. The figure above indicates P a as the ambient pressure. P i is the pressure at the suction port which is slightly below the ambient due to suction filter and silencer drop. Pressure P d is the pressure at the discharge port of the Blower and P s is the actual system back pressure. As seen from the curve the total work done by the Blower is to raise the pressure of inlet volume from P i to P d Ideally, the blower is capable of resisting high pressures but the mechanical limitations, increased power intake, temperature rise and increase in 'SLIP' restrict the working pressure head to about 7000mm WG for Air cooled Blowers and 10,000mm WG for Water Cooled Blowers in single stage operation. It is therefore, important to ensure that the drop between P a and P i (Inlet drop) and P d and P s (outlet drop) should be as low as possible. This can be achieved by using adequate size piping and large radius bends wherever possible. c EVEREST BLOWERS Web: www.everestblowers.com E-mail: info@everestblowers.com Rev1 - Feb - 01 Page: 5-9

The Blowers are generally selected for the maximum system pressure, which they may encounter during operation and the prime mover is selected accordingly. When in operation, the Blower offers a considerable power saving since the power consumed by it depends upon the actual working pressure under which it operates and not the rated pressure. Typical performance curve below shows the characteristics of roots blower. Typical Performance Curve for Roots Blower 400 00 00 100 000 900 800 700 600 500 400 00 00 100 000 1900 1800 1700 1600 1500 1400 100 100 1100 1000 800 900 1000 1100 100 100 1400 SPEED (RPM) Capacity Power 80 70 60 50 40 0 0 10 00 190 180 170 160 150 140 10 10 110 100 90 80 70 60 50 40 BHP In a Reciprocating or Vane type compressor the compression ratio is fixed and the suction air is compressed, according to the compression ratio, irrespective of the load conditions. A fixed power, is therefore, consumed by for these type of compressors. GENERALLY USED TERMS: Ambient Pressure : Absolute pressure of the atmospheric air in the vicinity of Blower. Absolute Pressure : Is the pressure measured from absolute zero i.e. from an absolute vacuum. It is the algebraic sum of the atmospheric pressure and gauge pressure. Gauge Pressure : Pressure measured above the atmospheric pressure. c EVEREST BLOWERS Web: www.everestblowers.com E-mail: info@everestblowers.com Rev1 - Feb - 01 Page: 6-9

Static Pressure : Is the pressure of the gas measured in a manner that no effect due to velocity of gas stream is recorded. Velocity Pressure : Is the pressure solely due to velocity head. Total pressure : Is the total system pressure i.e. sum of static. pressure and velocity pressure. Pressure Ratio/ Compression Ratio : Is the ratio of absolute discharge pressure to absolute inlet pressure. Swept Volume of Blower: Actual volume flow rate : Standard volume flow rate: Volume swept by one revolution of the blower. Actual volume flow rate of gas compressed and delivered at the standard discharge point, referred to conditions of total temperature, total pressure and composition, prevailing at the standard inlet point. Also referred as FAD (Free Air Delivery), at Inlet Conditions. Volume flow rate of compressed gas as delivered at the discharge point but referred to standard inlet condition of total pressure, total temperature, and composition (1 bar, 0 o C, R.H. 6%) Normal volume flow rate: Volume flow rate of compressed gas as delivered at the discharge point but referred to NTP condition of total pressure, total temperature and composition (1 bar, 0 C). Compressed Volume Flow rate : Volume flow rate of gas at the discharge referred to conditions of total temperature, total pressure and composition, prevailing at the discharge point. This is generally not used. Rotary Air Blowers are widely used in applications demanding medium pressures and relatively large flow rates. Water Treatment Plants: For backwashing of filter beds. Effluent Treatment Plants: For diffused aeration and agitation of effluent. Cement Plants: For Blending, Aeration, Fluidisation, and Conveying. Slurry Agitation: For maintaining the B.O.D. / C.O.D Aquaculture: For Maintaining the dissolved oxygen level. Biogas Boosting: Transferring of Biogas from gasholder to boiler. c EVEREST BLOWERS Web: www.everestblowers.com E-mail: info@everestblowers.com Rev1 - Feb - 01 Page: 7-9

Flocculation: To increase the removal of suspended solids in primary setting facility. Chemical Plants: For supplying of process air. Electroplating Plants: For Oil free air agitation of electrolyte to maintain uniform density. Paper Plants:For Coating of paper/knife edge Yarn Drying:Vacuum/Pressure Drying of yarn. Polyester Chip Conveying & Drying: For transfer of polyester Chips Reverse Jet Filters: For reverse cleaning of Filter bags. Pneumatic Conveying: Vacuum, Pressure and Combination Conveying of cereals, cement, husk, baggage, granules, powders and other similar material. Piping selection: - It is important to ensure that the system back pressures across the blower i.e. the sum of all the pressures such as drop across the filter, silencer, discharge pipeline and the final system drop does not exceed the specified limits. The power consumed by the blower is directly proportional to the discharge pressure / system back pressure. A good system layout would offer power saving and higher efficiency. It is, therefore, important to ensure that proper care is taken during piping design and installation. Pressure losses in ducting are caused by skin friction, flow separation, change in flow direction due to bends, turbulence, and restrictions to flow caused by valves etc. Any saving in the pressure loss is a direct saving on the power consumed. While duct designing the following should be taken care off :- Size the pipeline to maintain average air velocity of 15-0 m/sec. High velocity results in higher Skin Friction loss and higher Dynamic Velocity head. The Frictional losses are a function of velocity and pipe surface conditions, so ensure that smooth pipes are used. Dynamic losses occur due to sudden changes in the direction and the magnitude in the path of flow. Avoid Bends and sudden changes in cross sectional areas to minimize losses. Dynamic losses, apart from the normal frictional losses, result when a fast moving air stream suddenly expands or contracts due to change in the cross sectional area. The impact on dynamic loss for sudden contraction is less than sudden expansion. In sudden expansion the flow is separated giving rise to turbulence and an additional pressure drop. Sudden contractions cause acceleration in flow, which tends to prevent flow separation. Use transition pieces of correct angles. c EVEREST BLOWERS Web: www.everestblowers.com E-mail: info@everestblowers.com Rev1- Feb - 01 Page: 8-9

The diffuser transition piece should have angle between 8 to 10 Deg. and the nozzle transition piece should have 0-5 Deg. Dynamic losses caused by changes in flow direction can be significant. If the flow cannot adjust quickly enough to follow a sharp pipe turn, flow separation & turbulence occurs giving rise to additional pressure drop. Keep the ratio of mean radius of the bend to pipe diameter at least 1.5-. Pipe Line Size NB (inches) 18 17 16 15 14 1 1 11 10 9 8 7 6 5 4 1 0 10 0 55 90 Recommended line size 180 Flow rate CFM 50 550 X Axis: Flow rate CFM ; Y Axis: Pipe Line size NB Inches. The graph is calculated on friction loss of 0.5 psi per 100 ft of line. For bends/valves add 5-7 times D to find equivalent length. 850 175 0 700 900 500 7000 8840