Running head: Extremely low testosterone due to RED-S

Similar documents
Issues. What is a low testosterone? Who needs testosterone therapy? Benefits/adverse effects of testosterone replacement Treatment options

UnitedHealthcare Pharmacy Clinical Pharmacy Programs

Testosterone Topical/Buccal/Nasal

Insight into male menopause'

The ICL Insider. Lab Testing: Testosterone. In This Issue. The Debate

MI Androgen Deficiency Hypogonadism

Testosterone Hormone Replacement Drug Class Prior Authorization Protocol

HARVARD PILGRIM HEALTH CARE RECOMMENDED MEDICATION REQUEST GUIDELINES

Drug Class Monograph

Donald W. Morrish, MD, PhD, FRCPC Presented at Mountain Man: Men's Health Conference, May Terry s Testosterone

Testosterone Hormone Replacement Drug Class Prior Authorization Protocol

TREATMENT OPTIONS FOR MALE HYPOGONADISM

Icd-10 low levels of testosterone

Jeremiah Murphy, MD Mercy Urology Clinic. October 21, 2017

TESTOFEN HUMAN CLINICAL TRIAL GENCOR PACIFIC, INC. Copyright 2006 by Gencor Pacific, Inc.

Associate Professor Geoff Braatvedt

Original Research Declining testicular function in aging men

LIFETIME FITNESS HEALTHY NUTRITION. UNIT 2 Lesson 14 FLEXIBILITY LEAN BODY COMPOSITION

Male Hormone Replacement Therapy. Punita Dhindsa D.O PGY 2

What is the difference with Whey, Casein, BCAA's, Glutamine, NO products?

Androgens and Anabolic Steroids Prior Authorization with Quantity Limit - Through Preferred Topical Androgen Agent

ATHLETE S BASIC PHYSIOLOGICAL PARAMETERS ENHANCED BY PRACTICING BREATHE TECHNIQUES OF YOGA IN DAILY LIFE SYSTEM

SELECT WHEY SOME THOUGHTS ON WHY WHEY PROTEIN CONTINUES TO BE CLINICALLY IMPORTANT

The Testosterone Quandary. Beth Crowder, PhD, APRN

SUMMACARE COMMERCIAL MEDICATION REQUEST GUIDELINES TESTOSTERON. Generic Brand HICL GCN Exception/Other ROUTE MISCELL.

Adverse effects of anabolic androgenic steroids abuse on gonadal function, glucose homeostasis and cardiovascular function

Creatine Versus Anabolic Steroids. Over the past few years, many athletes have been using performance-enhancing

Use of Performance Enhancing Substances Good Chemistry Gone Bad. Evan M. Klass, M.D., F.A.C.P.

See Important Reminder at the end of this policy for important regulatory and legal information.

HHS Public Access Author manuscript Int J Cardiol. Author manuscript; available in PMC 2016 April 15.

Affirming Care of the Transgender Patient

Training Tip of the Week. MILK: It does the body builder good!

Gynaecomastia. Benign breast conditions information provided by Breast Cancer Care

HGH for Sale Natural Anti-Aging Human Growth Hormone

Medical Policy Testosterone Therapy

Nutrition, supplements, and exercise

LEADING DRUG FREE SPORT

HAIR LOSS HORMONE IMBALANCE HAIR LOSS HORMONE IMBALANCE PDF HAIR LOSS - WIKIPEDIA HORMONE IMBALANCE CHECKLIST - WEIGHT LOSS PROGRAMS

Natural testosterone enhancement

Secrets of Abang Sado : Effects of testosterone therapy. Azraai Nasruddin

MAKING AN IRONMAN RACE DAY

Going! Going! Gone! Your favorite slugger just hit a game winning homerun and you re

Growth Hormone s Impact as a Safe Ergogenic Aid to Increase Body Size

Introduction to ICD-10-CM. Improving the Financial Health of the Practices we Serve.

