Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved

Similar documents
Tunable CoFe-Based Active Sites on 3D Heteroatom Doped. Graphene Aerogel Electrocatalysts via Annealing Gas Regulation for

Hierachical Nickel-Carbon Structure Templated by Metal-Organic Frameworks for Efficient Overall Water Splitting

Supporting Information

Fabrication of Novel Lamellar Alternating Nitrogen-Doped

Electronic Supplementary Information (ESI)

Supporting Information

Octahedral Pd Nanocages with Porous Shells Converted by Co(OH) 2 Nanocages with Nanosheet surface as Robust Electrocatalysts for Ethanol Oxidation

Supporting Information

Interconnected hierarchical NiCo 2 O 4 microspheres as high performance. electrode material for supercapacitor

Supporting Information

Electronic Supplementary Information. Hierarchically porous Fe-N-C nanospindles derived from. porphyrinic coordination network for Oxygen Reduction

Pingping zhao, Xing Hua, Wei Xu, Wei Luo,* Shengli Chen,* and Gongzhen Cheng

Facile synthesis of N-rich carbon quantum dots by spontaneous. polymerization and incision of solvents as efficient bioimaging probes

Journal of Materials Chemistry A. Supporting Information. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting

Supplementary Material

Supplementary Information

Electronic Supplementary Information

Supplementary Information

Supporting Information

Supporting Information

Facile fabrication of well-defined polyaniline microtubes derived. from natural kapok fiber for supercapacitor with long-term.

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry

Supporting Information

state asymmetric supercapacitors

Supplementary Information. O-vacancy Enriched NiO Hexagonal Platelets Fabricated on Ni. Foam as Self-supported Electrode for Extraordinary

noble-metal-free hetero-structural photocatalyst for efficient H 2

Supporting Information. In-Situ Facile Bubble-Templated Fabrication of New-Type Urchin-Like (Li, Mo)- Doped Lix(Mo0.3V0.7)2O5 for Zn 2+ Storage

Supporting Information

Supporting Information for

Supplementary Information

Supporting Information for

Supporting Information. Metal organic framework-derived Fe/C Nanocubes toward efficient microwave absorption

Electronic Supplementary Information (ESI)

Supporting information

Supporting Information. Mitigating the P2 O2 phase transition of high-voltage

Supporting information

Supplementary Information. Indole-Based Conjugated Macromolecule as Redox- Mediated Electrolyte for Ultrahigh Power Supercapacitor

Supporting Information

Electronic Supplementary Information

High performance carbon nanotube based fiber-shaped. supercapacitors using redox additives of polypyrrole and. hydroquinone

Electronic Supplementary Information (ESI)

Supporting Information

3D Yolk-Shelled NiGa 2 S 4 Microspheres Confined with Nanosheets for High Performance Supercapacitors

Electronic Supporting Information (ESI)

Supplementary Information. A synergistic interaction between isolated Au nanoparticles with oxygen vacancies in

Electronic Supplementary Information

Supporting Information

Supporting Information

Supporting Information. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide

Porous and High-strength Graphitic Carbon/SiC Three-Dimensional Electrode for Capacitive Deionization and Fuel Cell Applications

Supplementary Information. High areal capacity lithium sulfur battery cathode by. site-selective vapor infiltration of hierarchical

Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors

catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-size energy

MXene/Graphene Hybrid Fibers for High. Performance Flexible Supercapacitors

Supporting Information

A reformative oxidation strategy using high concentration nitric acid for. enhancing emission performance of graphene quantum dots

A Ni 3 N-Co 3 N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection

Electronic Supplementary Information

Supporting Information

Supporting Information. High cycling stable supercapacitor through electrochemical. deposition of metal-organic frameworks/polypyrrole positive

Electronic Supplementary Information

Supplementary Information

Supporting Information

Supporting Information

Supporting Information

Nickel Hexacyanoferrate/Carbon Composite as a High-Rate and. Long-Life Cathode Material for Aqueous Hybrid Energy

Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalyst ELECTRONIC SUPPLEMENTARY INFORMATIONS. I. General data..p2

Electronic Supplementary Information for. Highly Stable Mesoporous Silica Nanospheres Embedded with

Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. College of Materials Science and Engineering, Key Lab of Guangdong Province for

Highly enhanced performance of spongy graphene as oil sorbent

Electronic Supplementary Information (ESI)

Recent advances in energy transfer in bulk and nanoscale. luminescent materials: From spectroscopy to applications

high-performance intercalation pseudocapacitive anode for lithiumion capacitors

Electronic Supplementary Information (ESI) for Analyst. A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ

High performing AgNWs transparent conducting electrodes with 2.5Ω/Sq based upon Roll-to- Roll compatible post processing technique

Supporting Information

Curriculum Vitae. Yu (Will) Wang

Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor

A ligand conformation preorganization approach to construct a. copper-hexacarboxylate framework with a novel topology for

Supplementary Information

Zhaohuai Li, Qiu He, Xu Xu,* Yan Zhao, Xiaowei Liu, Cheng Zhou, Dong Ai, Lixue Xia, and Liqiang Mai*

Electronic Supplementary Information for

Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis. Supplementary Information

A mitochondria-targeted near-infrared probe for colorimetric and. ratiometric fluorescence detection of hypochlorite in living cells

Supporting information

Flexible and Printable Paper Based Strain Sensors for Wearable and Large Area Green Electronics

Flexible Nb 4 N 5 /rgo Electrode for High-Performance Solid State Supercapacitors. Huazhong University of Science and Technology Wuhan , China

Supplementary Information. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires

Supporting Information. Highly simple and rapid synthesis of ultrathin gold nanowires with

3D CNTs/Graphene-S-Al 3 Ni 2 Cathodes for High-Sulfur-Loading and Long-Life Lithium Sulfur Batteries

Complex Systems and Applications

A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing

Applied Medical Parasitology By LI CHAO PIN, ZHANG JIN SHUN ZHU BIAN SUN XIN

Electronic Supplementary Information (ESI) for. MnOOH/Nitrogen-Doped Graphene Hybrid Nanowires. Sandwiched by Annealing Graphene Oxide Sheets for

Roles of Nitrogen Functionalities in Enhancing the. Excitation-Independent Green-Color Photoluminescence of

(ICCTP 2011) of Chinese Transportation. Nanjing, China. 11th International Conference. Professionals August Volume 3 of 5.

Measurements of the Cross Section for e 1 e 2! Hadrons at Center-of-Mass Energies from 2 to 5 GeV

Proceedings of the Beijing International Workshop on HIGH TEMPERATURE SUPERCONDUCTIVITY

Advanced Architectures and Relatives of Air Electrodes in Zn Air Batteries

Supporting information. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation

Transcription:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Supplementary Information Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved Oxygen Evolution during Water Splitting Tingting Zhou, [a,b] Zhen Cao, [a] Heng Wang, [a] Zhen Gao, [a] Long Li, [a] Houyi Ma [b] and Yunfeng Zhao [a] * a. Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China School of Chemistry and b. Chemical Engineering, Shandong University, Jinan 250100, China.

Table S1. ICP results of Co y Fe 1-y (OH) x NSAs. Number Feed ratio of Content of Co Content of Fe Atom ratio y Co:Fe (mg/cm 2 ) (mg/cm 2 ) (Co : Fe) 1 1:0 0.37 0 ---- 1 2 3:1 0.38 0.13 1:0.34 0.75 3 2:1 0.39 0.16 1:0.41 0.7 4 1:1 0.28 0.23 1:0.82 0.55 5 1:2 0.22 0.31 1:1.40 0.41 6 0:1 0 0.39 ---- 0

Fig. S1. SEM images of (a) foam Cu, (b) Co(OH) 2 NSAs, (c) Co 0.75 Fe 0.25 (OH) x NSAs, (d) Co 0.55 Fe 0.45 (OH) x NSAs, (e) Co 0.41 Fe 0.59 (OH) x NSAs and (f) Fe(OH) x NSAs.

Fig. S2. TEM images and (inset) SAED patterns of (a) Co 0.75 Fe 0.25 (OH) x Co 0.55 Fe 0.45 (OH) x NSAs, (c) Co 0.41 Fe 0.59 (OH) x NSAs and (d) Fe 2 O 3 NSAs. NSAs, (b)

Fig. S3. The TEM image and corresponding Co, Fe and Cu EDS mapping images of Co 0.70 Fe 0.30 (OH) x NSAs.

Fig. S4. XRD patterns for Cu 2 O template, Co(OH) 2, Co 0.75 Fe 0.25 (OH) x, Co 0.70 Fe 0.30 (OH) x, Co 0.55 Fe 0.45 (OH) x, Co 0.41 Fe 0.59 (OH) x and Fe 2 O 3 NSAs (lines from bottom to top). The peaks are indexed using reference peaks from the appropriate PDF cards: Cu 2 O phases (red, PDF#65-3288) and Cu phases (black, PDF# 65-9743).

