Supporting Information

Similar documents
Supplementary Material

Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Supplementary Information

Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Electronic Supplementary Information (ESI)

Supporting Information

Electronic Supplementary Information

Supporting Information

Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Supporting Information

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Electronic Supplementary Information (ESI)

Supplementary Information

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Supporting Information for

state asymmetric supercapacitors

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Supporting Information

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Supporting Information for

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Supporting Information

Supporting Information

Supporting Information

Supporting information

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Supporting Information

Electronic Supplementary Information

Supporting information

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

noble-metal-free hetero-structural photocatalyst for efficient H 2

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

Electronic Supporting Information (ESI)

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Electronic Supplementary Information

Supporting Information

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Electronic Supplementary Information

Electronic Supplementary Information (ESI)

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Supplementary Information

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

Supplementary Information

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Supporting Information

Supporting Information

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Supporting Information

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Highly enhanced performance of spongy graphene as oil sorbent

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Electronic Supplementary Information

Electronic Supplementary Information (ESI)

3D CNTs/Graphene-S-Al 3 Ni 2 Cathodes for High-Sulfur-Loading and Long-Life Lithium Sulfur Batteries

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

Zhaohuai Li, Qiu He, Xu Xu,* Yan Zhao, Xiaowei Liu, Cheng Zhou, Dong Ai, Lixue Xia, and Liqiang Mai*

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

Supporting Information

Curriculum Vitae. Yu (Will) Wang

Electronic Supplementary Information for

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Supporting Information. Highly simple and rapid synthesis of ultrathin gold nanowires with

Applied Medical Parasitology By LI CHAO PIN, ZHANG JIN SHUN ZHU BIAN SUN XIN

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Supplementary Information

Supporting information

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Supporting Information. High-performance nonfullerene polymer solar cells based on fluorinated wide

Complex Systems and Applications

Optical measurement in carbon nanotubes formation by pulsed laser ablation

Flexible Nb 4 N 5 /rgo Electrode for High-Performance Solid State Supercapacitors. Huazhong University of Science and Technology Wuhan , China

Supporting Information

Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%

small

An Ultrathin Flexible 2D Membrane Based on Single-Walled Nanotube MoS 2 Hybrid Film for High-Performance Solar Steam Generation

Zhao Bao Tai Chi Kung Fu (English/Chinese Edition) (English And Chinese Edition) By Wayne Peng

Transcription:

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Cobalt nanoparticles encapsulated in carbon nanotube-grafted nitrogen and sulfur co-doped multichannel carbon fibers as efficient bifunctional oxygen electrocatalysts Zhe Wang, a,b Shengjie Peng,* b, c Yuxiang Hu, d Linlin Li, c,e Tao Yan, a Guorui Yang, b Dongxiao Ji, b Srinivasan Madhavi, e Zhijuan Pan, * a and Seeram Ramakrishna b Table S1 Detail preparation information of different samples. Sample Precursor solution Stabilization Carbonization Further (second) pyrolusis MCF-900 PAN, and PS in DMF 280 C for 2 h in air NS/MCF-900 Co@NS/MCF- 900 Co@NS/CNTs- MCF-700 Co@NS/CNTs- MCF-800 Co@NS/CNTs- MCF-900 Co@NS/CNTs- MCF-1000 PAN, PS, and TAA in DMF PAN, PS, TAA, and cobalt(iii) acetylacetonate in DMF PAN, PS, TAA, and cobalt(iii) acetylacetonate in DMF PAN, PS, TAA, and cobalt(iii) acetylacetonate in DMF PAN, PS, TAA, and cobalt(iii) acetylacetonate in DMF PAN, PS, TAA, and cobalt(iii) acetylacetonate in DMF 280 C for 2 h in air 280 C for 2 h in air 280 C for 2 h in air 280 C for 2 h in air 280 C for 2 h in air 280 C for 2 h in air 700 C for 3 h under H 2 /Ar atmosphere 700 C for 3 h under H 2 /Ar atmosphere 700 C for 3 h under H 2 /Ar atmosphere 700 C for 3 h under H 2 /Ar atmosphere 700 C for 3 h under H 2 /Ar atmosphere 700 C for 3 h under H 2 /Ar atmosphere 700 C for 3 h under H 2 /Ar atmosphere 900 C for 2 h under N 2 atmosphere 900 C for 2 h under N 2 atmosphere 900 C for 2 h under N 2 atmosphere With melamine 700 C for 2 h under N 2 atmosphere With melamine 800 C for 2 h under N 2 atmosphere With melamine 900 C for 2 h under N 2 atmosphere With melamine 1000 C for 2 h under N 2 atmosphere 1

