A MOLECULAR PHYLOGENY OF THE SPARIDAE (PERCIFORMES: PERCOIDEI) A Dissertation. Presented to. The Faculty of the School of Marine Science

Size: px
Start display at page:

Download "A MOLECULAR PHYLOGENY OF THE SPARIDAE (PERCIFORMES: PERCOIDEI) A Dissertation. Presented to. The Faculty of the School of Marine Science"

Transcription

1 A MOLECULAR PHYLOGENY OF THE SPARIDAE (PERCIFORMES: PERCOIDEI) A Dissertation Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy Copyright Thomas Martin Orrell 2000

2 APPROVAL SHEET This dissertation is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Thomas M. Orrell Approved 9 November 2000 John A. Musick, Ph.D. Committee Co-Chairman/Advisor John E. Graves, Ph.D. Committee Co-Chairman/Advisor Kimberly S. Reece, Ph.D. Peter A. Van Veld, Ph.D. Kent E. Carpenter, Ph.D. Department of Biology Old Dominion University, Norfolk, VA G. David Johnson, Ph.D. Division of Fishes, National Museum of Natural History Smithsonian Institution, Washington, D.C.

3 DEDICATION I am dedicating this dissertation to the memory of Emo. J. Benvenuti, my grandfather, who died on 13 March He was a quiet teacher who had all the patience in the world. ii

4 TABLE OF CONTENTS Page ACKNOWLEDGMENTS...v LIST OF TABLES... vii LIST OF FIGURES... ix ABSTRACT... xiii GENERAL INTRODUCTION...2 CHAPTER ONE. A MOLECULAR PHYLOGENY OF THE FAMILY SPARIDAE (PERCOIDEI: PERCIFORMES) INFERRED FROM THE MITOCHONDRIAL CYTOCHROME B GENE...14 INTRODUCTION...15 MATERIALS AND METHODS...19 RESULTS...26 DISCUSSION...35 CHAPTER TWO. A MOLECULAR PHYLOGENY OF THE FAMILY SPARIDAE (PERCOIDEI: PERCIFORMES) INFERRED FROM THE MITOCHONDRIAL 16S RIBOSOMAL RNA GENE INTRODUCTION MATERIALS AND METHODS RESULTS DISCUSSION CHAPTER THREE. COMBINED ANALYSIS OF CYTOCHROME B AND 16S MITOCHONDRIAL SEQUENCES iii

5 INTRODUCTION MATERIALS AND METHODS RESULTS DISCUSSION CHAPTER FOUR. RECONSTRUCTING SPARID RELATIONSHIPS WITH A SINGLE-COPY NUCLEAR DNA INTRODUCTION MATERIALS AND METHODS RESULTS DISCUSSION CONCLUSIONS LITERATURE CITED VITA iv

6 ACKNOWLEDGMENTS I would like to thank my dissertation committee for their constant support throughout the duration of this study. I am especially indebted to my co-major advisors Drs. Jack Musick and John Graves for giving me encouragement, advice, guidance and funding during my time at VIMS. Dr. Kimberly Reece provided invaluable advice in the laboratory and was an unending source of molecular knowledge. I am very grateful to my outside committee members. Dr. Kent Carpenter inspired this study by suggesting that we work together on a phylogeny of the Sparidae. He generously collected the majority of the samples used in this study and afforded me numerous opportunities to collect samples as well. He graciously provided hours of advice for the completion of this project and his critical review of this dissertation contributed countless suggestions for improvement Dr. G. David Johnson furnished the framework of many of the relationships surveyed in this study. His encouragement and critical eye kept me honest. Dr. Peter Van Veld critically reviewed this dissertation and gave me many helpful suggestions over the years. I would like to thank the following individuals and organizations for their assistance in collecting specimens, without whose help this work would not have been possible: S. Almatar, L. Beckley, B.B. Collette, F. Crock, N. DeAngelis, M. DeGravelle, D. Etnier, H. Ishihara, J. Gelsleichter, A. Graham, R. Grubbs, K. Harada, Y. Iwatsuki, J. Jenke, R. Kraus, E. Massuti, K. Matsuura, L. Ter Morshuizen, P. Oliver, A.W. Paterson, J. Paxton, J. Scialdone, D. Scherrer, G. Sedberry, M. Smale, W. F. Smith-Vaniz, K. Utsugi, G. Yearsley, T. Wasaff, J.T. Williams, and the VIMS Trawl Survey. I would like v

7 to acknowledge the following people for laboratory assistance: J. McDowell, D. Carlini, V. Buonaccorsi, C. Morrison and K. Macdonald and all members of the VIMS fisheries genetics laboratory during my time at VIMS. I would also like to thank E.O. Wiley for numerous suggestions during this study. This research was supported by grants from: the Food and Agriculture Organization of the United Nations, Lerner Gray Fund for Marine Research from the American Museum of Natural History, an E.C. and Charlotte E. Raney Award of the American Society of Ichthyologists and Herpetologists, and by the VIMS Dean of Graduate Studies. vi

8 LIST OF TABLES Table Page 1. Annotated list of the valid genera of the Sparidae Subfamilies of the Sparidae Collection data for specimens used in cytochrome b study Multiple alignment of nucleotide sequences of the cytochrome b gene Cytochrome b nucleotide sequence characteristics Pairwise values of mean % sequence divergence derived from uncorrected p genetic distance for all taxa, ingroup taxa and outgroup taxa Pairwise values of mean % sequence divergence derived from uncorrected p genetic distance within and between subfamilies Base compositional bias calculated across all, ingroup, and outgroup taxa Multiple alignment of amino acid residues translated from the nucleotide sequences of the cytochrome b gene FAO area assignments for the Sparidae Matrix of FAO areas and characters used during analysis of vicariance biogeography - cytochrome b data Collection data for specimens used in 16S study Multiple alignment of nucleotide sequences of the partial 16S gene from the Sparidae and outgroup species Constant, uninformative and informative characters for stems and loops Non-conserved areas in multiple alignment of 16S gene Mean pairwise values of percent sequence divergence based on uncorrected p vii

9 genetic distance Contribution of loops and stems to the overall sequence divergence Matrix of FAO areas and characters used during analysis of vicariance biogeography - 16S data Incongruence Length Distance values between different data partitions Matrix of FAO areas and characters from dependent cytochrome b (Top) and16s (bottom) trees Collection data for specimens used in Tmo-4c4 study Primers and Sequences used to amplify the Tmo-4c4 locus Tmo-4c4 clone numbers sequenced for each taxon those samples direct sequenced are indicated Multiple alignments of nucleotide sequences of the nuclear Tmo-4c4 locus..244 viii

10 LIST OF FIGURES Figure Page 1. Suggested phylogeny of spariform relationships redrawn from Akazaki (1962) Hypothesized relationships of the Sparoidea (Sparidae, Centracanthidae, Lethrinidae and Nemipteridae) Polymerase chain reaction primers used in the cytochrome b study Total substitutions at all codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only - cytochrome b gene Total substitutions at the first codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only Total substitutions at the second codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only Total substitutions at the third codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only Total substitutions at the third codon position and pooled first and second codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only A ratio of transitions/total substitutions and transversions/total substitutions from third codon plotted as a function of pairwise percent sequence divergence for ingroup taxa only Transitional substitutions, separated into nitrogenous base type, plotted as a functions of pairwise percent sequence divergence of ingroup taxa only Frequencies of each of four bases of the cytochrome b gene for 62 taxa at all ix

11 codon positions Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the first codon position Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the second codon position Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the third codon position Four equally parsimonious trees - unweighted data Strict consensus of four equally parsimonious trees - unweighted data Two equally parsimonious trees - weighted data A strict consensus of two equally parsimonious trees from the - weighted data (transversions only third codon) A strict consensus of 699 equally parsimonious trees from amino acid residue translations Numbered ancestral nodes of the Sparidae clade from the weighted cytochrome b consensus tree Clade of biogeographic relationships overlaid on map of the world Total number of substitutions plotted as a functions of uncorrected sequence divergence -16S gene Total number of stem substitutions plotted as a functions of uncorrected sequence divergence - 16S gene Total number of loop substitutions plotted as a functions of uncorrected sequence divergence - 16S gene Loop transitions were separated into functional nucleic acid classes and plotted as a function of uncorrected sequence divergence - 16S gene Non conserved loop and conserved loop transitions plotted as a function of x

