Demersal Fish Resources from Test Gill Netting in Lake Tanganyika, around Kigoma Town, Tanzania

Similar documents
Lake Tanganyika s Demersal Fishery and Biology of a Species Abundant in the Catch

ASSESSMENT OF THE STATUS OF LATES STAPPERSII (CENTROPOMIDAE) STOCK IN LIFT-NET FISHERY IN LAKE TANGANYIKA, KIGOMA, TANZANIA

An investigation of the effect of zooplankton abundance on the fish catches, Lake Tanganyika (Kigoma, Tanzania)

GCP/RAF/271/FIN-TD/41 (En) September 1995 CATCH ASSESSMENT SURVEY IN ZAMBIAN WATERS OF LAKE TANGANYIKA IN P. D. Plisnier

AFRICAN GREAT LAKES CONFERENCE. Dynamics of Fish Stocks of Commercial Importance in Lake Victoria, East Africa: Implications for Management

Nancy E. Kohler, Danielle Bailey, Patricia A. Turner, and Camilla McCandless SEDAR34-WP-25. Submitted: 10 June 2013

marine protected areas

5. purse seines 3 000

Maturity and Spawning of the Small Yellow Croaker, Larimichthys polyactis

Dauphin Lake Fishery. Status of Walleye Stocks and Conservation Measures

ASMFC Stock Assessment Overview: Red Drum

Advice June 2014

Reproductive Biology of the Indian Oil Sardine Sardinella longiceps From Al-Seeb Waters off Oman

STUDY PERFORMANCE REPORT

Current Status of Crab Fishery in the Artisanal Sector along Gulf of Mannar and Palk bay Coasts

We would also like to thank Dr. Martin O Grady (CFB) and No. 3 Operational Wing, Irish Air Corps (Aer Chór na héireann) for the aerial photographs.

Abstract. The aim of this study was to determine the size and age compositions, growth

Fishery, biology and stock assessment of Cynoglossus macrostomus (Norman) off Malabar coast

North Carolina. Striped Mullet FMP. Update

AMBLYGASTER SIRM (WALBAUM) OFF THE NEGOMBO COAST

Catch per unit effort of coastal prawn trammel net fishery in Izmir Bay, Aegean Sea

Summary of Research within Lamlash Bay No-Take Zone - Science report for COAST July

STATUS OF EXPLOITED MARINE FISHERY RESOURCES OF INDIA

.Conservation of the Fisheries of Lakes Victoria, Kyoga and Nabugabo

Coastal Fish Habitats in General What are we talking about?

Kingfishes (whitings), Menticirrhus spp.

GENERAL INFORMATION ON TOGO RELATED TO FISHERIES

Introduction to sustainable fishing workshop. March 8 th Dartington Hall, Devon

SMALL SCALE FISHERIES GOVERNANCE - SIERRA LEONE AS A CASE STUDY. Kadiatu S. Kamara FAO Tenure and Users Right 2018, Yeosu- South Korea

Size and spatial distribution of the blue shark, Prionace glauca, caught by Taiwanese large-scale. longline fishery in the North Pacific Ocean

Water Framework Directive Fish Stock Survey of Glencar Lough, August 2013

Arizona Game and Fish Department Region I Fisheries Program. Chevelon Canyon Lake Fish Survey Report Trip Report April 2015

SPECIES COMPOSITION AND SOME OBSERVATIONS ON THE LITTORAL FISHES BASED ON BEACH-SEINING IN THE KIGOMA REGION, EASTERN COAST OF LAKE TANGANYIKA

Executive Summary Gantahaz Lake 2006

Atlantic States Marine Fisheries Commission

Cedar Lake Comprehensive Survey Report Steve Hogler and Steve Surendonk WDNR-Mishicot

Water Framework Directive Fish Stock Survey of Transitional Waters in the South Western River Basin District Lough Gill

ASMFC Stock Assessment Overview: Red Drum

NZ s Fishery Management Framework The Fisheries Act 1996 & Spatial Management Tools