Fig. S1 Morphology and structural characterization of Co@NS/MCF obtained at 700 C in H 2 /Ar atmosphere for 3 h. a, b) SEM images; c) the corresponding cross-sectional image and d) the TEM image. The SEM and TEM images show the multichannel structure of Co@NS/MCF with the Co NPs uniformly dispersed. 2

Fig. S2 a, b) SEM images of Co@NS/MCF-900 carbon fiber; c) the corresponding TEM image; d, e) HRTEM images of Co NPs and carbon nanostructure on Co@NSMCF-900, respectively. Fig. S2a, b, and c show the multichannel structure of Co@NS/MCF-900 with the Co NPs uniformly dispersed. Fig. S2d reveals that Co NP was coated by few graphitic carbon layers. Fig. S2e shows the multichannel fiber is of highly porous with few graphitic layers. 3

Fig. S3 a, b, and c ) SEM images of NS/MCF-900 carbon fiber; d) the corresponding TEM image; e) HRTEM image of carbon nanostructure on NS/MCF-900 4

Fig. S4 a, b, and c ) SEM images of MCF-900 carbon fiber; d, e) the corresponding TEM images. 5

Fig. S5 a) SEM images of Co@NS/CNTs-MCF-900, and the inset shows the diameter distribution of CNTs; b) the corresponding cross-sectional image. Fig. S6 a) TEM image of Co@NS/CNTs-MCF-900 carbon fiber, and the inset shows the diameter distribution of Co NPs; b) HRTEM of Co NPs coated by several graphitic layers. 6

Fig. S7 a,b) SEM images of Co@NS/CNTs-MCF-700 carbon fibers and the inset shows the diameter distribution of CNTs; c) SEM image of Co@NS/CNTs-MCF-800 carbon fibers and d) the corresponding cross-sectional image; e) SEM image of Co@NS/CNTs-MCF-1000 carbon fibers, and the inset shows the corresponding TEM image; f) SEM of CNTs grafted on Co@NS/CNTs-MCF-1000 and the inset shows the diameter distribution of CNTs. Fig. S8 a) XRD patterns and b) Raman spectra of Co@NS/CNTs-MCF-700, Co@NS/CNTs-MCF-800, Co@NS/CNTs- MCF-900, and Co@NS/CNTs-MCF-1000, respectively 7

Table S2 Atomic contents of Co@NS/CNTs-MCF-700, Co@NS/CNTs-MCF-800, Co@NS/CNTs-MCF-900, and Co@NS/CNTs-MCF-1000, calculated form the XPS survey spectra Sample C (at. %) Co (at. %) N (at. %) S (at. %) O (at. %) Co@NS/CNT s-mcf-700 Co@NS/CNT s-mcf-800 Co@NS/CNT s-mcf-900 Co@NS/CNT s-mcf-1000 84.29 2.05 9.29 0.40 3.97 87.44 1.53 8.41 0.28 2.35 91.68 0.60 6.54 0.12 1.06 94.49 0.32 2.87 0 0.49 Table S3 Cobalt content in Co@NS/CNTs-MCF-700, Co@NS/CNTs-MCF-800, Co@NS/CNTs-MCF-900, and Co@NS/CNTs-MCF-1000, determined by ICP-AES Sample Co@NS/CN Ts-MCF-700 Co@NS/CNT s-mcf-800 Co@NS/CNT s-mcf-900 Co@NS/CNT s-mcf-1000 Co (wt %) 10.21 7.23 3.57 2.46 Fig. S9 a) XPS survey scan of Co@NS/CNTs-MCF-900; b) high-resolution and the corresponding deconvoluted S 2p spectra of Co@NS/CNTs-MCF-900. 8