12 uncorrected sequence divergence - 16S gene Adjusted loop and stem distances plotted as a function of uncorrected sequence divergence -16S gene Mean values and ranges of percent base composition for all, stem, loop, and nonconserved loop characters of the 16S mtdna fragment A strict consensus of 8 equally parsimonious trees from the analysis of all columns of data from t 16S sequence data A strict consensus of 3952 equally parsimonious trees from a weighted analysis of the 16S sequence data. All loop transitional substitutions were given a weight of A strict consensus of 9828 equally parsimonious trees from a weighted analysis of the 16S sequence data. Non-conservative loop transitional substitutions were given a weight of Numbered ancestral nodes of the Sparidae clade from the unweighted 16S consensus tree Clade of 16S biogeographic relationships overlaid on map of the world Sequence divergence of each data partition plotted as a function of total sequence divergence for all pairwise comparisons A strict consensus of three equally parsimonious trees from a heuristic search of all cytochrome b and 16S nucleotide characters A single most parsimonious tree from a heuristic search of the weighted cytochrome b nucleotides (3 rd codon transitions =0) and all 16S nucleotides A strict consensus of 35 equally parsimonious trees from a heuristic search of all cytochrome b amino acid residue and 16S nucleotide sequences A strict consensus from a heuristic search of all unweighted sequences resulted in 11 equally parsimonious trees xi

13 39. A single most parsimonious tree from vicariance biogeographic analysis of the combined cytochrome b and 16S dependent data matrices yielded Total substitutions plotted as a function of sequence divergence for putative copy 1 (top) and copy 2 (bottom) of the Tmo-4c4 locus A strict consensus of 81 equally parsimonious trees from parsimony analysis of all clone sequences and characters of the Tmo-4c4 locus Tree from neighbor-joining analysis of all clone sequences and characters of the Tmo-4c4 locus xii

14 ABSTRACT Sparids are a diverse group of over 110 marine species whose putative six subfamilies have been defined primarily on the basis of dentition and feeding type. Monophyly of the subfamilies has not been tested, nor have the phylogenetic relationships of all sparid genera been hypothesized. I used mitochondrial DNA sequences from the complete cytochrome b gene (1140bp) and the partial 16S gene (621bp) in independent and combined analyses to test the monophyly of the Sparidae, elucidate the inter-relationships of the 33 recognized genera of the Sparidae, test the validity of the six subfamilies of the Sparidae, and test the monophyly of the Sparoidea. The cytochrome b (cyt b) analyses included 40 sparid species, ten closely related species, ten basal percoids, and two non-perciform outgroup species. A subset of these taxa was used in the independent 16S mtdna analyses and combined analyses. The Sparidae were monophyletic in all analyses from independent and combined data sets. The centracanthid Spicara was consistently found within the sparid clade and is considered a member of the Sparidae. The monophyly of the Centracanthidae is not supported because Spicara was polyphyletic within the sparids in all analyses. These data suggest that a revision of Pagrus, Pagellus, Dentex is in order because these genera were not monophyletic in any analysis. Two mitochondrial lineages were reconstructed in all analyses, but the previously proposed six sparid subfamilies (Boopsinae, Denticinae, Diplodinae, Pagellinae, Pagrinae, and Sparinae) were not monophyletic in any analysis. This suggests that the feeding types that these subfamilies are based were independently derived multiple times within sparid fishes. There was support from the weighted cyt b analysis for a monophyletic Sparoidea, and in all cyt b analyses the Lethrinidae were sister to the Sparidae. However, the Sparoidea were not monophyletic in the independent 16S or combined analyses. Evidence from the weighted cyt b, 16S and combined analyses suggests a sister relationship between Moronidae and Lateolabrax. Biogeographic analysis revealed that there were two areas of sparid evolution: the eastern Indian Ocean - western Pacific and the western Indian Ocean - Mediterranean/Atlantic. Sparids in these two areas probably arose from a Tethyan ancestor. xiii

15 A MOLECULAR PHYLOGENY OF THE SPARIDAE (PERCIFORMES: PERCOIDEI)

16 GENERAL INTRODUCTION The Sparidae are a diverse group of over 110 mostly neritic species whose putative six subfamilies have been defined primarily on the basis of dentition and feeding type (Smith, 1938; Akazaki, 1962). The monophyly of these subfamilies has not been tested, nor have the phylogenetic relationships of all sparid genera been hypothesized. Smith (1938) and Smith and Smith (1986) initially delineated the 33 sparid genera (Table 1) into four subfamilies based mostly on dentition (Table 2). The Boopsinae have compressed outer incisiform teeth and are typically herbivores or feed on small invertebrates. The Denticinae are typical piscivores with enlarged canines in front and smaller conical teeth behind. The Pagellinae lack canines, have small conical outer teeth, small inner molars and are usually carnivorous on small invertebrates. The Sparinae have jaws with bluntly rounded molars posteriorly, enlarged front teeth and are carnivorous, feeding on crustaceans, mollusks, and small fish. Akazaki (1962) erected two new subfamilies (Table 2), also largely defined by dentition. He moved the genera Diplodus, Archosargus, and Lagodon from the Sparinae into the Diplodinae and he moved Pagrus, Argyrops, and Evynnis from the Sparinae into the Pagrinae. Akazaki defined the Diplodinae as having six to eight anterior teeth in the jaws and obliquely projecting incisors, and the Pagrinae as those with four canines on the upper jaw, four to six canines on the lower jaw, scales on the head extending to the interorbital region, molar teeth in two series, and a reddish body. 2

17 3 The Sparidae have historically been a heterogenous group of fishes, often associated with the Lethrinidae, Nemipteridae, Lutjanidae, Caesionidae, and Haemulidae (Jordan and Fesler, 1893; Schultz 1953). Akazaki (1962) used osteology to define "spariform" fishes that included the Nemipteridae, Sparidae, and Lethrinidae (Figure 1). Akazaki suggested that the spariform fishes had three "stems": the primitive Nemipteridae-stem; the intermediate Sparidae-stem; and the highly specialized Lethrinidae-stem. Johnson (1980) proposed the superfamily Sparoidea to include Akazaki s three spariform families and the Centracanthidae. He added the Centracanthidae based on maxillary-premaxillary distal articulation and other osteological characters. Johnson disagreed with Akazaki's placement of the Sparidae between the Nemipteridae and Lethrinidae and presented preliminary anatomical and osteological evidence that the Nemipteridae and Lethrinidae were more closely related to each other than they were to either the sparids or to the centracanthids (Figure 2). There has been only limited morphological analysis of the Sparidae since Regan (1913) gave the first practical definition of the family to include those species, in that the distal end of the praemaxillary ramus overlaps the maxillary externally. The majority of morphological works have been regional in scope. Smith (1938) attempted to reinforce the taxonomy of South African sparids, but recognized that the: relationships between the species have never been properly investigated. Generic limits have been sadly lacking in uniformity; in some cases monotypic genera have been defined within the limits which are very narrow by contrast with others which have embraced forms so widely divergent and polymorphous as to be almost without parallel in any other families. Akazaki (1962) provided the most complete morphological analysis of sparid relationships to date, although his treatise did not include all genera. His results inferred phylogenetic relationships of the sparids based on traditional, non-quantitative, methods.