Fig. S5. High-resolution XPS spectra of (a) Co 2p, (b) Fe 2p and (c) O 1s of Co 0.75 Fe 0.25 (OH) x NSAs. Fig. S6. High-resolution XPS spectra of (a) Co 2p, (b) Fe 2p and (c) O 1s of Co 0.55 Fe 0.45 (OH) x NSAs. Fig. S7. High-resolution XPS spectra of (a) Co 2p, (b) Fe 2p and (c) O 1s of Co 0.41 Fe 0.59 (OH) x NSAs.

Fig. S8. Infrared spectra of Co(OH) 2, Co 0.75 Fe 0.25 (OH) x, Co 0.70 Fe 0.30 (OH) x, Co 0.55 Fe 0.45 (OH) x, Co 0.41 Fe 0.59 (OH) x and Fe 2 O 3 NSAs (lines from bottom to top).

Table S2. OER catalytic performances of Co y Fe 1-y (OH) x NSAs in 1 M KOH. Catalyst η at η at TOF at Onset η Tafel Slope 10 ma cm -2 100 ma cm -2 η=380 mv (mv) (mv/dec) (mv) (mv) (s -1 ) Co(OH) 2 250 270 347 74.9 0.081 Co 0.75 Fe 0.25 (OH) x 235 250 320 67.3 0.103 Co 0.70 Fe 0.30 (OH) x 220 245 310 62.4 0.172 Co 0.55 Fe 0.45 (OH) x 220 248 315 65.4 0.126 Co 0.41 Fe 0.59 (OH) x 225 262 330 68.9 0.076 Fe 2 O 3 270 325 375 50.9 0.045

Fig. S9. Equivalent circuit used for fitting the EIS data. Table S3. Fitting results of Co y Fe 1-y (OH) x NSAs. Material Rs (Ω) Rct (Ω) Rcp (Ω) Co(OH) 2 2.22 3.57 0.21 Co 0.75 Fe 0.25 (OH) x 3.62 4.08 0.09 Co 0.70 Fe 0.30 (OH) x 3.20 2.91 0.16 Co 0.55 Fe 0.45 (OH) x 2.74 3.53 8.12 Co 0.41 Fe 0.59 (OH) x 3.18 9.64 3.68 Fe 2 O 3 3.74 24.4 0.089

Fig. S10. Cyclic voltammetry curves of (a) Co(OH) 2 and (b) Co 0.70 Fe 0.30 (OH) x NSAs, (c) the cathodic charging currents measured at 0.92 V vs RHE plotted as a function of scan rate for Co(OH) 2 and Co 0.70 Fe 0.30 (OH) x NSAs, (d) ECSA of Co y Fe 1-y (OH) x NSAs.

Fig. S11. Hg/HgO (1 M KOH) electrode calibrate with a 1M KOH solution.

Fig. S12 TEM images of Co 0.70 Fe 0.30 (OH) x NSAs edge curled nanosheets.

Table S4. The OER activities of some Co-based electrocatalysts for water oxidation under alkaline solution. Catalyst Electrolyte Onset η NiCo 2 O 4 core-shell nanowire Mesoporous Ni sphere array (mv) η at 10 ma cm -2 (mv) Tafel Slope (mv dec -1 ) TOF (s -1 ) Mass loading (mg cm -2 ) 1 M NaOH 270 320 63.1 NA NA [1] 0.1 M KOH 190 254 39 0.0281 (η=450 mv) 0.2 [2] Zn x Co 3 x O 4 nanoarrays 0.1 M KOH NA 320 51 NA 0.2 [3] Ni 2 P nanowires 1.0 M KOH 310 400 60 NA 0.1 [4] Co 3 O 4 Nanoparticles 1 M KOH 320 370 62 NA 0.325 [5] Co 3 O 4 nanocube/coo 1 M KOH NA 430 89 NA 56.5 [6] CoO x nanotube 1 M KOH 230 NA 75 NA 0.136 [7] Ni-V LDH 1 M KOH 250 300 50 0.054 NiCoO x hollow nanosponges (η=350 mv) 0.143 [8] 0.1 M KOH 271 362 73.2 NA 0.2 [9] Screw CoNi LDH/C 1M KOH 330 360 38.5 NA 2 [10] NiCo/NF or NiCo/CP 1 M KOH NA 360 50-60 NA 0.4 [11] NiCoO x nanoarray 1 M KOH 280 290 79 NA 3 [12] Co-S nanosheets film 1 M KOH 320 361 64 NA NA [13] NiCo hydroxide 0.1 M KOH 310 460 65 NA NA [14] Hollow fluffy cages 1 M KOH NA 409 70 0.0167 Ni 2/3 Fe 1/3 -rgo 1 M KOH 210 230 40 0.1 (η=400 mv) (η=300 mv) Ref. 0.14 [15] 0.25 [16] Ni 3 S 2 nanorods/nf 0.1 M KOH 157 187 153 NA NA [17] Fe-Ni/NF 1MKOH 200 NA 32 0.075 (η=400 mv) NA [18] CoFe 2 O 4 nanoparticles 1M NaOH 270 378 73 NA 1.031 [19] CoFe-LDH 0.1 M KOH 260 325 43 0.12 (η=350 mv) FeOOH/Co/FeOOH 1M NaOH 230 NA 32 5.6 Hybrid Arrays (η=300 mv) 0.2 [20] 0.5 [21]