Fig. S10 High-resolution and the corresponding deconvoluted Co 2p XPS spectrum of Co@NS/CNTs-MCF-700, Co@NS/CNTs-MCF-800, Co@NS/CNTs-MCF-900, and Co@NS/CNTs-MCF-1000, respectively. 9

Fig. S11 a) high-resolution and the corresponding deconvoluted N 1s XPS spectrum of Co@NS/CNTs-MCF-700, Co@NS/CNTs-MCF-800, Co@NS/CNTs-MCF-900, and Co@NS/CNTs-MCF-1000; b) the corresponding contents of pyridinic-n, pyrrolic-n, graphitic-n, and oxidated-n; c) high-resolution and the corresponding deconvoluted S 2p XPS spectra of Co@NS/CNTs-MCF-700, Co@NS/CNTs-MCF-800, and Co@NS/CNTs-MCF-900. Fig. S12 a) CV curves of MCF-900, NS/MCF-900, Co@NS/MCF-900, and Co@NS/CNTs-MCF-900 at a scan rate of 50 mv s -1 in O 2 -saturated 0.1 M KOH; b) CV curves of Co@NS/CNTs-MCF-700, Co@NS/CNTs-MCF-800, Co@NS/CNTs- MCF-900, and Co@NS/CNTs-MCF-1000 at a scan rate of 50 mv s -1 in N 2 and O 2 -saturated 0.1 M KOH, respectively. 10

Fig. S13 a) onset potentials and half-wave potentials of MCF-900, NS/MCF-900, Co@NS/MCF-900, and Co@NS/CNTs-MCF-900, respectively; b) LSV curves of Co@NS/CNTs-MCF-700, Co@NS/CNTs-MCF-800, Co@NS/CNTs-MCF-900, and Co@NS/CNTs-MCF-1000 at 5 mv s -1 and a rotation speed of 1600 rpm; c) the corresponding diffusion-limited current densities at 0.20 V (vs. RHE) and half-wave potentials. Fig. S14 a) LSV curves of commercial 20 wt% Pt/C catalyst in O 2 -saturated 0.1 M KOH at various rotation speeds; b) the corresponding K-L plots at different potentials. 11

Fig. S15 a, c, e) LSV curves of MCF-900, NS/MCF-900, and Co@NS/-MCF-900 in O 2 -saturated 0.1 M KOH at various rotation speeds, respectively; b, d, f) the corresponding K-L plots at different potentials. 12

Fig. S16 a, c, e) LSV curves of Co@NS/CNTs-MCF-700, Co@NS/CNTs-MCF-800, and Co@NS/CNTs-MCF-1000 in O 2 - saturated 0.1 M KOH at various rotation speeds, respectively; b, d, f) the corresponding K-L plots at different potentials 13

Fig. S17 a) Tafel plots of Co@NS/CNTs-MCF-900 and commercial 20 wt% Pt/C catalyst; b) RRDE results of Co@NS/CNTs-MCF-900; c) RRDE results of commercial 20 wt% Pt/C catalyst. 14

Figure S18. (a) TEM and (b) HRTEM of Co NPs coated by several graphitic shells after ORR durability test for about 24 h. Fig. S19 a) Polarization curves of commercial RuO 2 catalyst with (red) and without (black) ir-correct at a scan rate of 5 mv s -1 and 1600 rpm in O 2 -saturated 0.1 M KOH solution; b) polarization curves of Co@NSCNTs-MCF-900 with (red) and without (black) ir-correct; c) polarization curves of MCF-900, NS/MCF-900, Co@NS/MCF-900, Co@NS/CNTs-MCF-900, commercial RuO 2, and 20 wt% Pt/C catalysts without ir correct; d) polarization curves of 15

Co@NS/CNTs-MCF-700, Co@NS/CNTs-MCF-800, Co@NS/CNTs-MCF-1000, without ir correct. The solution resistance was determined by the EIS technique. Fig. S20 The electrochemical impedance spectroscopy (EIS) spectra of MCF-900, NS/MCF-900, Co@NS/MCF-900, and Co@NS/CNTs-MCF-900, measured within the frequency range from 0.01 to 100 khz at 1.65 V (vs. RHE) and a potentiostatic signal amplitude of 5 mv in 0.1 M KOH. 16