18 4 Johnson (1980) better defined the relationships of the families often associated with the Sparidae. However, he was unable to examine all of the genera of sparids and the generic relationships remain untested. Similarly, few molecular studies have examined the evolutionary relationships of the Sparidae and none has employed cladistic analysis to investigate the evolutionary history of all sparid genera. Taniguchi et al. (1986) investigated 18 isozyme loci from skeletal muscle, liver, and heart tissues to infer the genetic relationships of ten species from six genera of Japanese sparids. Their results established a close genetic relationship of Japanese sparids; a genetic distance (Nei, 1978) of less than 0.01 between Japanese members of the genera Pagrus, Evynnis, Argyrops, and Dentex. A greater genetic distance (>0.013) was found between these four genera and Sparus and Acanthopagrus. Basaglia (1991) analyzed six isozymes from seven different tissues of 15 sparid species to infer phylogenetic relationships based on an index of divergence. Basaglia and Marchetti (1991) examined white muscle proteins in the same 15 species analyzed by Basaglia (1991) and presented a more quantitative analysis based on pairwise similarity coefficients that clustered the sparids into respective subfamilies - Boopsinae, Diplodinae, and Pagellinae. The Pagellinae Lithognathus mormyrus, clustered with the Sparinae as did the Denticinae, Dentex dentex. Garrido-Ramos et al. (1994, 1995, and 1999) used centromeric satellite DNA to elucidate the relationships of Mediterranean sparids. The later study sampled 10 taxa from four genera to infer phylogenetic relationships based on neighbor-joining and distance (UPGMA) analyses. Jean et al. (1995) examined three mitochondrial regions, the displacement loop, trna Phe, and 12S rrna gene, of five taxa from two genera of Taiwanese sparids. Their resulting phylogenetic tree was based on Tamura-Nei genetic distances. Hanel and Sturmbauer (2000) used 16S rdna sequences to examine the evolution of trophic types in Northeastern Atlantic and Mediterranean sparids. Based on an analysis of 24 taxa from 10 sparid genera, they concluded that

19 5 trophic types evolved more than once in sparid fishes. In this dissertation I present a rigorous phylogenetic analysis of sparid relationships. I include representatives of all valid sparid genera and use parsimony analysis of mitochondrial molecular data to infer relationships. In the first chapter I present the results of phylogenetic analyses of the complete mitochondrial cytochrome b gene for 40 sparid species, ten closely related species, ten basal percoids, and two nonperciform outgroup species. In the second chapter I show results of phylogenetic analyses of the partial mitochondrial 16S rrna gene for 40 sparid taxa and 16 closely related percoid taxa. The third chapter provides a phylogenetic analysis from combined mitochondrial data sets using character congruence. I also investigate the biogeographic relationships of the Sparidae using the method of vicariance biogoegraphy (Brooks 1985; Wiley 1988a, b; Wiley et al., 1991). In each chapter, I have used the resulting phylogenies as dependent data to estimate the biogeographic aspect of evolution of the sparids. I have chosen to use parsimony analysis as a method to reconstruct phylogeny because it minimizes ad hoc assumptions of evolution. Under parsimony, the tree with the shortest number of steps is chosen as an estimator of phylogeny. The shortest tree has the least number of evolutionary changes required by the data to produce that tree and has the least amount of homoplastic character changes. The minimal tree should have the greatest number of shared, derived homologous characters (synapomorphies) as evidence for relationships. Outgroup species are used to determine homology of characters. In this study I have used a wide range of outgroup species to infer phylogeny. Outgroup species include those that have been classically associated with the Sparidae (Lethrinidae, Nemipteridae, Haemulidae, Lutjanidae), basal percoids (Moronidae, Lateolabrax and Centropomus) and taxa outside of Perciformes (Cyprinidae). The wide range of outgroups allowed for the testing of multiple hypotheses from these data.

20 6 Two types of clade support were used throughout this dissertation; nonparametric bootstrap (Felsenstein 1985) as well as total value and partitioned Bremer values (Bremer 1988). Nonparametric bootsrap employs psuedoreplicate data matrices to provide an estimate of phylogenetic signal at each node. Decay indices are a measure of support for the nodes in a given tree. The shortest unconstrained tree (or strict consensus of equally parsimonious trees) is found. A constraint statement is assigned for each node in the shortest tree or strict consensus tree. All trees, inconsistent with each constraint statement, are found. The indices are calculated for each node by comparing the length of the original shortest tree (or strict consensus) to the length of the inconsistent tree/s length at each constrained node. The additional number of steps between the original tree and the constrained tree/s becomes the index number. Additionally decay indices can be calculated for partitioned data following the method of Baker and Desalle (1997) and Baker, et al. (1998). The partitioned indices examine how each part of a partitioned dataset contributes to the decay value at a particular node. The partition value can be either positive or negative (negative values conflicting support for a node) with the sum of each node s partitions equaling the overall decay value for that node (Sorensen 1999). In this dissertation I infer phylogenies from mitochondrial DNA, including the complete cytochrome b gene, the partial 16S gene, and from both genes in combination to: 1) test the monophyly of the Sparidae; 2) elucidate the inter-relationships of the 33 recognized genera of the Sparidae; 3) test the validity of the six subfamilies of the Sparidae; and, 4) to test the monophyly of the Sparoidea. In addition, in a final chapter to this dissertation, I give results of an attempt to infer phylogeny based on a single copy nuclear locus TMO-4c4.

21 7 TABLE 1. ANNOTATED LIST OF THE VALID GENERA OF THE SPARIDAE (PERCIFORMES: PERCOIDEI) Acanthopagrus Peters 1855:242 (as subgenus of Chrysophrys) Synonym: Mylio Commerson in Lacepede 1802 Archosargus Gill 1865:266 Argyrozona Smith 1938:300 (as subgenus of Polysteganus) Argyrops Swainson 1839:171 (as subgenus of Chrysophrys) Synonym: Parargyrops Tanaka 1916 Boops Cuvier 1814:91 Synonym: Box Valenciennes in Cuvier & Valenciennes 1830 Boopsoidea Castelnau 1861:25 Calamus Swainson 1839:171 (as subgenus of Chrysophrys) Synonym: Aurata Catesby 1771 Synonym: Grammateus Poey:1872 Cheimerius Smith 1938:292 (as subgenus of Dentex) Chrysoblephus Swainson 1839:171 (as subgenus of Chrysophrys) Crenidens Valenciennes in Cuvier & Valenciennes 1830:377 Cymatoceps Smith 1938:259 Dentex Cuvier 1814:92 Synonym: Synagris Klein in Walbum 1792 Synonym: Taius Jordan & Thompson 1912 Diplodus Rafinesque 1810:26 Synonym: Denius Gistel 1848 Synonym: Sargus Cuvier 1816 Synonym: Sargus Klein 1775 Evynnis Jordan & Thompson 1912:573 Gymnocrotaphus Gunther 1859:413 Lagodon Holbrook 1855:56 Synonym: Sphenosargus Fowler 1940 (as subgenus of Salema) Lithognathus Swainson 1839:172 (as subgenus of Pagellus) Oblada Cuvier 1829:185 Pachymetopon Gunther 1859:413 Synonym: Simocantharus Fowler 1933 (as subgenus of Spondyliosoma) Pagellus Valenciennes in Cuvier & Valenciennes 1830:169 Synonym: Nudipagellus Fowler 1925 (as subgenus of Pagellus) Pagrus Cuvier 1816:272 Synonym: Semapagrus Fowler 1925 (as subgenus of Pagrus) Synonym: Sparidentex Munro 1948 Petrus Smith 1938:302 Polyamblyodon Norman 1935:21 Polysteganus Klunzinger 1870:763 (as subgenus of Dentex)

22 8 TABLE 1 (Continued). ANNOTATED LIST OF THE VALID GENERA OF THE SPARIDAE (PERCIFORMES: PERCOIDEI) Synonym: Axineceps Smith 1938 (as subgenus of Polysteganus) Porcostoma Smith 1938:270 Pterogymnus Smith 1938:257 Rhabdosargus Fowler 1933:175 (as subgenus of Diplodus) Synonym: Austrosparus Smith 1838 Synonym: Prionosparus Smith 1942 (as subgenus of Austrosparus) Sarpa Bonaparte 1831:171 (as subgenus of Box [Boops]) Objective Synonym: Eusalpa Fowler 1925 Sparodon Smith 1938:249 Sparidentex Munro 1948:276 Sparus Linnaeus 1758:277 Objective Synonym: Aurata Oken (ex Cuvier) 1817 Synonym: Caeso Gistel 1848 Objective Synonym: Chryseis Schinz 1822 Synonym: Chrysophris Cuvier 1829 Objective Synonym: Daurada Stark 1828 Objective Synonym: Dorada Jarocki 1822 Synonym: Dulosparus Fowler 1933 (as subgenus of Sparus) Synonym: Eudynama Gistel 1848 Synonym: Pagrichthys Gill 1893:97 Spondyliosoma Cantor 1848:1032 Objective Synonym: Cantharus Cuvier 1816 Objective Synonym: Cantharusa Strand 1928 Objective Synonym: Caranthus Barnard 1927 Stenotomus Gill 1865:266 Synonym: Mimocubiceps Fowler 1944