Status of Northern Pike and Yellow Perch at Goosegrass Lake, Alberta, 2006

Determination of the von Bertalanffy Growth Equation for the Southern New England-Middle Atlantic~ Bank and Gulf of Maine stocks of Silver Hake by

Alberta Conservation Association 2011/12 Project Summary Report. Project Name: Walleye Stock Assessment Program 2011/12 Moose and Fawcett Lakes

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Fishing down the marine food webs in the Hellenic seas

During the mid-to-late 1980s

Recent trends in distribution and abundance of commercial fish stocks in Lake Victoria (East Africa) based on GIS

The Central and Regional Fisheries Boards

Groundfish Science Report

Blue cod 5 (BCO5) pot mesh size review

IOTC 2013 WPNT03 18 ABSTRACT

Trawl fishery management of Eastern Arabian Sea

Fishing for Red Drum

Figure 1. Pair trawlers are in operation.

Minnesota Department of Natural Resources Division of Fisheries and Wildlife

Stuart J. Hetherington, Victoria A. Bendall & Paul Trebilcock. FDI symposium, Rome 3 rd 6 th March 2014

STUDY PERFORMANCE REPORT

Potomac River Fisheries Commission s. American Shad Fishing / Recovery Plan. Submitted to the Atlantic States Marine Fisheries Commission

IOTC 2015 SC18 ES06[E]

Management advisory for the Bay of Bengal Indian mackerel fishery

FISH COMMUNITIES AND FISHERIES OF THE THOUSAND ISLANDS AND MIDDLE CORRIDOR

Oregon's Sardine Fishery 2006 Summary

West Coast Rock Lobster. Description of sector. History of the fishery: Catch history

Chapter 15 : Fisheries and Aquaculture

R E P O R T BIOLOGICAL MONITORING OF TURBOT (SCOPHTHALMUS MAXIMUS) LANDINGS AT THE BULGARIAN BLACK SEA DURING SPRING - SUMMER SEASON 2016

Why Bass is a political fish

Species Profile: Red Drum Benchmark Assessment Finds Resource Relatively Stable with Overfishing Not Occurring

Flat Abalone Surveys, 2001

Minnesota Department of Natural Resources Fisheries Division, Lake Superior Area

Essential Fish Habitat in the Mediterranean and its implications for Ecosystem Based Approach to Fishery Management

Analysis of Catch and Effort Data for the Fisheries of Nkhotakota

Appendix Template for Submission of Scientific Information To Describe Ecologically or Biologically Significant Marine Areas

Water Framework Directive Fish Stock Survey of Lough Meelagh, August 2014

Essential Fish Habitat. Conservation and Management

Management advisory for the Bay of Bengal hilsa fishery June 2012

Interim Report. J. R. Ellis, G. Burt and L. Cox. Cefas, Lowestoft

Jason Blackburn, Paul Hvenegaard, Dave Jackson, Tyler Johns, Chad Judd, Scott Seward and Juanna Thompson

The case of Seasonal Closure for Sardine Fishery in the Visayan Sea, Philippines

SHARED MANAGEMENT OF FISHERY RESOURCES IN TANZANIA

Crooked Lake Oakland County (T4N, R9E, Sections 3, 4, 9) Surveyed May James T. Francis

Trawl Fishery Management Myanmar

The Challenge of Fisheries Management in Thailand, a Case Study of Closed Areas and Season in Prachub Khirikhan, Chumphon and Surat Thani Provinces

Highly Migratory Species SWFSC/NMFS Report

Status of Sport Fishes in Gods Lake, Alberta, 2004

A Sport Fish Stock Assessment of Long Lake, Alberta, 2004

European Smelt (Osmerus eperlanus L.) Baseline Surveys on the River Foyle, River Finn, River Deele & Burndennet River

BOBP/REP/57 GCP/RAS/118/MUL. BAY OF BENGAL PROGRAMME Small-Scale Fisherfolk Communities. Introduction of New Outrigger Canoes in Indonesia