Notes and references [1] R. Chen, H.-Y. Wang, J. Miao, H. Yang and B. Liu, Nano Energy 2015, 11, 333-340. [2] T. Sun, L. Xu, Y. Yan, A. A. Zakhidov, R. H. Baughman and J. Chen, ACS Catal. 2016, 6, 1446-1450. [3] X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei, J. Liu and X. Sun, Chem. Mater. 2014, 26, 1889-1895. [4] A. Han, H. Chen, Z. Sun, J. Xu and P. Du, Chem. Commun. 2015, 51, 11626-11629. [5] Xinzhe Li, Yiyun Fang, Xiaoqing Lin, Min Tian, Xingcai An, Yan Fu, Rong Li, Jun Jina and J. Maa, J. Mater. Chem. A 2015, 3, 17392-17402. [6] A. Bergmann, E. Martinez-Moreno, D. Teschner, P. Chernev, M. Gliech, J. F. de Araujo, T. Reier, H. Dau and P. Strasser, Nat. Commun. 2015, 6, 8625. [7] Y. Wang, K. Jiang, H. Zhang, T. Zhou, J. Wang, W. Wei, Z. Yang, X. Sun, W.-B. Cai and G. Zheng, Adv. Sci. 2015, 2, 1500003. [8] K. Fan, H. Chen, Y. Ji, H. Huang, P. M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo and L. Sun, Nat Commun 2016, 7, 11981. [9] C. Zhu, D. Wen, S. Leubner, M. Oschatz, W. Liu, M. Holzschuh, F. Simon, S. Kaskelb and A. Eychmuller, Chem. Commun. 2015, 51, 7851--7854. [10] B. Ni and X. Wang, Chem. Sci. 2015, 6, 3572-3576. [11] Y. Xiao, L. Feng, C. Hu, V. Fateev, C. Liu and W. Xing, RSC Adv. 2015, 5, 61900-61905. [12] Z. Lu, M. Sun, T. Xu, Y. Li, W. Xu, Z. Chang, Y. Ding, X. Sun and L. Jiang, Adv. Mater. 2015, 27, 2361-2366. [13] T. Liu, Y. Liang, Q. Liu, X. Sun, Y. He and A. M. Asiri, Electrochem. Commun. 2015, 60, 92-96. [14] Z. Zhao, H. Wu, H. He, X. Xu and Y. Jin, Adv. Funct. Mater. 2014, 24, 4698-4705. [15] X. Zhou, X. Shen, Z. Xia, Z. Zhang, J. Li, Y. Ma and Y. Qu, ACS Appl. Mater. Inter. 2015, 7, 20322-20331. [16] M. Wei, M. Renzhi, W. Chengxiang, L. Jianbo, L. Xiaohe, Z. Kechao and T. Sasaki, ACS Nano 9, 1977-1984. [17] W. Zhou, X.-J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang and H. Zhang, Energy. Environ. Sci. 2013, 6, 2921. [18] X. Lu and C. Zhao, Nat. Commun. 2015, 6, 6616. [19] A. Kargar, S. Yavuz, T. K. Kim, C. H. Liu, C. Kuru, C. S. Rustomji, S. Jin and P. R. Bandaru, ACS Appl. Mater. Inter. 2015, 7, 17851-17856. [20] X. Han, C. Yu, J. Yang, C. Zhao, H. Huang, Z. Liu, P. M. Ajayan and J. Qiu, Adv. Mater. Interface. 2016, 3, 15000782. [21] J. X. Feng, H. Xu, Y. T. Dong, S. H. Ye, Y. X. Tong and G. R. Li, Angew. Chem. Int. Ed. 2016, 55, 3694-3698.