Supplementary,Material,!

Similar documents
-Elastic strain energy (duty factor decreases at higher speeds). Higher forces act on feet. More tendon stretch. More energy stored in tendon.

Normal and Abnormal Gait

Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed

Steffen Willwacher, Katina Fischer, Gert Peter Brüggemann Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany

Fascicle Length Change of the Human Tibialis Anterior and Vastus Lateralis During Walking

Supplementary Figure S1

Positive running posture sums up the right technique for top speed

Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF

KICKBIKE Your key to optimum sports performance

Influence of the muscle tendon unit s mechanical and morphological properties on running economy

(2) BIOMECHANICS of TERRESTRIAL LOCOMOTION

Purpose. Outline. Angle definition. Objectives:

Mechanical and neural function of triceps surae in elite racewalking

Assessments SIMPLY GAIT. Posture and Gait. Observing Posture and Gait. Postural Assessment. Postural Assessment 6/28/2016

Serve the only stroke in which the player has full control over its outcome. Bahamonde (2000) The higher the velocity, the smaller the margin of

ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES

Mechanics and energetics of level walking with powered ankle exoskeletons

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.

Human Leg Model Predicts Ankle Muscle-Tendon Morphology, State, Roles and Energetics in Walking

Simulation-based design to reduce metabolic cost

Motion Analysis on Backward Walking: Kinetics, Kinematics, and Electromyography

MECHANICAL MUSCLE PROPERTIES AND INTERMUSCULAR COORDINATION IN MAXIMAL AND SUBMAXIMAL CYCLING: THEORETICAL AND PRACTICAL IMPLICATIONS

Ankle biomechanics demonstrates excessive and prolonged time to peak rearfoot eversion (see Foot Complex graph). We would not necessarily expect

CHAPTER IV FINITE ELEMENT ANALYSIS OF THE KNEE JOINT WITHOUT A MEDICAL IMPLANT

Transformation of nonfunctional spinal circuits into functional states after the loss of brain input

THE EFFECT OF PLANTARFLEXION ANGLE ON LANDING MECHANICS USING A WITHIN-SUBJECTS REAL-TIME FEEDBACK PROTOCOL. K. Michael Rowley

Does Ski Width Influence Muscle Action in an Elite Skier? A Case Study. Montana State University Movement Science Laboratory Bozeman, MT 59717

Giovanni Alfonso Borelli Father of Biomechanics

video Purpose Pathological Gait Objectives: Primary, Secondary and Compensatory Gait Deviations in CP AACPDM IC #3 1

Brian Snyder MD/PhD Children s Hospital Harvard Medical School

Ankle plantar flexor muscles are a vital source of mechanical

Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running

Automatic tracking of medial gastrocnemius fascicle length during human locomotion

Row / Distance from centerline, m. Fan side Distance behind spreader, m 0.5. Reference point. Center line

C. P. McGowan, 1 R. R. Neptune, 1 and R. Kram 2 1

Inter-session. Inter-session. Inter-rater

Recent Advances in Orthotic Therapy for. Plantar Fasciitis. An Evidence Based Approach. Lawrence Z. Huppin, D.P.M.

ABSTRACT. metabolic cost of walking by up to 7% using a clutch-spring mechanism aimed at reducing the

SHUFFLE TURN OF HUMANOID ROBOT SIMULATION BASED ON EMG MEASUREMENT

Sprinting: A Biomechanical Approach By Tom Tellez

The Problem. An Innovative Approach to the Injured Runner. Dosage. Mechanics. Structure! Postural Observations. Lower Quarter Assessment

PART 5 - OPTIONS CONTENTS 5.1 SYSTEM EXPANSION 5-3

Table of Contents. Pre-Pointe A Year Long Training Guide Page 2

+ t1 t2 moment-time curves

Continuous sweep versus discrete step protocols for studying effects of wearable robot assistance magnitude

Running Form Modification: When Self-selected is Not Preferred

914 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 63, NO. 5, MAY Gregory S. Sawicki and Nabil S. Khan

Normal Gait and Dynamic Function purpose of the foot in ambulation. Normal Gait and Dynamic Function purpose of the foot in ambulation

GROUND REACTION FORCE DOMINANT VERSUS NON-DOMINANT SINGLE LEG STEP OFF

Wind Flow Validation Summary

SECTION 4 - POSITIVE CASTING

Ideal Heel Promotes proper alignment and reduces lever arms

C-Brace Orthotronic Mobility System

Walking Simulator Mechanism

4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium.

empower Reclaim your power. Information for technicians empower Ottobock 1

Runs Solution Temp. Pressure zero reset

Section: Original Research. Article Title: Effect of Heel Construction on Muscular Control Potential of the Ankle Joint in Running

Mechanical and neural stretch responses of the human soleus muscle at different walking speeds

LAB 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium.