HADDOCK ON THE SOUTHERN SCOTIAN SHELF AND IN THE BAY OF FUNDY (DIV. 4X/5Y)

Stillwater Status Report: Lough Muck, County Donegal

Pollution Control and Other Measures to Protect Biodiversity in Lake Tanganyika (RAF/92/G32)

A century of change in a marine fish assemblage. Martin Genner

HOW BENTHIC HABITATS AND BOTTOM TRAWLING AFFECT TRAIT COMPOSITION IN THE DIET OF EUROPEAN PLAICE (PLEURONECTES PLATESSA) IN THE NORTH SEA

Winter Drawdown Issues of Concern

Have you ever thought that it would be cool to have parrots

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Sheepshead Fishery Overview South Atlantic State/Federal Management Board May 2014 Introduction Life History Landings

PRELIMINARY OBSERVATIONS ON THE PURSE SEINE FISHERY IN THE SOUTH-WEST COAST OF SRI LANKA

Project Limulus on Napatree Point: Horseshoe Crab Surveys in 2017

SILVER WAREHOU (SWA) (Seriolella punctata)

Some Biological Parameters of Bigeye and Yellowfin Tunas Distributed in Surrounding Waters of Taiwan

THE BIOLOGY OF THE PRAWN, PALAEMON

Transcription:

Demersal Fish Resources from Test Gill Netting in Lake Tanganyika, around Kigoma Town, Tanzania Student: Anthony N. M. Kalangali (TAFIRI Kigoma) Mentors: Ismael A. Kimirei and Dr. Catherine O Reilly Introduction Lake Tanganyika, the largest rift valley lake in Africa, has two main fishing zones, the demersal and pelagic. The pelagic water is mainly inhabited by three pelagic and endemic fish species. These are the two sardines (family Clupeidae) Stolothrissa tanganicae and Limnothrissa miodon and a centropomid Lates stappersii. Other three centropomids Lates mariae, Lates microlepis and Lates angustifrons are benthic but they come to the pelagic, mainly for feeding (Coulter et al, (1991). Fishing techniques here are lift nets, hook and line and scoop nets. However, lift net is the main fishing technique used in the Tanzania sector of the lake. Stolothrissa tanganicae and Lates stappersii are to-date, the major commercial fish species from the lake. The demersal fishery extends from the shoreline down to the oxic-anoxic boundary. It includes the littoral, sublittoral, and benthic zones. There is higher fish diversity in this zone (Coulter. et al., 1991). Cichlids alone contribute more than 200 species (Patterson. et al 1998, Michel, 2006). Although the demersal fishery is a good source of revenue and high quality protein food to the societies around the lake, fisheries research and catch records in Kigoma area, have only concentrated on the pelagic fisheries. The demersal fish resources have only been under taxonomists (Bailey and Stewart, 1977) and few fish biology studies (Bayona, 1991 and Ndaro, 1992, 1997). Bayona (1991) and Ndaro (1992) used beach seine to study the biology of the emperor cichlid (Boulengelochromis microlepis kuhe ) and species composition, distribution and abundance respectively. This study set-out to investigate fish species composition, gill net selectivity and some aspects of the biology of Limnotilapia dardennei ( Kungura ), a demersal fish species dominating the local beach markets in the study area and which fetches a good market price. The biometric study of Limnotilapia dardennei included body lengths, weights, sex ratio and gonad maturation. Materials and Methods The study to assess the demersal fish resources in the demersal waters around Kigoma town, Tanzania was conducted between 17 28 th July, 2006. A test gill net unit made-up of six pieces of 100 metre long of mesh sizes 1, 1.5, 2, 2.5, 3 and 4 each was used. The six gill net pieces were joined together to make one net of 600 metres long and 2 metres wide. Using a plank canoe, the gill nets were set at the Kigoma harbour and Bangwe beach areas during the research period. A choice on these points was based on differences in substrates and level of gill-net fishermen using these areas Kigoma harbour is muddy, has submerged macrophytes and there are relatively more fishermen activities in the area. On the other hand, Bangwe bay is sandy muddy with few macrophytes and relatively few fishing activities. The level of disturbance in these two areas is different with the harbour being more disturbed than the Bangwe area. The nets were set in the afternoon and hauled the next morning. The landed catch was sorted according to mesh size and identified to species level, whenever possible, using Konings (1998) and Eccles (1992). The catch was then weighed to get total weight and species total weights using a top-end balance and the total number of individuals of the species was recorded. The average weight of fish by each mesh size of the test gill net was used as an index of gear selectivity. Fish samples for biometric study of Limnotilapia dardennei were purchased from Katonga and Kibirizi landing beaches since the catch from the test gill nets had very few or sometimes no L. dardennei at all. In the laboratory, individual total length, weight, sex, gonad maturity stages and gonad weights were recorded. Gonad maturity staging was done according to Aro (1993). The length weight relationship was calculated and length frequency distributions for daily samples were constructed. A model by Froese et al. (1999, FISHBASE 2004) was used to estimate the asymptotic length and size-at-firstmaturity for L. dardennei.