Fig. S21 a) ir-corrected polarization curves for OER at a scan rate of 5 mv s -1 and 1600 rpm in O 2 -saturated 0.1 M KOH solution on Co@NS/CNTs-MCF-700, Co@NS/CNTs-MCF-800, Co@NS/CNTs-MCF-900, and Co@NS/CNTs-MCF- 1000; b) the corresponding Tafel plots. Fig. S22 (a) Current-time chronoamperometric responses of Co@NS/CNTs-MCF-900 and commercial RuO2 catalyst at a constant voltage of 1.60 V (vs. RHE) in O2-saturated 0.1 M KOH; (b) HRTEM of Co NPs coated by several graphitic shells after OER durability test for about 24 h. 17

Fig. S23 Li 1s XPS spectra of the a) discharged and b) charged Co@NS/CNTs-MCF-900 mat cathode. 18

Fig. S24 a) SEM image of discharged Co@NS/CNTs-MCF-900 mat cathode; b,c) the corresponding high-magnified SEM images; d) SEM image of charged Co@NS/CNTs-MCF-900 mat cathode. 19

Table S4 Comparison of the ORR performance of different catalysts. Catalyst CatalystLo ading (mg cm -2 ) Onset potential (V vs. RHE) Half-wave potential (Vvs. RHE) n Electrolyte Supplemen tary Reference Co@NS/CN Ts-MCF- 900 0.6 0.946 0.837 3.97 0.1 M KOH This work 0.17 0.88 0.83 3.9 0.1 M KOH 1 Fe-N-CNFs 0.60 0.93 0.81 3.93 0.1 M KOH 2 Co 9 S 8 @CNS 900 Co 3 O 4 /NPG C 0.4 0.927 0.807 3.97 0.1 M KOH 3 0.2 0.97 0.842 ~4 0.1 M KOH 4 Co 3 O 4 /NrmGO N/Codoped PCP//NRG O 0.714 0.97 0.86 3.90-3.94 0.1 M KOH 5 N-carbon nanotube framework s 0.2 0.97 0.87 3.97 0.1 M KOH 6 Fe-N-CC 0.1 0.94 0.83 ~3.8 0.1 M KOH 7 Fe-N/C-800 0.1 0.923 0.809 4.15 0.1 M KOH 8 P-CNCo-20 0.1 0.93 0.85 3.9 0.1 M KOH 9 Co@Co 3 O 4 @C-CM LDG@ZIF- CoZn-800 0.1 0.93 0.81 3.8 0.1 M KOH 10 0.2 0.976 0.849 3.96 0.1 M KOH 11 CoP- CMP800 0.6 0.88 0.82 3.83-3.86 0.1 M KOH 12 Co,N-CNF 0.12-0.082 (vs Ag/AgCl) -0.155 (vs Ag/AgCl) N/A 0.1 M KOH 13 Pt/C 0.1 0.9 0.841 3.98 0.1 M KOH This work 20

Table S5 Comparison of the OER performance of different catalysts. Catalyst Co@NS/CNTs- MCF-900 Co 3 O 4 /NrmGO Catalyst Loading (mg cm -2 ) Overpotential η (m V) @ 10 ma cm -2 Tafel slop (mv dec -1 ) Electrolyte Supplement ary Reference 0.6 357 mv 54 0.1 M KOH This work 1 310 mv 67 1 M KOH 1 N-CG-CoO 0.71 340 mv 71 1 M KOH 14 CoNP@NC/N G-700 N/A 390 mv 78 0.1 M KOH 15 SC CoO NRs 0.40 330 mv 44 1 M KOH 16 Co-P film 1 345 mv 47 1 M KOH 17 CoP NR/C 0.71 320 mv 71 1 M KOH 18 NiCo LDH N/A 367 mv 40 1 M KOH 19 Co x O y /NC 0.21 430 mv 74.8 0.1 M KOH 20 NG-CoSe 2 composite 0.2 366 mv 40 0.1 M KOH 21 Co/N-C-800 0.25 371 mv 61.4 0.1 M KOH 22 Ni-Co 2 -O 0.2 362 mv 64.4 0.1 MKOH 23 Annealed C- Co 0.2 390 N/A 0.1 MKOH 24 Co 2 B-500 0.21 380 45 0.1 MKOH 25 Mn 3 O 4 /CoSe 2 0.2 450 49 0.1 MKOH 26 N-Co 9 S 8 /G 0.2 409 mv 82.7 0.1 M KOH 27 RuO 2 0.2 360 mv 58 0.1 M KOH This work 21