23 9 TABLE 2. SUBFAMILIES OF SPARIDAE FOLLOWING AKAZAKI (1962)* AND SMITH AND SMITH (1986) Boopsinae Boops Cuvier 1814:91 Crenidens Valenciennes in Cuvier & Valenciennes 1830:377 Gymnocrotaphus Gunther 1859:413 Oblada Cuvier 1829: (as subgenus of Spondyliosoma) Pachymetopon Gunther 1859:413 Polyamblyodon Norman 1935:21 Sarpa Bonaparte 1831:171 (as subgenus of Box [Boops]) Spondyliosoma Cantor 1848:1032 Denticinae Argyrozona Smith 1938:300 (as subgenus of Polysteganus) Cheimerius Smith 1938:292 (as subgenus of Dentex) Dentex Cuvier 1814:92 Petrus Smith 1938:302 Polysteganus Klunzinger 1870:763 (as subgenus of Dentex) Sparidentex Munro 1948:276 Diplodinae* Archosargus Gill 1865:266 Diplodus Rafinesque 1810:26 Lagodon Holbrook 1855:56 Pagellinae Boopsoidea Castelnau 1861:25 Pagellus Valenciennes in Cuvier & Valenciennes 1830:169 Lithognathus Swainson 1839:172 (as subgenus of Pagellus) Pagrinae* Argyrops Swainson 1839:171 (as subgenus of Chrysophrys) Evynnis Jordan & Thompson 1912:573 Pagrus Cuvier 1816:272 Sparinae Acanthopagrus Peters 1855:242 (as subgenus of Chrysophrys) Calamus Swainson 1839:171 (as subgenus of Chrysophrys) Chrysoblephus Swainson 1839:171 (as subgenus of Chrysophrys) Cymatoceps Smith 1938:259 Porcostoma Smith 1938:270 Pterogymnus Smith 1938:257 Rhabdosargus Fowler 1933:175 (as subgenus of Diplodus) Sparodon Smith 1938:249 Sparus Linnaeus 1758:277 Stenotomus Gill 1865:266

24 10 Figure 1. Suggested phylogeny of spariform relationships redrawn from Akazaki (1962). Akazaki s phylogeny was based on non-empirical analysis and should not be considered quantitative. Branch lengths in this tree do not represent degree of relatedness between taxa.

25 Nemipteridae Petapodus Scolopsis Nemipterus Sparidae Denticiniae Boopsinae Cheimerius Dentex Pagrinae Pagellinae Cantharus Sarpa Boops Pagellus Pagrus Argyrops Evynnis Sparinae Diplodinae Stenotomus Sparinae Acanthopagrus Calamus Archosargus Diplodus Lagodon Puntazzo Lethrinidae Monotaxis Gymnocranius Gnathodentex Lethrinus

26 12 Figure 2. Hypothesized relationships of the Sparidae, Centracanthidae, Lethrinidae and Nemipteridae of Akazaki (1962) top and Johnson (1980) bottom.

27 Akazaki 1962 Nemipteridae Sparidae Lethrinidae Johnson 1980 Nemipteridae Lethrinidae Sparidae + Centracanthidae

28 CHAPTER ONE. A MOLECULAR PHYLOGENY OF THE FAMILY SPARIDAE (PERCOIDEI: PERCIFORMES) INFERRED FROM THE MITOCHONDRIAL CYTOCHROME B GENE

29 15 INTRODUCTION Mitochondrial DNA (mtdna) has proven to be useful in molecular phylogenetic studies because evolutionary relationships can be inferred among higher levels, between recently divergent groups, populations, species and even individuals (Avise, 1994). The mtdna molecule is double stranded, circular, clonally (maternally) inherited. Most substitutions are point mutations although insertions/deletions are not rare (Avise, 1994). The mtdna genome is relatively small (approximately 16,500 base pairs in fishes), has a high nucleotide substitution rate at synonymous sites and lacks recombination (Brown et al., 1979; Rand, 1994; Cantatore et al., 1994). The mitochondrial DNA of perciform fish is comprised of 13 protein-coding genes, two ribosomal RNA (rrna) genes and 22 transfer RNA (trna) genes (Meyer, 1993). Within the mitochondrial genome, different regions evolve at different rates. Cummings et al. (1995) explored the ability of single mtdna genes to recover the same tree/s found when using whole mtdna genomes; assuming that whole genomic phylogenies are a better measure of the true phylogeny. Their findings indicated that no one gene represented all of the information expressed by the whole genome. In an ideal phylogenetic study, random or directed sampling of base pairs from across all mitochondrial genes would deduce the same tree as resulted in the analysis of the total genome; however, many constraints exclude wide-range gene sampling, and sequencing of the entire mtdna genome from a wide-range of taxonomic representatives is even more daunting. Because each protein coding region, rrna gene and trna has different functional and structural constraints, each mtdna gene region is unique in its intrinsic

30 16 rate of substitution. Therefore, analysis of only single genes, partial gene regions, or both in combination has become a common approach in molecular phylogenetics. It is difficult to evaluate the usefulness of a particular gene a priori and often a pilot study must be conducted to realize a gene s potential for inferring a phylogeny for a particular group. Examination of published sequences and phylogenies often reflect a gene s strength and limitation, and can provide a basis for gene selection. Cytochrome c oxidase subunit I (COI) has been found to be one of the more highly conserved genes of the mitochondrial genome (Brown, 1985). For a comparison of taxonomic representatives of the order Perciformes or at the family level (less divergence time) this gene may be too conserved (not variable enough) and therefore, yield little phylogenetic information. To date COI has not been analyzed widely in fishes. The large (16S) and small (12S) subunits of mitochondrial ribosomal DNA are reasonably conserved within perciform fish and are typically used for higher level (subfamily, family, superfamily, suborder, order) analyses (Hillis and Dixon, 1991, Wiley et al., 1998). The control region or displacement loop (D-loop) of mtdna has highly variable non-coding sites positioned between very conserved functional areas. Because reduced selection constraints in regions of D-loop, the control region is used for analysis of closely related taxa where increased variation may reflect recent evolutionary events (Lockhart et al., 1995). Other mtdna genes such as ATPase6, ATPase8, cytochrome b or NADH(n) may be preferable for phylogenetic comparisons for taxa of intermediate divergence (generic and family level) because these gene regions are more variable than both rrnas or COI, but are less variable than the D-loop. Of mtdna protein-coding genes, cytochrome b (cyt b) has proven to be a robust evolutionary marker, revealing phylogenies at various taxonomic levels in fishes. Cytochrome b codes for a functionally conserved protein and can be phylogenetically informative on interspecific and intraspecific studies, but is probably best suited for

31 17 closely related taxa because nucleotide sequence variation is less saturated by multiple substitutions (Meyer 1993). Cytochrome b was informative in actinopterygian phylogenetic relationships (Lydeard et al., 1995; Lydeard and Roe, 1997; Schmidt et al., 1998). Cantatore et al. (1994) used cyt b sequence analysis to survey the phylogenetic relationships of five widely diverse families of perciform fishes and observed that the rate of divergence was similar to that of sharks (Martin et al., 1992; Martin and Palumbi 1993), yet slower than that of mammals and birds. Finnerty and Block (1995) demonstrated cyt b to be useful in resolving phylogenetic relationships of the perciform suborder Scombroidei and Song et al. (1998) used cyt b to assess the phylogenetic relationships among percid fishes. Zardoya and Meyer (1996) classified cyt b as a good phylogenetic performer among phylogenetically distant relatives. Much is known about the structure and function of cytochrome b (Esposti et al., 1993). The translated product is a transmembrane protein that forms the central catalytic subunit of ubiquinol:cytochrome c oxidase. This enzyme is a ligand that contains a heme prosthetic group. The central iron ion in the heme acts as the primary electron transport during mitochondrial respiration (Esposti et al., 1993). The cytochrome b molecule is bi-polar with five negatively charged proton input regions, four positively charged proton output regions and eight transmembrane regions (Esposti et al., 1993, Lydeard and Roe 1997). Previous studies including Irwin et al. (1991) and Lydeard and Roe (1997) have found the most variable amino acid residues in the negative side followed by the transmembrane region and the positive output region being least variable. The conservation of the positive side is likely due to a functional constraint as the positive terminus associates with an iron-sulfur subunit during ubiquinol oxidation (Esposti et al., 1993, Lydeard and Roe 1997). Cytochrome b was chosen as a molecular marker for this study because it is a coding gene likely to provide useful phylogenetic information at many taxonomic levels.