Results Catch composition Fourteen (14) fish species under fourteen genera and eight families were caught and identified from the test gill netting. Out of the fourteen genera, seven (50%) were cichlids and were the most dominant by number (68%) (Fig.1). Lates mariae, the only centropomid recorded contributed about 16.1% with the majority of them coming from the Kigoma harbour. These were juveniles with total lengths ranging between 8.7 and 18.5cm. Gear selectivity Average weights determined separately for each mesh size of the test gill net gradually increased with increasing mesh size (Table1). Some aspects of the biology of Limnotilapia dardennei ( Kungura ) A total of 304 individuals were bought from Katonga and Kibirizi and analysed for length-weight relationship, gonad maturation, sex ratio and size distribution. All the L. dardennei had a lot of fat in their bellies and a peculiar character of having only one male or female gonad. The sex ratio (male: female) was found to be1:1. Length at infinity (L ) for this species was found to be 246.4 mm. Length-weight relationship: Limnotilapia dardennei was found to grow isometrically with every increase in length resulting in increase in weight. Its growth therefore followed the equation: Wt (g) = 3E -5 TL (mm) 2.8067 (r 2 = 0.8785) where Wt is weight in grams, TL is total length in millimetre (Fig. 2). Maturity stages: Almost all Limnotilapia dardennei sampled were mature in stage 3 and 4 of maturity. The size at first maturity was found to be 107 mm and 111.2 mm for males and females, respectively. There were 6 spent females. Length frequency distribution The length frequency distributions were constructed and presented in Figure 3. The average total length of all individuals was found to be 173.71 mm. Discussion - Conclusion & Recommendations Almost all individuals caught by the test gill net were small fishes. These were caught by the 1, 1.5, 2 and 2.5 mesh sizes. Among these, juveniles of Lates mariae were abundant in the first fishing day which was done at the harbour. These had total lengths ranging from 8.7cm to 18.5cm. Mature Lates mariae reach up to 200cm (Eccles, 1992). It is important also to note that all these L. mariae were caught by a net of 1 mesh size, indicating that Kigoma bay could be one of the important nursery sites. This is important because if the fishermen are using nets with fine meshes, they will be fishing them in large numbers which has a detrimental effect on L. mariae stock since the shallow areas are their breeding and nursery grounds. Such areas like Kigoma harbour should be isolated and kept as conservation areas to raise the L. mariae stocks in the lake. Another observation that was made is that, among the smaller individuals recorded were Synodontis spp. These were smaller than juvenile L. mariae caught but they were all mature in stage 4 of maturity. Therefore, if the fishery was targeting this species alone, then the gill net with mesh size in this range would be acceptable but since this is a multispecies fishery, then a net that will select larger individuals is suggested. The smallest average weights of fish caught by smallest mesh sizes of test gill netting and vice-versa for the biggest mesh sizes, indicates the high selectivity of gill nets. The gill net mesh size which is suitable for Lake Tanganyika is, therefore, hereby recommended to be 3. This size also is the one recommended by the Fisheries Division (Fisheries Act, 2003; Fisheries Regulation, 2005). This type will select the bigger fishes and allow juveniles to grow and perpetuate the resources. This is also in agreement with results on Limnotilapia dardennei caught by the fishermen. From the survey, Lowe (2006) observed that mesh sizes used were ranging from 1 to 4 inches with an average around 2.