Table S6 Comparison of the highly active ORR-OER activities of different catalysts. Catalyst Co@NS/CN Ts-MCF-900 Co 3 O 4 /NrmGO Catalyst Loading (mg cm -2 ) E 1/2 (V) ORR Halfwave potential E J=10 (V) OER@ 10 ma cm -2 Overall oxygen activity ΔE=E J=10 -E 1/2 Electrolyte Suppleme ntary Reference 0.6 0.837 1.592 0.755 0.1 M KOH This work 1 0.86 1.54 0.71 1 M KOH 1 NCNTFs 0.2 0.87 1.60 0.73 0.1 M KOH 6 N-CG-CoO 0.7 0.81 1.57 0.76 1 M KOH 14 SC CoO NRs 0.4 0.85 1.56 0.71 1 M KOH 16 Co@Co 3 O 4 / NC-1 NCT/Co x Mn 1-xO 0.21 0.80 1.65 0.86 0.1 M KOH 28 0.21 0.84 1.57 0.73 1 M KOH 29 Co/N-CNTs 0.20 0.84 1.62 0.78 0.1 M KOH 30 N-GRW 0.6 0.84 1.59 0.75 1 M KOH 31 Co 3 O 4 /NBG FSs CoS 2 (400)/ N,S-Go 0.13 0.862 1.70 0.838 0.1 M KOH 32 0.25 0.79 1.61 0.82 0.1 M KOH 33 Co 3 O 4 C-NA 0.2 0.78 1.52 0.74 0.1 M KOH 34 22

Supplementary References 1 Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, T. Regier, H. J. Dai, Nat. Mater. 2011, 10, 780-786. 2 Z. Y. Wu, X. X. Xu, B. C. Hu, H. W. Liang, Y. Lin, L. F. Chen, S. H. Yu, Angew. Chem., Int. Edit. 2015, 54, 8179-8183. 3 Q. L. Zhu, W. Xia, T. Akita, R. Q. Zou, Q. Xu, Adv. Mater. 2016, 28, 6391. 4 G. Li, X. L. Wang, J. Fu, J. D. Li, M. G. Park, Y. N. Zhang, G. Lui, Z. W. Chen, Angew. Chem., Int. Edit. 2016, 55, 4977-4982. 5 Y. Hou, Z. H. Wen, S. M. Cui, S. Q. Ci, S. Mao, J. H. Chen, Adv. Funct. Mater. 2015, 25, 872-882. 6 B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. D. Lou, X. Wang, Nat. Energy, 2016, 1, 15006. 7 G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. L. Brett, A. B. Fuertes, M. Sevilla, M. M. Titirici, Acs Nano 2016, 10, 5922-5932. 8 L. Lin, Q. Zhu, A. W. Xu, J. Am. Chem. Soc. 2014, 136, 11027-11033. 9 Y. Z. Chen, C. M. Wang, Z. Y. Wu, Y. J. Xiong, Q. Xu, S. H. Yu, H. L. Jiang, Adv. Mater. 2015, 27, 5010-5016. 10 W. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 2015, 8, 568-576. 11 Z. H. Li, M. F. Shao, L. Zhou, Q. H. Yang, C. Zhang, M. Wei, D. G. Evans, X. Duan, Nano Energy, 2016, 25, 100-109. 12 Z. S. Wu, L. Chen, J. Z. Liu, K. Parvez, H. W. Liang, J. Shu, H. Sachdev, R. Graf, X. L. Feng, K. Mullen, Adv. Mater. 2014, 26, 1450-1455. 13 L. Shang, H. J. Yu, X. Huang, T. Bian, R. Shi, Y. F. Zhao, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. R. Zhang, Adv. Mater. 2016, 28, 1668-1674. 14 S. Mao, Z. H. Wen, T. Z. Huang, Y. Hou, J. H. Chen, Energy Environ. Sci. 2014, 7, 609-616. 15 X. Zhong, Y. Jiang, X. Chen, L. Wang, G. L. Zhuang, X. Li, J. G. Wang, J. Mater. Chem. A, DOI: 10.1039/C6TA03820D. 16 T. Ling, D. Y. Yan, Y. Jiao, H. Wang, Y. Zheng, X. L. Zheng, J. Mao, X. W. Du, Z. P. Hu, M. Jaroniec, S. Z. Qiao, Nat. Commun., DOI:http://dx.doi.org.libproxy1.nus.edu.sg/10.1038/ncomms12876 17 N. Jiang, B. You, M. L. Sheng, Y. J. Sun, Angew. Chem., Int. Edit. 2015, 54, 6251-6254. 18 J. F. Chang, Y. Xiao, M. L. Xiao, J. J. Ge, C. P. Liu, W. Xing, ACS Catal. 2015, 5, 6874-6878. 23