32 18 Functional constraints balance stochastic mutations at nucleotide positions across cyt b and variable rates of synonymous and nonsynonymous substitutions among codon positions contribute to the gene s utility as an evolutionary marker. In this chapter, I present the results of phylogenetic analyses of the complete mitochondrial cytochrome b (cyt b) gene (1140 bp) for 40 sparid species, ten closely related species, ten basal percoids, and two non-perciform outgroup species. I used parsimony analyses from cyt b nucleotide and amino acid sequences to test the monophyly of the Sparidae, the validity of the six subfamilies of the Sparidae, the evolutionary relationships of the 33 genera of the Sparidae, and the monophyly of Sparoidea. A resulting phylogeny was used as the basis for analysis of the biogeographic aspects of sparid evolution.

33 19. MATERIALS AND METHODS Sampling - Following the classification of Akazaki (1962) and Smith (1986), representatives of the six subfamilies (Boopsinae, Denticinae, Diplodinae, Pagellinae, Pagrinae and Sparinae) and 33 genera of the family Sparidae were collected. Taxonomic representatives were also collected for other members of the superfamily Sparoidea (Centracanthidae, Nemipteridae and Lethrinidae), and for possible close outgroups in the Percoidei ( Haemulidae, Lutjanidae, and Caesionidae). The basal percoids Moronidae + Lateolabrax were used to root the Sparidae and related families within the perciformes. Sequences of two ostariophysins, Luxilus and Cyprinus were used as distant outgroups in this study. Collection data for each sample are provided in Table 3. When possible, specimen identifications were validated through voucher specimens deposited at museums in country-of-origin, at the National Museum of Natural History in Washington, DC (USNM), Virginia Institute of Marine Science, Gloucester Point, VA (VIMS) or at Old Dominion University, Norfolk, VA. (ODU). Museum catalog numbers and GenBank accession numbers are provided in Table 3. Specimen Preservation - Gill tissue or white muscle tissue was collected from fresh samples or from frozen samples acquired at markets or in museum collections. Tissue was removed from frozen samples and not allowed to thaw before adding to buffer. Tissues were placed into a buffer solution of 0.25 M disodium ethylenediaminetetraacetate (EDTA), 20% dimethyl sulfoxide (DMSO), saturated sodium chloride (NaCl), ph 8.0 (Seutin et al., 1990) and stored at room temperature.

34 20 DNA Extraction - High molecular weight DNA was isolated from gill tissue or white muscle tissue. Approximately g of tissue was removed using sterile scalpel blades and forceps. Forceps were rinsed in 10% bleach and two changes of de-ionized water (dih 2 0), dipped in 95% ethyl alcohol and flame sterilized between samples. Samples were placed in a 1.5ml microfuge tubes followed by protein digestion, phenol:chloroform extraction, and ethanol precipitation following Sambrook, et al. (1989) or using the tissue protocol of QIAamp System DNA extraction kits (QIAGEN Inc, USA, Valencia CA). Primers - The following primer pairs were used for PCR amplification in this study and were mapped against the equivalent sequence positions on the mitochondrial genome of Cyprinus carpio (GenBank Accession X61010): CYTbUnvL - L15242 (Kocher et al., 1989)/CYTbUnvH - H16458 (Cantatore et al., 1994); CYTbGludgL - L15249/CYTBThrdgH - H16465 (Palumbi et al., 1991); and CYTB4xdgL - L14249 (modified from Palumbi et al., 1991)/CYTb4xdgH - H16435 (derived from consensus sequences during this study). See Figure 3 for primer sequences, location illustration and map alignment. Primers were ordered from Genosys (Genosys Biotechnologies, Inc., The Woodlands, TX). Primers sites were located within the transfer ribonucleic acids (trna) genes that flank either end of the mtdna cytochrome b gene (trna Glu and trna Thr ). Amplification - A 50 µl PCR amplification of cyt b was performed with 5-10 ng of each template DNA. The following reagents from the PCR Reagent System (GIBCO BRL Life Technologies, Gaithersburg, MD) were used in each reaction: 5 µl 10X PCR Buffer plus Mg [200mM Tris-HCL (ph8.4), 500 mm KCL, 15 mm MgCl 2 ]; 1µl 10mM dntp Mix [10mM each datp, dctp, dgtp, dttp]; 50 pmols of each primer, 0.25 µl Taq DNA polymerase [5U/µl]. Either a Perkin Elmer Cetus (Norwalk, CT ) or an MJ

35 21 Research PTC-200 (Watertown. MA) thermocycler was used for PCR amplification with the following cycle parameters: initial denaturation [94EC for 4.0 min]; 35 cycles of [denaturation 94EC for 1.0 min, annealing 48EC-51EC (depending on sample) for 1.0 min; extension 72EC for 3.0 min]; final extension [70EC for 5 min]; icebox [4EC indefinitely]. Cloning and Sequencing - Once target sequences were selected and successfully amplified, sequence reactions were performed. The polymerase chain reaction products were cloned using the Invitrogen TA Cloning Kit, (Invitrogen Corporation, San Diego, CA). Ligated PCR product was transformed and cloned into competent Escherichia coli. Transformed colonies were grown overnight on LB-agar plates in the presence of ampicillin and 5-bromo-4-chloro-3-indolyl-ß-D-galactoside (Xgal). Colonies with inserts were streaked on new LB-agar plates in the presence of ampicillin and Xgal. White colonies were screened for appropriate inserts using the quick screening methods from Sambrook et al. (1989). Colonies with target insert were grown in 3 ml preparations of terrific broth + ampicillin overnight (Tartof and Hobbs, 1987). Purified plasmid DNA was obtained by either standard plasmid preparation protocols (Seutin et al., 1990) or by using a PERFECTprep kit (5Prime 3Prime, Inc. Boulder, CO) and suspended in 65Fl dih 2 0. Sequencing was performed following the dideoxynucleotide chain termination method (Sanger et al., 1977), using manual and automated sequencing techniques. Initially, a 357 base pair fragment of the cyt b gene was amplified for 20 taxa using the primers UCYTB144F-tgggsncaratgtcntwytg and UCYTB272R-gcraanagraartaccaytc (J. Quattro - unpublished), cloned and manually sequenced. During manual reactions both strands of approximately 5Fg of plasmid DNA were sequenced using the Sequenase Version 2.0 Kit (United States Biochemical, Cleveland, OH). Primers that flank each end

36 22 of the plasmid insert, the M13 Reverse Primer (New England BioLabs, Beverly, MA) and the T7 Forward Promotor (GIBCO BRL Life Technologies) were used to sequence 357 base pairs of cytochrome b. Approximately 6.25 ci of the radiolabeled marker, 35 S-(athio)-deoxynucleoside triphospate (New England Nuclear, Boston, MA.), was incorporated during reactions to visualize sequences on a resulting autoradiogram. Reactions were electrophoresed through a 6% polyacrylamide gel. The gel was transferred to 3 MM chromatography paper, vacuum-dried and exposed to Kodak BioMax autoradiograph film. The film was developed within 1 week following initial exposure and sequences were read directly from the autoradiogram and recorded by hand. Separate results are not included for the manual sequencing. The 357 base pair fragment explored by manual sequencing was internal to the entire gene and was re-sequenced during automated sequencing. This information was used to survey the utility of cytochrome b across selected members of the Sparidae and outgroups. Once the utility of cytochrome b was established for this group, the entire gene was sequenced for all samples using a LiCor automated sequencer. All complete sequences reported in this study were sequenced using automated techniques (no sequences reported are from manual techniques). Plasmid DNA was quantified using a DyNAQuant 200 flourometer (Amersham Pharmacia Biotech, Buckinghamshire, England) and approximately 300 fmol of plasmid DNA was used in each cycle sequencing reaction. Both forward and reverse IRD800 flourescently labeled M13 primers were used (Li-Cor, Inc. Lincoln, NE). A heat stable DNA polymerase, Thermo Sequenase TM (Amersham Pharmacia Biotech) was used to incorporate the IRD800 flourescently labeled primer during cycle sequencing. To relax structural stops during electrophoreses, 7-deaza-dGTP was used during chain building. The flourescently labeled termination reactions were then electrophoresed through a 66cm, 0.25mm thick, 4% LongRanger (FMC BioProducts, Rockland, Maine) acrylamide gel on a Li-Cor 4000L