All L. dardennei caught were mature. Males and females were in maturity stages 3 and 4. This is an indication that, probably, June/July is their breeding period/season. All L. dardennei had a lot of fat in their bellies. This indicates the presence of enough food in the demersal zone during the period. The harvesting of mature individuals in stage 4 of maturity in large numbers is not so desired however since their removal might mean less individuals are allowed to reproduce. This in a long run will have adverse impacts on the stock. So this study is suggesting a closure system so that during the breeding period less or no fishing should be done in the shallow littoral areas. Acknowledgements I gratefully acknowledge the Nyanza Project Leadership for enabling an existence of such high educative programme such that the study on these fish resources was done. I am greatful to my mentors and the whole SHOMBO Team! References 1. Couter G. W., Hecky R. E., Mondegues A., Spigel R. H. & Tiercelin J. J., 1991. Lake Tanganyika and its life.oxford University Press, New York. 2. Bailey R. M., & Stewart D. J., 1977. Cichlid fishes from Lake Tanganyika: additions to the Zambian fauna including two new species. University of Michigan. 3. Bayona J. D. R., 1991. Some aspects of the biology of Kuhe, Boulengerochromis microlepis, in the Region,Eastern coastof Lake Tanganyika. African study monographs, August, 1991. 4. Ndaro, S.G.M. 1992. Nearshore Fish Resources and Fisheries Around Kigoma, Eastern Coast of Lake Tanganyika. Naga, The Iclam Quartely April, 1992. 5. Brichard, P.1989. Cichlids and all other fishes of Lake Tanganyika. T.F.H Publications, inc. 6. Ecccles, D.H.1992. Field Guide to the Fresh Water Fishes of Tanania. United Nations Development Programme Project URT/87/016. 7. Ad Konnings (1998). Tanganyika Cichlids in their Natural Habitat. Cichlid Press. 8. Lowe, B. 2006 A Survey of the Demersal Fishery in the Kigoma Area (This Report) 9. Ndaro, S.G.M. 1997. The inshore demersal fish species of the eastern part of Lake Tanganyika and their need for conservation. In section IV, p135 of Jiddawi, N.S. and R.D. Stanley. 1999, editors. Fisheries Stock Assessment in the Traditional Fishery Sector: The Information Needs. Proceedings of the National Workshop on the Artisanal Fisheries Sector, Zanzibar. September 22-24, 1997, Zanzibar, Tanzania. 10. Aro, E. 1993. Guidelines for sampling pelagic fish catches on Lake Tanganyika. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN-FM/04 11. Patterson, G. and Makin, J. (ed) 1998. The state of biodiversity in Lake Tanganyika A Literature Review. Chatham, UK. Natural Resources Institute.

Figure 1 Length-weight relationship of Limnotilapia dardennei Weight (g) 200 180 160 )Wt (g) = 3E-05TL(mm 2.8067 R 2 0.8785 = 140 120 100 80 60 40 20 0 100 120 140 160 180 200 220 240 260 Total length (mm) Figure 2

Length distribution of Limnotilapia dardennei 60 50 Frequency 40 30 20 10 0 115 135 155 175 195 215 235 255 Frequency Total length [mm] Figure 3 Mesh size (inches) Total number Total weight (gm) Average weight (gm) 1 354 3816.74 10.78 1.5 103 2263.16 21.97 2 28 1559.59 55.70 2.5 20 2013.72 100.69 3 4 650 162.50 4 0 0 0 Table 1 : Gill net gear selectivity.