PSIA-RM Development Pathway - Alpine Skiing Standards

Analysis of Foot Pressure Variation with Change in Stride Length

Changes in muscle activity with increase in leg stiffness during hopping

Empower. Reclaim your power. Information for technicians. Empower Ottobock 1

WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION

A Novel Gear-shifting Strategy Used on Smart Bicycles

Wouter Hoogkamer: Conception and design of the study, interpreted the results, edited and approved the manuscript.

Functional Outcomes of a Custom, Energy Harvesting "Bullfrog" AFO

Snowboarding Skills Handout

Equine Cannon Angle System

Developing ankle exoskeleton assistance strategies by leveraging the mechanisms involved in human locomotion

PURPOSE. METHODS Design

Energy cost of running and Achilles tendon stiffness in man and woman trained runners

In vivo measurement of the series elasticity release curve of human triceps surae muscle

3D Bipedal Robot with Tunable Leg Compliance Mechanism for Multi-modal Locomotion

Mono- versus biarticular muscle function in relation to speed and gait changes: in vivo analysis of the goat triceps brachii

Effects of Training on Muscle and Tendon in Knee Extensors and Plantar Flexors in Vivo

ATM Analysis: "Coordinating Flexors and Extensors"

Northern Rocky Mountain Division

Gait. Kinesiology RHS 341 Lecture 12 Dr. Einas Al-Eisa

UK Yoga Sports Federation

Journal of Biomechanics

Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion

Knee and Ankle Joint Angles Influence the Plantarflexion Torque of the Gastrocnemius

Muscle force redistributes segmental power for body progression during walking

The DAFO Guide to Brace Selection

Biomechanics and Models of Locomotion

Ground Reaction Forces and Lower Extremity Kinematics When Running With Suppressed Arm Swing

Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed

Microprocessor Technology in Ankle Prosthetics

Built for speed: musculoskeletal structure and sprinting ability

EXPERIMENTAL STUDY OF EXOSKELETON FOR ANKLE AND KNEE JOINT

The Influence of High Heeled Shoes on Kinematics, Kinetics, and Muscle EMG of Normal Female Gait

Coordination of medial gastrocnemius and soleus forces during cat locomotion

Normal and Pathological Gait

RESEARCH ARTICLE Achilles tendon stiffness is unchanged one hour after a marathon

Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees

Available online at Prediction of energy efficient pedal forces in cycling using musculoskeletal simulation models

Foot strike patterns and body alignment effects on muscle activity during running.

The Starting Point. Prosthetic Alignment in the Transtibial Amputee. Outline. COM Motion in the Coronal Plane

Transcription:

Supplementary,Material, MTJ,Tracking,Methods, WeestimatedAT,muscle,andMTUlengthchangesusingpreviouslypublishedMTJtrackingmethods (Hoffrén et al., 212; Lichtwark, 25; Lichtwark and Wilson, 26). The ultrasound transducer was placedoverthemglatmtj,thensecurelyaffixedtotheshankusinghypafix retentiontapeandace bandages(fig.%1b).toapproximateatorigin,thecharacteristic Y ofthemtjwasmanuallytrackedin eachultrasoundimage.acalcaneusmotioncapturemarkerapproximatedatinsertion.acustom3ld printedfixtureattachedtothetransducerallowedtrackingofitspositionandorientationwithrespect to the lab reference frame. The ultrasound field of view was assumed to be perpendicular to the longitudinalplaneofthetransducer.atlengthwasestimatedasthestraightlline3ddistancefromthe calcaneustothemtj.mgmusclelengthchangewasthenapproximatedasthedifferencebetweenmtu lengthchange(fromaregressionequationbasedonankleandkneeangles,hawkinsandhull,199)and ATlengthchange. MF,Tracking,Methods, We estimated AT, muscle, and MTU length changes using previously published MF tracking methods (CroninandLichtwark,213;FarrisandSawicki,212;Hoangetal.,27;Hoffrénetal.,212;Masaki Ishikawa et al., 25; M. Ishikawa et al., 25; Lichtwark et al., 27; Lichtwark and Wilson, 26; Sakumaetal.,211).ThetransducerwasplacedovertheMGmusclebelly,thensecurelyaffixedtothe shankusinghypafix retentiontapeandacebandages(fig.%1c).anautomatedaffineflowalgorithm was used to estimate timelvarying length of an individual MG muscle fascicle (Farris and Lichtwark, 216). Manual corrections of the fascicle endpoints were made for frames in which the automated calculation did not track the fascicle well, based on visual inspection of a trained researcher. If the fascicle extended beyond the field of view, the endpoint locations were estimated via linear extrapolation(i.e.,byextendingthelinesofthefascicleandaponeurosesbeyondthefieldofviewand findingtheintersectionpoint).pennationanglewascalculatedforeachframeastheanglebetweenthe superficialfasciaandthemusclefascicle.changesinfasciclelengthwerethencorrectedforpennation angletoapproximatechangesinmgmusclelengthalongthemuscle slineofaction.atlengthchange wasthenestimatedasthedifferencebetweenmtulengthchange(fromaregressionequationbasedon ankleandkneeangles,hawkinsandhull,199),andmglengthchange. EMG,Data,Collection,&,Analysis, EMGdatawerecollectedtosupplementprimaryoutcomemeasures,andusedtoconfirmthatmuscle activity was consistent with loading expectations for each task. Surface EMG sensors (Delsys Trigno) were placed unilaterally on the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus (SOL), andtibialisanterior(ta).emgsignalsweredemeaned,highlpassfilteredat15hz,rectified,andlowl passfilteredat1hz,andthennormalizedbasedonthemaximummuscleactivationmagnitudethat occurredduringthethreerecordedtasks(potvinandbrown,24;zeliketal.,215).theresultingemg envelopesfromeachcyclewerenormalizedto1datapoints(representingto1%ofthecycle). Foreachtask,onasubjectLspecificbasis,EMGenvelopeswereaveragedoverfivesequentialcycles(Fig.%