37 automated sequencer. The resulting electronic gel image was analyzed using BaseImage V2.3 software (Li-Cor). 23 Sequence Alignment - Both light and heavy strand sequences were obtained for all taxa. Light strand sequences were inverted (reversed and complimented) with the heavy strand sequence. A consensus sequence from combined light and heavy strands was made for all taxa. Cytochrome b nucleic acid sequences were aligned by eye and by the Clustal feature of Gene Jockey II (Biosoft, Cambridge UK). Two cytochrome b sequences from GenBank: accession numbers X81567 (Sparidae: Boops boops) and X8156 (Moronidae Dicentrarchus labrax) were used to aid alignment. The resulting alignment introduced no gaps due to deletions or insertions and there were no inconsistent alignments between taxa. Once sequences were aligned they were assigned codon positions and the reading frames were proofed for frame-shifts. Ambiguities were referenced against the sequencing gel image and corrected as necessary. Nucleotide sequences were translated into amino acid residues using the extended mitochondrial translation table in MacCLADE 3.07 (Madisson and Madisson, 1993). Sequence Divergence and Mutation Analysis - Mean uncorrected pairwise genetic distance (uncorrected p distance) was calculated using PAUP* ver 4.0b4a (Swofford, 1998) between all taxa, between ingroup taxa and between outgroup taxa. Because of the large difference in sequence divergence between ingroup and outgroup taxa, mutation analysis was restricted to ingroup taxa only. Scatter plots of transitions (Ts = AłG, CłT) and transversions (Tv = AłC, AłT, CłG, GłT) as a function of mean sequence divergence were calculated for combined codon positions and for individual codon position from ingroup taxa only.

38 24 Base Compositional Bias - Base compositional bias (Irwin et al., 1991) was calculated for all, ingroup and outgroup taxa, for combined codon positions, and for individual codon positions. Base compositional bias was calculated using the following formula: 4 C = ( 2 / 3) ci 0. 25, i= 1 where C is the compositional bias and c i is the frequency of the ith base (Irwin et al., 1991). The bias measurements for each nucleotide base were then summed across taxa and divided by the total number of taxa for each group measured (all, ingroup, outgroup). Phylogenetic Analysis - Parsimony analysis was performed using PAUP4.0b2* (Swofford, 1998). The most parsimonious tree (MPT), or equally parsimonious trees (EPTs) and strict consensus were obtained for each analysis. The number of constant characters, parsimony-uninformative and parsimony informative characters, tree length, consistency index and the retention index were determined. Bootstrap replicate support was conducted using PAUP* and decay values (Bremer 1988) were calculated for clade support using the program TreeRot.v2 (Sorensen 1999). Biogeographic Analysis - A quantitative analysis of the biogeographic relationships of the Sparidae was conducted using analysis of vicariance biogeography (Brooks 1985; Wiley 1988a, b; Wiley et al., 1991). Parsimony analysis was used to reconstruct the biogeographic relationships inferred from the cytochrome b phylogeny. During biogeographic analysis, a matrix of independent data (areas of occurrence) and dependent data (phylogeny of the Sparidae) was constructed. All nodes on the original tree were labeled (terminal taxa, internal nodes=ancestral states). A list of areas of occurrence was then prepared for each taxon. To define distributional data as objectively as possible,

39 25 FAO areas were used for each taxon (FAO, 1995). The FAO areas were established by FAO (1995) as a means to provide defined distributional areas for fisheries statistical purposes. Each node was assessed for each of the areas. A binary data-matrix was developed based on the presence (1) or absence (0) of each dependent variable (node) for each independent variable (area). The data matrix was converted to a NEXUS file and analyzed with PAUP*. The resulting tree was then overlaid onto a map of the world.

40 26 RESULTS Sequence Characteristics - The full 1140 nucleotide basepairs of the cytochrome b gene was sequenced for 57 taxa. Nucleotide sequences for all taxa included in this study are given in Table 4. Of the 1140 characters sampled across all taxa, 483 (42%) were constant, 115 (10%) variable characters were parsimony uninformative and 542 (48%) variable characters were parsimony informative (Table 5). Of all informative characters, 69% came from the third codon position. Third codon position bases were more variable (2 constant, 2 uninformative, 376 informative) than first codon position bases (203 constant, 49 uninformative, 128 informative) and second codon position bases (276 constant, 66 uninformative, 38 informative). Informative characters were primarily transitions in the third codon position (Ts= 68% of all substitutions) and first codon position (Ts=66% of all substitutions). Less of the informative characters were transitions in the second codon position (Ts=59%, Tv=41%). Sequence Divergence - Mean uncorrected pairwise genetic distance (uncorrected p distance) is given in Table 6. between all, ingroup, and outgroup taxa. The mean uncorrected pairwise sequence divergence among all taxa was 20.22%. The mean pairwise sequence divergence between outgroup taxa was 22.73%, and the mean pairwise sequence divergence between ingroup taxa was 16.27%. Mean pairwise uncorrected sequence divergence was calculated among and between the six subfamilies of the Sparidae (Table 7). The smallest within group (subfamily) uncorrected sequence divergence was found within the subfamily Diplodinae (11.14%) and the greatest divergence was found within the subfamily Sparinae (16.58%). The smallest uncorrected

41 27 divergence was between the subfamilies Denticinae and Pagellinae (14.23%) and the greatest uncorrected sequence divergence was between Boopsinae and Denticinae (17.66%). Mutation Analysis - Scatter plots of transitions and transversions as a function of mean sequence divergence were calculated for combined codon positions and for individual codon position from ingroup taxa only (Figures 4-7). Combined codon positional transitions reached a maximum number of substitutions ( > 160) at approximately 20% sequence divergence (Figure 4; Ts-All - 2 nd order polynomial y = x x , R 2 = ). Combined codon positional transversions continued to increase with sequence divergence in a linear relationship (Figure 4; Tv-All - 2 nd order polynomial y = x x , R 2 = ) across the entire range of sequence divergence. In graphs from codon positions one and two (Figures 5 and 6) there appeared to be a linear increase in the total number of substitutions as a function of sequence divergence. However, second order polynomial trend lines fitted only a small percentage of the variance in the data (Figures 5 and 6; 2 nd order polynomials). In the first codon position, there were 30 transitions at 20% sequence divergence, but only 15 transversions at 20% sequence divergence. In the second codon position, there were very few substitutions overall (<9), and there was nearly an equal number of transitions and transversions at the maximum sequence divergence of 20%. Third positional transitions appeared to asymptote as sequence divergence increased (Figure 7, Ts-3rd). A second order polynomial fitted to the data had the equation y= x x , R 2 = This relationship might signify transitional, third codon position site saturation, because the number of transitional substitutions leveled off after 15% sequence divergence. When the total number of substitutions from the third codon position and the total number of substitutions from pooled first and second codon

42 28 positions are plotted as a function of sequence divergence (Figure 8), it is apparent that the majority of all substitutions were found in the third codon position. Because third positional changes accounted for the majority of all substitutions, the contribution of transitions and transversions to the total number of third position substitutions was plotted as a function of sequence divergence (Figure 9). The contribution of transitions as a percentage of total substitutions decreased with increasing sequence divergence, and the converse relationship was true for transversions (although the relative number of total substitutions was contributed from transitions). As sequence divergence increased, the contribution of transversions to the total number of substitutions increased. Because, transitions are saturated, they are less informative than transversions at uncorrected sequence divergence greater than 15%. At greater than 15% uncorrected sequence divergence, transversions provided the majority of phylogenetic signal. Therefore, transversions should become increasingly more important in deriving phylogenetic relationships from third codon position characters as sequence divergence increases. Transitional substitutions were separated into nitrogenous base type, purines (AłG) and pyrimidines (CłT) and plotted against sequence divergence ( Figure 10). Purines reached saturation at a lower sequence divergence (just above 10% ) than did pyrimidines (>15%). Base Compositional Bias - The overall positional bias was (13%). The highest bias was found in the third codon position that had a bias of (27%) and there was a strong anti-guanine bias in the third codon position with a subsequent shift to procytosine (Table 8). Cumulative frequencies of each of the four base pairs was calculated for all 62 taxa and a chi-square test of base heterogeneity were calculated for all codon positions, and for codon positions one, two and three (Figures 11 to 14). The overall codon bias was not significant (X 2 =166.9, df=183 p=0.798), but had a lower p value than