All About T Testosterone for FTMs. Presented by John Otto, MLIS

Testosterone Use and Effects

Drugs & Exercise. Lesson. By Carone Fitness

Transgender 201: Case Discussion Group

Growth Hormone & Somatotropin are an Ergogenic Aid

Cigna Drug and Biologic Coverage Policy

Weight bearing icd 10

Reproductive DHT Analyte Information

Androgenes and Antiandrogenes

Relationship between Aerobic Training and Testosterone Levels in Male Athletes

Female testosterone level chart

SUMMARY and OBJECTIVES. LOW T- I m half the man I used to be. Prevalence of Low-T. Definition of Hypogonadism 9/19/ Million men in the US

New Directions in Aplastic Anemia: What is on the Horizon

Performance Enhancing Drugs in Sports

Prevalence of Disordered Eating among Non-elite Multisport Endurance Athletes

Monitoring of performance an training in rowers

What do these athletes have in common?

ELIGIBILITY REGULATIONS FOR THE FEMALE CLASSIFICATION (ATHLETES WITH DIFFERENCES OF SEX DEVELOPMENT) EXPLANATORY NOTES/Q&A

SUPPLEMENTARY INFORMATION

September 17, FDA background documents for the discussion of two major issues in testosterone replacement therapy (TRT):

Weeks 7,8,9. Weeks 4,5,6

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

A thletes have used various substances for their ergogenic

Author of: The Six-Pack Diet Plan: The Secrets to Getting Lean Abs and a Rock-Hard Body Permanently

*Dr. Mushreq Aziz Tnesh AL-Lamy, **Dr. Asaad Adnan Aziz Al-Safi. *, ** Physical Education College /Al-Qadisiyah University ABSTRACT

The Science of. NUTRICULA Longevity Journal

Nutrition Spotlight: U.S. Dairy Proteins for Healthy and Active Lifestyles. U.S. Dairy Proteins: Smart Protein Choice DID YOU KNOW

Policy. covered: bilateral. alcohol or. Approve. 3. Palliative enanthate injection in. women for. 6 months if. can also sponsive tumor.

Medication Policy Manual

Formally known as anabolic steroids or anabolic-androgenic steroids, but they are sometimes called 'roids', 'gear' or 'juice'.

The importance of (dairy) protein for maintenance of muscle mass during aging & rehabilitation

Dietary supplements and nutrition in sports and exercices performance

Robert Perlstein, M.D. Medical Officer. Center for Drug Evaluation and Research. U.S. Food & Drug Administration

It s All Greek to Me: Physiology Edition by Leslie Gale Wooten-Blanks

Anavar For Sale Oxandrolone

Northern Illinois University

Physiology and Training for Peak Performance Tom Vandenbogaerde, Australian Institute of Sport

Marathon? Yes, We Can!

ull file at

Male pattern baldness is the most common type of balding among males. It affects roughly, 50% of men by the age of 50,

RESPIRATORY REGULATION DURING EXERCISE

Supplements and Performance: Ergogenic Aids. Supplemental Resource: KIN 856 Physical Bases of Coaching

M0BCore Safety Profile. Pharmaceutical form(s)/strength: 5 mg SE/H/PSUR/0002/006 Date of FAR:

Hastening the onset of the breeding season. by Julie Skaife, of Select Breeders Services

Natural Hair Transplant Medical Center, Inc Dove Street, Suite #250, Newport Beach, CA Phone

Anadrol For Sale Oxymetholone

Dr Chris Ward Manchester Royal Infirmary

Chapter I examines the anthropometric and physiological factors that. determine success in sport. More specifically it discusses the somatotype

Treatment of androgen deficiency in the aging male

MODULE #8 - Lesson 3

WHAT DO WE KNOW ABOUT NUTRITIONAL SUPPLEMENTS?

w w w. o p t i m a l h e a l t h m d. c o m Optimal Health & Rejuvenation Center, LLC 2007

Running Injuries in Adolescents Jeffrey Shilt, M.D. Part 1 Page 1

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

Increase testosterone naturally studies, testosterone boosting workout plan. > Click Now < Free download pre party pump workouts a closer

Signs are difficult to spot but they can include poor appetite, impaired performance, poor body condition, change in temperament and colic.