S3b).ForsubjectsinwhichMTJandMFtrackingtrialswereperformedseparately,EMGisonlyreported forthemftrackingtrials. Explanation,of,Model,Expectations,for,Each,Task, Below we summarize the expected behaviors of a common MTU model: a passive linear extension spring(representingtheatandassociatedaponeurosis)actinginserieswithanactuator(representing themuscle).inthisstudythemodelrepresentsthemgmtu,whichspansdistallyfromthecalcaneus (heel),posteriorlyacrosstheankleandkneejoints,andthenconnectsproximallytothethighsegment. Sinceexperimentaltaskswereperformedslowly(quasiLstatically)dynamiceffectsduetoinertiawere ignoredforthis simplemodel.itwasassumedthattheextensionspringremainedlinearanddidnot becomeslack(seeextendeddiscussionbelowonslacklength). The restricted joint calf contraction task is akin to fixing each end of the MTU model, then ramping up/downtheactuatorforce.asforceincreased,weexpectedthattheactuatorwouldshortenandthe series spring would lengthen by an equal magnitude (Fig.% 3a, top% row). Experimentally this task was achievedbyaffixingarigidbarabovethekneeandthigh.allsubjectsshowedactivationofthemg,lg, andsolthatwasinaccordancewithmuscleforcesrampingupandthendown(i.e.,theloadingpattern assumedinordertoderivemodelexpectations).allsubjects,exceptone(fig.%s3b,%column%1),showed negligible TA activation, indicating that antagonistic muscle contraction was not a significant confounding factor. Subjects also exhibited minimal change in ankle angle (Fig.% S3a,% column% 1), as expectedduetotherigidbar.however,duetosofttissuedeformationagainsttherigidbar,itwasnot possibletocompletelyrestrictjointmotion(bryantetal.,28;magnussonetal.,21).nonetheless, thesimplifiedmodelandexperimenttaskwerequalitativelyconsistent,eachcapturingthesamemain muscleandtendonlengthchangebehaviors. TheankleDF/PFwithfootinairtaskwasmodeledbyfixingtheMTUattheproximalend,hanginga smallmassatthedistalend,thenslowlydrivingtheactuatortoliftandlowerthemass.withthefootin theair,relativelylowatforcewasexpected,i.e.,onlyforceneededtocounteracttorqueduetothe massofthefootabouttheanklejointandtoovercomeanypassiveresistancefromantagonisticmtus. Themassofthebiologicalfootisabout1kgandthecenterofmassofthefootisabout6mmanterior totheankleinneutralposition.assumingananthropometricatmomentarmofabout5mm(honert andzelik,216;mcculloughetal.,211),<<1nmoftorqueisneededtosupportthemassofthefoot. Passivejointmomentshavebeenestimatedtoberelativelysmallacrossarangeofankleangles.For example,passiveanklemomentsareexpectedtobe<5nmatankleangles<9,and<1nmforthe maximumdorsiflexionanglesreachedduringthistask(basedonsilderetal.,27).againassumingan anthropometric AT moment arm, AT forces would typically be <1 N, and at most be about 2 N (whichisonlyabout7%oftheforceexperiencedbytheatduringwalkingatmoderatespeed,bogeyet al.,25).consistentwiththeexpectationoflowloading,emgfromthemgandotherplantarflexors wasrelativelylowthroughouttheentiredf/pfanklerangeofmotion(fig.%s3,%column%2).also,theta exhibited activity during dorsiflexion beyond neutral, but was inactive during plantarflexion beyond neutral(fig.%s3b,%column%1).additionalforcesduetojointfrictionwereassumedtobenegligible,since experimentsinvolvedyoung,healthysubjects.atstiffnessvaluesinliteratureareontheorderof13l 47 N/mm (Kubo et al., 27, p. 2; Lichtwark, 25; Maganaris and Paul, 22; Magnusson et al., 21;Muraokaetal.,25).Duetotheserelativelylowforcesactingonarelativelystifftendon,we

expectedatlengthchangetobesmall(i.e.,lessthanafewmm)throughoutthemovementcycleofthis DF/PFtask(Fig.%3a,%middle%row). HeelraisesweremodeledbyfixingtheMTUatoneend,withthedistalendfreetomoveastheactuator shortened/lengthened under relatively large force. We assumed that there was low loading on the actuatorandseriesspringatthebeginningofthecycle,thenforcesincreased.onemightintuitthatthe MTUforceprofileovertheheelraisecyclewouldincreasemonotonically(asoneliftsupfromtheflat footedposture),thenplateauatsomehigherforcewhiletheheelwasofftheground,thendecrease forceasapersonreturnedbacktofootlflat.theatforceprofileisactuallysomewhatmorecomplex:it isdoublelpeakedduetothedynamicallylchangingmomentarmfromtheanklejointtothecenterof pressure(cop),thepointofapplicationofthegroundreactionforce(grf).beginningfromfootlflat,as thecalfmusclesincreasetheirforceandlifttheheelsofftheground,thecopshiftsanteriorlytowards the distal end of the foot, increasing the ankleltolcop moment arm and causing a peak in AT force. Then,asthefootrotatesaboutthemetatarsophalangealjoints,theankleshiftsanteriorly,decreasing the ankleltolcop moment arm, and reducing the AT force. As the heel lowers, the cycle is reversed creatingasecondatforcepeak.weconfirmedthisdoublelpeakedforceprofileexperimentallyusing motionandgroundreactionforcedata(fig.%s1).atmomentarmvariesslightlywithankleangleand muscle activation level, but for the ~3 of ankle plantarflexion during the heel raise task, the AT momentarmisexpectedtoincreasebylessthan1mm(maganarisandpaul,2;mcculloughetal., 211).Evenwitha1mmincreaseinmomentarm,theATforceatpeakplantarflexion(~5%cycle) wouldonlybeabout15%(~11n)lessthanthatestimatedwithaconstantmomentarm.basedonat stiffness values in literature (Kubo et al., 27, p. 2; Lichtwark, 25; Maganaris and Paul, 22; Magnusson et al., 21; Muraoka et al., 25), this reduction in tendon force would reduce tendon length by <1 mm. Regardless of the precise force profile, the key model takeaway is that we would expectthespringtolengthenproportionallywithincreasingmtuforce(fig.%3a,%bottom%row).forthe heelraisetask,emgresultsconfirmedthatallsubjectsincreasedactivationofthemg,lg,andsolas the heel began lifting off the ground (Fig.% S3b,% column% 3), consistent with the model loading expectationssummarizedabove. % PostBHoc,Corrections,to,AT,Length,Change,Estimate, Formostsubjects,astheyplantarflexedtheiranklebeyondneutralintheankleDF/PFtaskweobserved aroughlylineardecreaseinatlength(fig.%3,%middle%row).itwasinitiallytemptingtousethisdf/pftask toderiveanatlengthchangecorrectionfactorbasedonankleangletoremovethistrend;however, thisapproachmaybeillladviseduntilthesourceoferrorisbetterunderstood;forreasonssummarized below. Numerically, we could approximate a proportional relationship between ankle angle and AT length change (Fig.% 4,% left% column) during this low force task, and treat it as a correction factor. We couldapplythiscorrectionfactor,afunctionofankleangle,bysubtractingitfromtheatestimates.asa result, AT length changes would become small throughout the entire DF/PF cycle (qualitatively consistentwithmodelexpectations).thecorrectionfactorderivedfromthelowforcetaskcouldalsobe usedtoadjustatlengthchangeestimatesfromtheheelraisetask(fig.%4,%right%column).thiswould shift the AT behavior towards lengthening, which would again make the experimental results more consistent with model expectations. However, this type of postlhoc adjustment to AT length change would also necessitate adjusting our estimate of either the muscle or MTU length change to compensate, in order to ensure that muscle length change plus tendon length change was still