43 29 chi-square test from individual codons, reflecting the anti-guanine bias. The first codon position (X 2 =34.22, df=183, p > 0.995) and second codon position (X 2 =9.68, df=183, p > 0.995) did not demonstrate significant heterogeneity among taxa in base composition. The frequencies of the four bases in the third codon position was strongly unequal (antiguanine, pro-cytosine) and the chi-square test demonstrated significant heterogeneity among taxa in third codon position base frequency (X 2 =477.6, df=183, P < 0.001). Amino Acid Translations - Nucleotide base pairs were translated into amino acid residues (Table 9). Of 380 total residues, 190 (50%) were constant across all taxa and of the variable characters 93 (24.5%) were parsimony uninformative and 97 (25.5%) were parsimony informative across all taxa. Phylogenetic Relationships Unweighted Data - A heuristic search of 1000 random addition replicates of the cytochrome b nucleotide data set resulted in four equally parsimonious trees (Figure 15, tree length = 6416, CI = ; RI = , starting seed ; all characters unordered and equal weight of 1; outgroup taxa Cyprinus carpio and Luxilus zonatus; branch-swapping = stepwise addition; swapping algorithm = tree bisection-reconnection; no topological restraints; character-state optimization = accelerated transformations). Bootstrap support (1000 replicates) and partitioned Bremer decay values (20, unrestricted random addition sequences per node) were calculated and are shown on a strict consensus of four equally parsimonious trees (Figure 16). In all EPTs (Figure 15) the family Sparidae formed a fully resolved clade with strong bootstrap (99%) and decay support (22) for sparid monophyly. Based on the partitioned Bremer values, 75% of the support is based on third positional changes and 25% was based on first positional changes. Included in the monophyletic Sparidae clade are two species of the centracanthid genus

44 30 Spicara. Pending further evidence and for the purpose of this analysis, Spicara will be considered a member of the Sparidae (see discussion for more details). Within the monophyletic Sparidae + Spicara clade, two distinct clades are educed. A Bremer decay support of 3 separates the sparid taxa in Group I ((((Boops boops, Crenidens crenidens), (((Oblada melanura, ((Diplodus argenteus, (Diplodus bermudensis, Diplodus holbrooki)), Diplodus cervinus)), (Lithognathus mormyrus, Pagellus bogaraveo)), ((Acanthopagrus berda, Sparidentex hasta), ((Rhabdosargus thorpei, Sparodon durbanensis), Sparus auratus)))), (((Gymnocrotaphus curvidens, (Pachymetopon aeneum, Polyamblyodon germanum)), Boopsoidea inornata), (Sarpa salpa, (Spondyliosoma cantharus, Spicara maena)))), ((Archosargus probatocephalus, Lagodon rhomboides), (Calamus nodosus, Stenotomus chrysops))) from a second clade, Group II, with decay support (8) for the sparid taxa (((Argyrozona argyrozona, ((Petrus rupestris, Polysteganus praeorbitalis), ((Chrysoblephus cristiceps, Cymatoceps nasutus), Porcostoma dentata))), Pterogymnus laniarius), (((((Cheimerius nufar, Dentex dentex), Pagrus auriga), (Pagellus bellottii, Pagrus pagrus)), (Argyrops spinifer, (Evynnis japonica, Pagrus auratus))), (Dentex tumifrons, Spicara alta)))). The sister group to the Sparidae are the Lethrinidae (Lethrinus ornatus, Lethrinus rubrioperculatus). However, neither Bremer decay nor bootstrap values support the lethrinids as separate from other percoids. The Nemipteridae were included with the Moronidae + Lateolabrax in an unresolved clade described here from the strict consensus tree (((Dicentrarchus labrax, Dicentrarchus punctatus), ((Morone americanus, Morone mississippiensis), Morone chrysops, Morone saxatilis)), ((Lateolabrax japonicus, Lateolabrax japonicus2), Lateolabrax latus), (Scolopsis ciliatus, Nemipterus marginatus))). The haemulids and lutjanids + caesionids form an unresolved dichotomy with a weak support (decay value 3) separating them from other percoids ((Haemulon sciurus, Pomadasys maculatus), (Caesio cuning, Lutjanus decussatus)). Strong decay support (9) and bootstrap values

45 31 separate Centropomus undecimalis from other percoid groups. Cyprinus carpio and Luxilus zonatus were clearly outside of the Perciformes. Weighted Data: Transversions only Third - Saturation in the third codon position transitions occurred at the approximate mean pairwise sequence divergence within the Sparidae. Transitions at a saturated site may not reflect homologous changes between taxa and evolutionary relationships inferred from saturated sites are less likely to be reflective of phylogenetic history. Down-weighting or eliminating the contribution of saturated transitions within the analysis might decrease systematic error due to homoplasy (Swofford, Olsen, Waddell and Hillis in Hillis, et al., 1996). Although not all third codon position transitions were saturated, there is no means to separate those that are saturated from those that are unsaturated. For that reason, all third position transitions were eliminated in this analysis (even though some informative data were sacrificed). A step matrix was developed that weighted all third position transitions 0 and transversions 1 and was applied to third positions under the Set Character Types of the Data option of PAUP4.0b2*. A heuristic search of 1000 random addition replicates yielded two EPTs (Figures 17, tree length = 2536, CI = , RI = starting seed , cytochrome b nucleotide data set using all changes at first and second position and only transversions in third position, all other parameters of this analysis as in the previous analysis). A strict consensus of both tree is shown in Figure 18 and revealed a monophyletic Sparidae and a monophyletic Sparoidea (Sparidae & Centracanthidae + Lethrinidae + Nemipteridae ) although no bootstrap support and minimal decay support (2) for the Sparoidea node was observed. The Sparoidea were sister to Lutjanidae & Caesionidae followed by Haemulidae and a clade containing Moronidae & Lateolabrax. The later clade established Lateolabrax sister to Moronidae. To date no cladistic study has established the Moronidae sister to Lateolabrax, although the relationship has been

46 32 hypothesized based on scale anatomy by McCully (1962) and based on morphology by Waldman (1986). Within the Sparidae, Calamus, Stenotomus and Archosargus & Lagodon were removed from their previous placement and are basal to all other Sparidae. The two distinct clades rendered in the previous analysis remained, but the relative location of certain taxa was not stable. Notably, Boops shifted in placement from Boops & Crenidens in the previous tree to (Boops & Sarpa) + (Spondyliosoma & Spicara) and Crenidens shifted to a clade with Lithognathus. Nucleotide Translations - A heuristic search of 100 random addition replicates of the cytochrome b amino acid residues translated from the nucleotide data set resulted in 699 equally parsimonious trees (tree length = 637, CI = , RI = , starting seed ; all characters unordered and equal weight of 1; outgroup taxa Cyprinus carpio and Luxilus zonatus; branch-swapping = stepwise addition; swapping algorithm = tree bisection-reconnection; no topological restraints; character-state optimization = accelerated transformations). Bootstrap support (100 replicates, restricted to 5000 trees searched/replicate of length > 400) and Bremer decay values (20, restricted random addition sequences per node 1000 trees searched/replicate of length > 400 ) were calculated and are shown on a strict consensus of the 699 equally parsimonious trees (Figure 19). The Sparidae were monophyletic in the consensus of all EPTs and contained two distinct clades, similar to both the nucleotide analyses. As with the unweighted nucleotide tree, Calamus nodosus was basal to all other sparids. Notable in the consensus tree was the removal of Lagodon from other western Atlantic sparids and the subsequent inclusion of Lagodon to a Spondyliosoma-Spicara clade. As expressed from the nucleotide data, the amino acids support Lethrinidae as sister to the Sparidae. The placement of the Centropomus undecimalis translation within the Nemipteridae was curious. Lateolabrax placed basal to all other percoids and was not sister to the Morone-