19 H. F. Liang, F. Meng, M. Caban-Acevedo, L. S. Li, A. Forticaux, L. C. Xiu, Z. C. Wang, S. Jin, Nano lett. 2015, 15, 1421-1427. 20 J. Masa, W. Xia, I. Sinev, A. Q. Zhao, Z. Y. Sun, S. Grutzke, P. Weide, M. Muhler, W. Schuhmann, Angew. Chem., Int. Edit. 2014, 53, 8508-8512. 21 M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y. R. Zheng, J. Jiang, S. H. Yu, Acs Nano 2014, 8, 3970-3978. 22 Y. H. Su, Y. H. Zhu, H. L. Jiang, J. H. Shen, X. L. Yang, W. J. Zou, J. D. Chen, C. Z. Li, Nanoscale, 2014, 6, 15080-15089. 23 C. Z. Zhu, D. Wen, S. Leubner, M. Oschatz, W. Liu, M. Holzschuh, F. Simon, S. Kaskel, A. Eychmuller, Chem.Commun. 2015, 51, 7851-7854. 24 L. H. Wu, Q. Li, C. H. Wu, H. Y. Zhu, A. Mendoza-Garcia, B. Shen, J. H. Guo, S. H. Sun, J. Am. Chem. Soc. 2015, 137, 7071-7074. 25 J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Y. Sun, C. Somsen, M. Muhler, W. Schuhmann, Adv. Energy Mater., DOI: 10.1002/aenm.201502313. 26 M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng, S. H. Yu, J. Am. Chem. Soc. 2012, 134, 2930-2933. 27 S. Dou, L. Tao, J. Huo, S. Y. Wang, L. M. Dai, Energy Environ. Sci. 2016, 9, 1320-1326. 28 A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide, A. J. R. Botz, R. A. Fischer, W. Schuhmann, M. Muhler, Angew. Chem., Int. Edit. 2016, 55, 4087-4091. 29 X. Liu, M. Park, M. G. Kim, S. Gupta, X. J. Wang, G. Wu, J. Cho, Nano Energy, 2016, 20, 315-325. 30 Y. Liu, H. Jiang, Y. Zhu, X. Yang, C. Li, J. Mater. Chem. A 2016, 4, 1694-1701. 31 H. B. Yang, J. W. Miao, S. F. Hung, J. Z. Chen, H. B. Tao, X. Z. Wang, L. P. Zhang, R. Chen, J. J. Gao, H. M. Chen, L. M. Dai, B. Liu, Sci. Adv., DOI: http://dx.doi.org/10.1126/sciadv.1501122. 32 Z. Q. Jiang, Z. J. Jiang, T. Maiyalagan, A. Manthiram, J. Mater. Chem. A 2016, 4, 5877-5889. 33 P. Ganesan, M. Prabu, J. Sanetuntikul, S. Shanmugam, Acs Catal. 2015, 5, 3625-3637. 34 T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925-13931. 24