equivalenttooverallmtulengthchange.presentlyitisnotclearif,orjustifiedwhy,eitherthemuscleor MTUestimateshouldbeadjustedposthoc.Therefore,beforeapplyinganysuchcorrectionfactorswe advisethatitwouldbeprudenttofirstdiscernwhythisatlengthchangevs.ankleangletrendexistsat all.weanticipatethatthisdeeperunderstandingwillinformourconceptualmodelofmtudynamics,or motivatespecificrefinementsintheempiricalmethodsusedtoestimateatlengthchange. Extended,Discussion,of,Slack,Length,&,StraightBLine,Tendon,Assumption, SlackeningoftheMGand/orAT(Hugetal.,213,Hoangetal.,27,Muraokaetal.22)havebeen estimatedtooccuratabout2l4 ofplantarflexionbeyondneutral(i.e.,at5l7 infig.%4),whenthe ankle is passively rotated. Thus, AT slackening may degrade the accuracy of tendon length estimates during the DF/PF task, a low force ankle rotation task, when ankle angle is less than about 5L7 ; highlightingtheimportanceofconsideringslacklengthforcertaintasks.however,slacklengthdoesnot seemtoexplainthesubstantialtendonshortening(~1mm)astheankleplantarflexedfrom9 to7 inthedf/pftask,norsimilarshorteningreportedinpriorliteratureonpassiveanklerotation(csapoet al., 213). Furthermore, slack length wouldnotseemtoexplain the shortening observed during heel raiseswhenthemgwasactivelycontracting(fig.%s3).regressionlbasedestimatesofoverallmtulength (Grieve, 1978; Hawkins and Hull, 199) are based on cadaver studies, assuming straightlline approximationsandthatmtulengthisonlyafunctionofjointangles(yuenandorendurff,26).prior studies(fukutanietal.,214;stosicandfinni,211),foundthatwhenusingalinearapproximation,the ATappearedtoshortenby3mmmorethanwhenusinganestimatethataccountedforcurvature(for 3 ofplantarflexionbeyondneutral).however,this3mmerrorwassmallcomparedtothe15mmof ATshorteningweobservedforasimilar3 ofplantarflexion(duringankledf/pf,fig.%3,%middle%row). Toapproximatetheeffectofcurvatureonourestimates,weaddedavirtualwaypoint5mmposterior totheanklejointcenterthatrotatedwiththefootsegment.wethenusedthecalcaneus,waypoint,and MTJpositionstocalculateapiecewisetendonlength.Usingthispiecewisetendonestimateaccounted for less than 4% of the total shortening for both the ankle DF/PF and heel raise task at peak plantarflexion,indicatingthat curvature alone does not appeartoexplainthemajorityofthetendon shortening. Potential confounds discussed above do not reflect a comprehensive list. Other potential estimationissueshavebeendescribedinpriorliterature(e.g.,croninandlichtwark,213;epsteinand Herzog,23;Herbertetal.,211;ZelikandFranz,217). Supplementary,Material,References, Bogey,R.A.,Perry,J.,Gitter,A.J.,25.AnEMGLtoLforceprocessingapproachfordeterminingankle muscleforcesduringnormalhumangait.ieeetrans.neuralsyst.rehabil.eng.13,32 31. https://doi.org/1.119/tnsre.25.851768 Bryant,A.L.,Clark,R.A.,Bartold,S.,Murphy,A.,Bennell,K.L.,Hohmann,E.,MarshallLGradisnik,S., Payne,C.,Crossley,K.M.,28.Effectsofestrogenonthemechanicalbehaviorofthehuman Achillestendoninvivo.J.Appl.Physiol.15,135 143. https://doi.org/1.1152/japplphysiol.1281.27 Cronin,N.J.,Lichtwark,G.,213.Theuseofultrasoundtostudymuscle tendonfunctioninhuman postureandlocomotion.gaitposture37,35 312. https://doi.org/1.116/j.gaitpost.212.7.24 Csapo,R.,Hodgson,J.,Kinugasa,R.,Edgerton,V.R.,Sinha,S.,213.Anklemorphologyamplifies calcaneusmovementrelativetotricepssuraemuscleshortening.j.appl.physiol.115,468 473. https://doi.org/1.1152/japplphysiol.395.213 Epstein,M.,Herzog,W.,23.Aspectsofskeletalmusclemodelling.Philos.Trans.R.Soc.BBiol.Sci.358, 1445 1452.https://doi.org/1.198/rstb.23.1344