Transcription:

AACE Clinical Case Reports Rapid Electronic Articles in Press Rapid Electronic Articles in Press are preprinted manuscripts that have been reviewed and accepted for publication, but have yet to be edited, typeset and finalized. This version of the manuscript will be replaced with the final, published version after it has been published in the print edition of the journal. The final, published version may differ from this proof. DOI:10.4158/ACCR-2018-0345 2018 AACE. Case Report ACCR-2018-0345 EXTREMELY LOW TESTOSTERONE DUE TO RELATIVE ENERGY DEFICIENCY IN SPORT: A CASE REPORT Ana Narla MD 1,2, Kimberly Kaiser MD, MPH 3, Lisa R. Tannock MD 1,2 From: 1 Department of Internal Medicine, 2 Barnstable Brown Diabetes Center, 3 Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, KY 40536 Running head: Extremely low testosterone due to RED-S Corresponding author: Lisa R. Tannock, MD Division of Endocrinology Department of Internal Medicine Barnstable Brown Diabetes Center 553 Wethington Building, 900 S. Limestone University of Kentucky Lexington, Kentucky, 40536-0200 Lisa.tannock@uky.edu Disclosure summary: The authors have nothing to disclose.

Abstract Objective: Recognize extremely low testosterone due to hypothalamic dysfunction from overtraining syndrome in a male athlete with relative energy deficiency in sport (RED-S). Methods: Clinical and laboratory information are described. Results: A 20 year old male division I collegiate swimmer was found to have strikingly low total, free, and bioavailable testosterone levels with normal SHBG and inappropriately normal FSH and LH. Lab testing ruled out hyperprolactinemia and hypothyroidism as etiologies, and pituitary imaging was normal. A diagnosis of RED-S was made, and the patient worked with the sports medicine team to increase nutrition and modify physical activity. His repeat testosterone levels improved after minor weight gain and decreased training regimen and eventually returned to normal. Conclusion: Secondary hypogonadism with extremely low testosterone can be seen in male athletes with suspected RED-S. Abbreviations: BMI = body mass index; Bpm = beats per minute; CT = computed tomography; FISH = fluorescence in situ hybridization; FSH = follicle stimulating hormone; GnRH = gonadotropin releasing hormone; IOC = International Olymic Committee; LH = luteinizing hormone; MCV = mean corpuscular volume; MRI = magnetic resonance imaging; RED-S = relative energy deficiency in sport; SHBG = sex hormone binding globulin; T4 = thyroxine; TSH = thyroid stimulating hormone.

Introduction The female athlete triad consisting of disordered eating, amenorrhea and osteoporosis is a well-documented and recognized disorder of female athletes.(1,2) The international Olympic Committee (IOC) updated their position statement on the Female Athlete Triad in 2014 with the new term Relative Energy Deficiency in Sport (RED-S)(3). RED-S is a syndrome of impaired physiological function due to a deficiency in the balance between energy intake and expenditure. The new terminology facilitates recognition that male athletes can be affected by relative energy deficiency; however, it can be more difficult to identify this condition in males as they do not have the menstrual abnormalities that are seen in female athletes. Case Report A 20 year old division I collegiate swimmer reported performance concerns. His initial weight at college entry was 201 lbs with 17.3% body fat; after one year of training his weight was 189 lbs with body fat 15.3%; performance issues became obvious when his weight was 183 lbs with a body fat of 11.2%. At this time, his evaluation was significant only for mild normocytic anemia (Hemoglobin of 12.7 g/dl [normal 13.7-17.5 g/dl], MCV 96 fl [normal 79-98 fl]). He had a positive fecal occult blood test and underwent an upper and lower endoscopy, which were normal. He then had a bone marrow biopsy, which showed normal male chromosome analysis, normal FISH analysis, normocellular marrow with orderly trilineage hematopoiesis and no evidence of infection or infiltrative process. Infection screens were negative, and a CT chest, abdomen, pelvis were unremarkable. Total testosterone was very low on two measures: 20 ng/dl drawn at 12 pm, and repeat level of 36 ng/dl at 8 am (normal range 160-726 ng/dl). The patient denied any change in facial hair, shaving frequency, erectile function, or academic performance. He used supplements including multivitamins, probiotics, creatinine and osteobiflex closely monitored by the team dietician. He specifically denied using anabolic steroids. He stated he spent up to 6 hours a day in the pool or lifting weights. In addition, he attended class and tutoring sessions, leading to sleeping less than 6 hours a night. Review of energy balance showed he was expending over 4,000 kcal per day and eating less than 2,000 kcal per day. This was in part intentional and guided with the goal of decreasing from 201 lbs at the start of his collegiate career to a goal weight of 190 lbs, as determined by the team coaches and sports physician. On examination, he was a healthy young man, well-virilized and fit but without excessive muscle development. Blood pressure was 109/64 mm/hg, and heart rate was 46 bpm. His height was 6 foot 1.5 inches and weight was 182 lbs (BMI 23.71 kg/m 2 ). Testicular examination