Farris,D.J.,Lichtwark,G.A.,216.UltraTrack:SoftwareforsemiLautomatedtrackingofmusclefascicles insequencesofblmodeultrasoundimages.comput.methodsprogramsbiomed.128,111 118. https://doi.org/1.116/j.cmpb.216.2.16 Farris,D.J.,Sawicki,G.S.,212.Humanmedialgastrocnemiusforce velocitybehaviorshiftswith locomotionspeedandgait.proc.natl.acad.sci.19,977 982. https://doi.org/1.173/pnas.11797219 Fukutani,A.,Hashizume,S.,Kusumoto,K.,Kurihara,T.,214.Influenceofneglectingthecurvedpathof theachillestendononachillestendonlengthchangeatvariousrangesofmotion.physiol.rep. 2.https://doi.org/1.14814/phy2.12176 Grieve,D.W.,1978.Predictionofgastrocnemiuslengthfromkneeandanklejointposture. Hawkins,Hull,M.L.,199.AMethodForDeterminingLowerExtremityMuscleLTendonLengthsDuring Flexion/ExtensionMovements. Herbert,R.D.,Clarke,J.,Kwah,L.K.,Diong,J.,Martin,J.,Clarke,E.C.,Bilston,L.E.,Gandevia,S.C.,211.In vivopassivemechanicalbehaviourofmusclefasciclesandtendonsinhumangastrocnemius muscle tendonunits.j.physiol.589,5257 5267.https://doi.org/1.1113/jphysiol.211.2121 Hoang,P.D.,Herbert,R.D.,Todd,G.,Gorman,R.B.,Gandevia,S.C.,27.Passivemechanicalproperties ofhumangastrocnemiusmuscle tendonunits,musclefasciclesandtendonsinvivo.j.exp.biol. 21,4159 4168.https://doi.org/1.1242/jeb.224 Hoffrén,M.,Ishikawa,M.,Avela,J.,Komi,P.V.,212.AgeLrelatedfascicle tendoninteractionin repetitivehopping.eur.j.appl.physiol.112,435 443.https://doi.org/1.17/s421L12L 2393Lx Honert,E.C.,Zelik,K.E.,216.InferringMuscleLTendonUnitPowerfromAnkleJointPowerduringthe PushLOffPhaseofHumanWalking:InsightsfromaMultiarticularEMGLDrivenModel.PLOSONE 11,e163169.https://doi.org/1.1371/journal.pone.163169 Ishikawa,M.,Komi,P.V.,Grey,M.J.,Lepola,V.,Bruggemann,G.LP.,25.MuscleLtendoninteractionand elasticenergyusageinhumanwalking.j.appl.physiol.99,63 68. https://doi.org/1.1152/japplphysiol.189.25 Ishikawa,M.,Niemelä,E.,Komi,P.V.,25.InteractionbetweenfascicleandtendinoustissuesinshortL contactstretchlshorteningcycleexercisewithvaryingeccentricintensities.j.appl.physiol.99, 217 223.https://doi.org/1.1152/japplphysiol.1352.24 Kubo,K.,Morimoto,M.,Komuro,T.,Tsunoda,N.,Kanehisa,H.,Fukunaga,T.,27.Influencesoftendon stiffness,jointstiffness,andelectromyographicactivityonjumpperformancesusingsinglejoint. Eur.J.Appl.Physiol.99,235 243.https://doi.org/1.17/s421L6L338Ly Lichtwark,G.,25.InvivomechanicalpropertiesofthehumanAchillestendonduringoneLlegged hopping. Lichtwark,G.A.,Bougoulias,K.,Wilson,A.M.,27.Musclefascicleandserieselasticelementlength changesalongthelengthofthehumangastrocnemiusduringwalkingandrunning.j.biomech. 4,157 164.https://doi.org/1.116/j.jbiomech.25.1.35 Lichtwark,G.A.,Wilson,A.M.,26.Interactionsbetweenthehumangastrocnemiusmuscleandthe Achillestendonduringincline,levelanddeclinelocomotion.J.Exp.Biol.29,4379 4388. https://doi.org/1.1242/jeb.2434 Maganaris,C.N.,Paul,J.P.,22.Tensilepropertiesoftheinvivohumangastrocnemiustendon.J. Biomech.35,1639 1646.https://doi.org/1.116/S21L929(2)24L3 Maganaris,C.N.,Paul,J.P.,2.Invivohumantendinoustissuestretchuponmaximummuscleforce generation.j.biomech.33,1453 1459.https://doi.org/1.116/S21L929()99L3 Magnusson,S.P.,Aagaard,P.,Rosager,S.,DyhreLPoulsen,P.,Kjaer,M.,21.LoadLdisplacement propertiesofthehumantricepssuraeaponeurosisinvivo.j.physiol.531,277 288. https://doi.org/1.1111/j.1469l7793.21.277j.x

McCullough,M.B.A.,Ringleb,S.I.,Arai,K.,Kitaoka,H.B.,Kaufman,K.R.,211.MomentArmsoftheAnkle ThroughouttheRangeofMotioninThreePlanes.FootAnkleInt.32,3 36. https://doi.org/1.3113/fai.211.3 Muraoka,T.,Muramatsu,T.,Fukunaga,T.,Kanehisa,H.,25.ElasticpropertiesofhumanAchilles tendonarecorrelatedtomusclestrength.j.appl.physiol.99,665 669. https://doi.org/1.1152/japplphysiol.624.24 Potvin,J.R.,Brown,S.H.M.,24.Lessismore:highpassfiltering,toremoveupto99%ofthesurface EMGsignalpower,improvesEMGLbasedbicepsbrachiimuscleforceestimates.J.Electromyogr. Kinesiol.14,389 399.https://doi.org/1.116/j.jelekin.23.1.5 Sakuma,J.,Kanehisa,H.,Yanai,T.,Fukunaga,T.,Kawakami,Y.,211.Fascicle tendonbehaviorofthe gastrocnemiusandsoleusmusclesduringanklebendingexerciseatdifferentmovement frequencies.eur.j.appl.physiol.112,887 898.https://doi.org/1.17/s421L11L232Ly Silder,A.,Whittington,B.,Heiderscheit,B.,Thelen,D.G.,27.Identificationofpassiveelasticjoint moment anglerelationshipsinthelowerextremity.j.biomech.4,2628 2635. https://doi.org/1.116/j.jbiomech.26.12.17 Stosic,J.,Finni,T.,211.Gastrocnemiustendonlengthandstrainaredifferentwhenassessedusing straightorcurvedtendonmodel.eur.j.appl.physiol.111,3151 3154. https://doi.org/1.17/s421l11l1929l9 Yuen,T.J.,Orendurff,M.S.,26.Acomparisonofgastrocnemiusmuscle tendonunitlengthduringgait usinganatomic,cadavericandmrimodels.gaitposture23,112 117. https://doi.org/1.116/j.gaitpost.24.12.7 Zelik,K.E.,Franz,J.R.,217.It spositivetobenegative:achillestendonworkloopsduringhuman locomotion.plosone12,e179976.https://doi.org/1.1371/journal.pone.179976 Zelik,K.E.,Scaleia,V.L.,Ivanenko,Y.P.,Lacquaniti,F.,215.Coordinationofintrinsicandextrinsicfoot musclesduringwalking.eur.j.appl.physiol.115,691 71.https://doi.org/1.17/s421L 14L356Lx,