revealed normal testes of 15-20 ml bilaterally, normal phallus, and no abnormalities. The rest of his examination was normal. Repeat tests sent out to a reference laboratory were drawn at 8 am and confirmed low total testosterone of 30 ng/dl (normal range 348-1197 ng/dl), low free testosterone of 3.6 pg/ml (normal range 52-280 pg/ml), low bioavailable testosterone of 10 ng/dl (normal range 128-430 ng/dl) and normal SHBG of 34.8 nmol/l (normal range 16.5-55.9 nmol/l). LH was low at 0.5 miu/ml (normal range 1.7-8.6 miu/ml) and FSH low normal at 1.5 miu/ml (normal range 1.5-12.4 miu/ml), indicating secondary hypogonadism. Prolactin, TSH, and free T4 were all normal. GnRH was appropriately elevated at 13.3 pg/ml (normal range 4.0-8.0 pg/ml), and a pituitary-directed MRI was normal. At this point, a diagnosis of presumptive RED-S was made. In discussion with the team physician and coach, he was advised to decrease physical activity and work with a nutritionist. At this point his energy availability was estimated at -1.3 kcal/kg fat free mass/day. He was not permitted to swim, weight train or pursue extra exercise on his own for 1 month until he was able to regain weight to at least 190 lbs. After patient had regained this minimum weight, he was gradually re-introduced to his physical activity. He signed a behavioral health contract stating that if he fell below 190 lbs (goal determined by his sports physician based on his personal weight history and predicted by adequate energy availability) he would be pulled from activity. After only 13 days his weight increased from 183.1 lbs to 190.4 lbs. A repeat testosterone level was 136 ng/dl (normal range 160-726 ng/dl). Nutritional therapy was continued as the patient gradually increased his activity with a recommended calorie intake goal of 4700 kcal/day (energy availability estimated at 42 kcal/kg fat free mass/day). Repeated early morning testing over the next few months while his weight was stable (197 lbs, body fat 14%) showed total testosterone levels of 269 ng/dl, 302 ng/dl and 244 ng/dl, all in the normal range. Discussion Relative Energy Deficiency in Sport (RED-S) is a syndrome caused by low energy availability where dietary intake is insufficient to support energy expenditure for activities such as daily living, as well as basic health and functioning after the cost of exercise and sporting activities are taken into account.(4) Note, RED-S can occur without decreased body weight or low BMI as the main driver is the limited energy availability. RED-S can impact a variety of health functions leading to impairment in cardiovascular health, bone health, menstrual function, immunity, protein synthesis, growth and development, and metabolism. RED-S can affect sport performance by leading to decreased muscle strength, decreased glycogen stores, depression,

irritability, decreased concentration, decreased coordination, impaired judgment, decreased training response, increased injury risk and decreased endurance performance. Historically, literature on low energy availability has focused on female athletes with the original 2005 IOC Consensus statement focusing on the Female Athlete Triad. Recognition of the female athlete with energy deficiency is easier given the ability to use menstrual cycles as a gauge of energy status. A reduction in energy availability affects GnRH output thereby disrupting LH pulsatility, which then alters the menstrual cycle. This is also known as functional hypothalamic amenorrhea. Current literature now recognizes that low energy availability can be seen in male athletes as well and occurs in the same at risk weight sensitive sports as for female athletes.(5) However, to date the majority of literature evaluating RED-S in males has focused on cyclists, runners, rowers and jockeys.(6,7) While the underlying etiology and endocrine outcome of low energy availability and RED-S does not differ between male and female athletes, the prevalence in male athletes is likely underestimated; in part due to a more subtle presentation, and in part due to decreased awareness of the existence of the condition in males.(6) There is a growing awareness in the literature of RED-S overall, and in males.(8) Male hypogonadism may be caused by congenital, structural or destructive disorders resulting in permanent hypothalamic, pituitary, or testicular dysfunction, or it can be functional, usually reversible, caused by conditions that suppress gonadotropin and testosterone concentrations.(5) Our patient had strikingly low testosterone levels (measured by tandem mass spectrometry) for an otherwise healthy 20 year old. The 2018 Endocrine Society Guidelines state a reference range for total testosterone in healthy, non-obese young males aged 19 39 years is 264-916 ng/dl (using the 2.5 th and 97.5 th percentile), or 303-852 ng/dl (using the 5 th and 95 th percentile). This patient s testosterone level was strikingly low. RED-S should be considered in the differential diagnosis of hypogonadism in an at risk individual (male athlete in a sport that emphasizes leanness) such as this patient. We point out that competitive swimming is an at risk sport, in addition to what has been found in a majority of other reports which focus on runners and cyclists.(9) Overtraining, which is an accumulation of stress due to training and additional life stressors that results in long-term performance loss that can be accompanied by psychological and physiological signs and symptoms, is a well-recognized phenomenon in elite level athletes. In this case, the energy expenditure from training exceeded the energy intake from diet, leading to RED-S. Our patient met with a sports dietician and team physician routinely and with a