Figure,Captions, Fig.%S1.%Heel%raise%kinematics%and%kinetics.$(a)Ankle&angle&vs.&movement&cycle.&(b)Estimated)AT# force& vs.& movement& cycle.& AT& force& (F AT )" was" estimated" by" dividing" ankle" moment" (from" standard'inverse'dynamics)'by'at'moment'arm'about'the'ankleand$expressed$as$percentage$of$ body% weight% (%BW)." Depicted are interlsubject means and standard deviations (shaded regions). (c) Simplified) moment) balance) about) the) ankle) joint.) The) doublelpeaked& AT& force& profile( occurs( because( the( AT( has( a( roughly( constant( moment( arm( about( the( ankle( whereas( there% is% a% dynamicallylchanging' moment' arm' from' the' ankle' to' the' center' of' pressure' (the' point&of&application&of&the&ground&reaction&force,&f GRF ). Fig.%S2.%Subject=specific'results.AT#(thick#blue),#MG#muscle#(dashed#red)#and#MTU#(thin#black)# length'changes'vs.'movement#cycle.major&columns&are&tasks.&unshaded&columns&show&the&mtj& method'results'and'shaded'columns'show'the'mf'method'results.'the'top'row'represents'the' mean%and%standard%deviation%across%subjects.%remaining%rows%each%represent%subjectlspecific' average&results. Fig.%S3.%Kinematics%and%subject=specific%EMG.%(a)%Ankle(solidgreen)andknee(dashedgreen) jointanglesvs.movementcycle,averagedacrosseightsubjects.(b)medialgastrocnemius(mg, red),lateralgastrocnemius(lg,green),soleus(sol,blue),andtibialisanterior(ta,orange), muscleactivationvs.movementcycle.emgmagnitudesarereportedasapercentageofthe maximumactivationobservedduringthesethreetasks.eachcolumnisatask.eachrow representssubjectlspecificaverageresults.

(a) heel raises b) (c) ankle angle (deg) AT Force (%BW) 12 9 6 3 2 1 1 % cycle F AT F AT 1 F AT F GRF F GRF F GRF

Δlength (mm) restricted joint MTJ anke DF/PF MF 2-2 2-2 2-2 2-2 2 (excluded) (excluded) -2 2-2 2-2 2-2 2-2 % cycle 1 MTJ heel raises MF MTJ MF 2-2 -4 2-2 -4 2-2 -4 2-2 -4 S1 2-2 -4 2-2 -4 S2 2-2 -4 2-2 -4 S3 2-2 -4 2-2 -4 S4 2-2 -4 2-2 -4 S5 2-2 -4 2-2 -4 S6 2-2 -4 2-2 -4 S7 2-2 -4 2-2 -4 S8 avg

restricted joint anke DF/PF heel raises 1 % cycle (a) 12 ANKLE 12 KNEE 12 9 9 9 angle (deg) 6 3 6 3 6 3 (b) MG LG SOL TA 5 S1 5 S2 5 S3 5 (excluded) S4 EMG (%max) 5 S5 5 S6 5 S7 5 S8