decreased swimming schedule and increased caloric intake, was able to regain weight, which resulted in improvement in testosterone levels. Anemia and hematologic abnormalities are a common symptom of RED-S (termed sports anemia ) albeit predominantly studied in endurance and ultra-endurance athletes, primarily runners.(10) The anemia is multi-factorial, with etiology including hemodilution, oxidative stress, iron deficiency, hematuria, and hemolysis from compressive action of muscles on capillaries. Prolonged levels of endurance exercise can cause intestinal hypoperfusion, ischemia and loss of gastrointestinal barrier integrity leading to positive fecal occult blood tests.(11) Endoscopic evaluation is generally recommended to exclude other etiologies, but is often unremarkable, as in this case. His anemia and positive fecal occult blood test are consistent with sports anemia, but to our knowledge this has not been previously reported in endurance swimmers. Conclusion Secondary hypogonadism with very low testosterone levels due to hypothalamic dysfunction from energy deficiency can be seen in male athletes with suspected RED-S due to overtraining syndrome and can be reversed with adequate energy availability, rest, and recovery. All athletes, regardless of sport, are at a risk for RED-S, not just those in weightsensitive sports. There should be a high index of suspicion in all athletes with symptomatology including performance issues regardless of sport and/or weight or body habitus.

References: 1. Javed A, Tebben PJ, Fischer PR, Lteif AN. Female athlete triad and its components: toward improved screening and management. Mayo Clin Proc 2013; 88:996-1009 2. West RV. The female athlete. The triad of disordered eating, amenorrhoea and osteoporosis. Sports Med 1998; 26:63-71 3. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, Meyer N, Sherman R, Steffen K, Budgett R, Ljungqvist A. The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). Br J Sports Med 2014; 48:491-497 4. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, Meyer N, Sherman R, Steffen K, Budgett R, Ljungqvist A, Ackerman K. RED-S CAT. Relative Energy Deficiency in Sport (RED-S) Clinical Assessment Tool (CAT). Br J Sports Med 2015; 49:421-423 5. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, Snyder PJ, Swerdloff RS, Wu FC, Yialamas MA. Testosterone Therapy in Men With Hypogonadism: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2018; 103:1715-1744 6. Burke LM, Close GL, Lundy B, Mooses M, Morton JP, Tenforde AS. Relative Energy Deficiency in Sport in Male Athletes: A Commentary on Its Presentation Among Selected Groups of Male Athletes. Int J Sport Nutr Exerc Metab 2018; 28:364-374 7. Mountjoy M, Sundgot-Borgen JK, Burke LM, Ackerman KE, Blauwet C, Constantini N, Lebrun C, Lundy B, Melin AK, Meyer NL, Sherman RT, Tenforde AS, Klungland Torstveit M, Budgett R. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med 2018; 52:687-697 8. Mountjoy M, Sundgot-Borgen J, Burke L, Stellingwerff T. Special Issue: Relative Energy Deficiency in Sport (RED-S). In: Metabolism IJoSNaE, ed. Vol 282018.

9. Tenforde AS, Barrack MT, Nattiv A, Fredericson M. Parallels with the Female Athlete Triad in Male Athletes. Sports Med 2016; 46:171-182 10. Cronin O, Molloy MG, Shanahan F. Exercise, fitness, and the gut. Curr Opin Gastroenterol 2016; 32:67-73 11. Chiu YH, Lai JI, Wang SH, How CK, Li LH, Kao WF, Yang CC, Chen RJ. Early changes of the anemia phenomenon in male 100-km ultramarathoners. J Chin Med Assoc 2015; 78:108-113