47 33 Dicentrarchus clade as supported by the nucleotide data. Clade support for sparid monophyly was strong, but there was no bootstrap support for the two distinct clades found within the sparids. Three clades (Boops boops & Sarpa salpa), (Acanthopagrus berda & Sparidentex hasta) and (Rhabdosargus thorpei & Sparodon durbanensis) had minimal support within the Sparidae and the only other structuring was limited to the clade of (Pachymetopon aeneum & Polyamblyodon germanum). Biogeography - The monophyletic Sparidae clade within the unweighted cytochrome b phylogeny (Figure 18) was used as the source of dependent data for biogeographic analysis. The Sparidae clade was pruned from the original tree and all ancestral states were numbered (Figure 20). The geographic distribution was defined for terminal taxa using FAO areas (Table 10) and these areas were treated as independent data. Areas of occurrence were determined relative to each terminal taxa or ancestral node and coded into a binary matrix; presence=1, absence=0 (Table 11). Parsimony analysis of the data matrix resulted in a single most parsimonious tree and is overlaid on a world-wide map in Figure 21 (tree length = 102; CI =0.7549; RI = ; of 82 total characters; all characters unordered and equal weight, 5 characters were constant, 7 variable characters were parsimony uninformative, 70 variable characters were parsimony informative; 1000 replicates of random stepwise addition; 100 trees held at each step; starting seed = ; character-state optimization: Delayed transformation). All taxa were found in more than one FAO area, except the Bermuda endemic Diplodus bermudensis and the Japanese endemic Evynnis japonica. Many of the taxa were assigned to multiple areas (for example, Acanthopagrus berda). The tree was rooted to the node of southwestern Pacific Ocean and eastern Indian Ocean + western central Pacific Ocean + northwestern Pacific Ocean. The western Indian

48 34 Ocean/southeastern Atlantic clade was sister to eastern Atlantic/Mediterranean-Black Sea species. These were in turn sister to western Atlantic species. All Atlantic Sparidae + the western Indian Ocean/Atlantic species were sister to Pacific Ocean/eastern Indian Ocean clade. The eastern Indian Ocean - western central and northwestern Pacific taxa formed an unresolved polytomy.

49 35 DISCUSSION Sequence Divergence and Codon Base Composition Bias The majority of sequence divergence was due to third codon position substitutions as seen in the plot of total substitutions from the third position as a function of uncorrected sequence divergence (Figure 7). Third positional transitional substitutions accounted for the most of the homoplasy in the cytochrome b data set. These characters were not informative for resolving relationships of more distant species in the unweighted analysis. Third positional transitions appeared to reach saturation at <15% sequence divergence and provided the majority of homoplastic characters to the analysis. Site saturation occurs when the accumulation of multiple substitutions at a site confounds the estimation of the total number of substitutions. For example, a site that started with the nucleotide A mutated to G and then reverted to A would constitute two substitution events. During phylogenetic analysis, those taxa with the original A at that position would be paired with those taxa with the reverted A at that position because there is no way to separate when a base pair has reverted or changed multiple times. During analysis the multiple substitution event that occurred at this site would be masked. In fact those taxa with the reverted A are actually recent descendants of those taxa with the G substitution and not of those with the original A. This systematic error is intrinsic to all nucleotide analyses and there is no means by which to separate all multiple substitutions at saturated positions. Because of saturation, third positional transitions were weighted to a value of 0 in the weighted analysis in order to estimate phylogenetic relationships. The sequence divergence and third positional substitution saturation reported here were equivalent to other cytochrome b studies that include percoid fishes

50 36 (for example, Lydeard and Roe, 1997; Song et al., 1999 and others). Base compositional bias was comparable to other cytochrome b studies of fishes (Cantatore et al., 1994; Lydeard and Roe, 1997 and Song et al., 1998). The bias across all codons was 13% for all taxa compared. The smallest bias value was found in the first codon position, with a value of 4.2%, and the highest value was found in the third codon position, with a value of 27%. There was a strong anti-guanine bias in the third codon position with a shift to pro-cytosine. This has been reported in perciform fishes (Meyer, 1993; Cantatore, et al., 1994; Lydeard and Roe, 1997 and Song et al., 1999) and is not uncommon in other vertebrates. The taxa in this study had nearly equivalent variation in base compositional bias as reflected in the low standard deviation values (Table 8). The highest standard deviations were found in the third codon position. High levels of variation between taxa in base compositional bias can lead to potentially unreliable phylogenies (Lydeard and Roe, 1997). The variations in this data set were comparable to other cyt b studies and not considered high enough to mislead phylogenetic inference. (Lydeard and Roe, 1997). Phylogenetic Relationships The Sparidae were monophyletic with the inclusion of the Centracanthidae in all phylogenies derived from the cyt b sequence data or subsequent amino acid residue translations. Thus, the centracanthids are here considered members of the Sparidae. This study included members of Spicara but did not include Centracanthus. Therefore overall placement of the Centracanthidae could not be verified. For the sake of discussion brevity, the Sparidae + Spircra will be referred to as the Sparidae. The Centracanthidae were considered members of the Sparidae by Jordan and Fesler (1893) and very closely related to the Sparidae based on jaw morphology by Regan (1913) and Smith (1938). Johnson (1980) noted the close relationship of the Centracanthidae to the Sparidae, but he

51 37 retained the family status of the Centracanthidae pending a more complete understanding of sparoid interrelationships. The molecular evidence reported in this study support the provisional insertion of Spicara within the sparids, but these same data question the monophyly of the Centracanthidae because there was no support for a monophyletic Spicara; it was polyphyletic in the unweighted and weighted nucleotide analyses. The sister group to the Sparidae was the Lethrinidae in both nucleotide analyses and also in the amino acid translations. There was support for the superfamily Sparoidea (Sparidae, Centracanthidae, Lethrinidae and Nemipteridae) in both the weighted nucleotide and amino acid analyses but no support was found in the unweighted nucleotide analysis. Lack of support for the Sparoidea from the unweighted data-set may be a result of unresolvable third positional substitutions that render the third codon highly homoplastic. The Sparidae were derived within the Sparoidea. The Lethrinidae were sister to the Sparidae and the Nemipteridae were basal within the Sparoidea. In the amino acid residue phylogeny, Centropomus undecimalis was included with the Nemipteridae. This was probably due to an artifact of inadequate taxonomic sampling of the snooks. No other centropomid cyt b sequence was available during this study and although the amino acid translation of Centropomus undecimalis is similar to the nemipterids, it would likely fall out into a unique centropomid clade if another sequence were available. The Sparidae appear derived within the Sparoidea. The Lethrinidae were sister to the Sparidae and the Nemipteridae were basal to the Lethrinidae + Sparidae. The cyt b nucleotide data did not support a strong relationship between the nemipterids and the lethrinids as proposed by Johnson (1980). The sequence data did support an overall sister relationship between the Sparidae and Lethrinidae (unweighted, weighted, and amino acid), but there was little clade support for placement of the Nemipteridae sister to the

52 38 Lethrinidae in the weighted analysis and the nemipterids were sister to the Moronidae + Lateolabrax in the unweighted tree. A moderate decay value=3 supported the Sparoidea in the weighed analysis, but there is no support for the monophyly of the Sparoidea in the unweighted or amino acid residue trees. In the weighted analysis the relationship of the Sparoidea to other percoids was better defined than in the unweighted analysis. The lutjanoids (Lutjanus + Caesio) placed sister to Sparoidea, and the Haemulidae were sister to the lutjanoids + Sparoidea. The Moronidae + Lateolabrax were basal (decay=7) to the Haemulidae + lutjanoids + Sparoidea. Centropomus undecimalis was sister to all other percoids. Phylogenetic relationships of the sparid Subfamilies Of the four subfamilies of Sparidae (Boopsinae, Denticinae, Pagellinae, Sparinae) proposed by Smith (1938) and Smith and Smith (1986) and the two (Pagrinae and Diplodinae) proposed by of Akazaki (1962), none was found to be monophyletic based on cytochrome b nucleotide data or subsequent amino acid translations. Since these subfamilies are defined mostly by trophic type, these results suggests that different feeding modes have evolved multiple times within the Sparidae. This is similar to what was concluded by Hanel and Sturmbauer (2000) based on a phylogeny of sparid 16S sequences. It is also possible that the cytochrome b phylogenies reflect past introgression or hybridization events. Such events would confound phylogenies because they would no longer reflect true descendent relationships but instead would reflect recent (or past) hybridization events. Therefore, members of different genera (from the same area) might appear more closely related to each other than to other members of their own genus. There is no conclusive evidence for hybridization within natural populations of sparid fishes. However, Dentex dentex and Pagrus major are known to hybridize in captivity (Kraljevic, and Dulcic, 1999).

53 39 The Boopsinae, as defined by Smith (1986), comprise Boops, Crenidens, Gymnocrotaphus, Oblada, Pachymetopon, Polyamblyodon, Sarpa and Spondyliosoma. In both of the nucleotide trees, all members of the Boopsinae were contained within Group I of the family Sparidae (Figure 16, clade I and Figure 18, clade I) but are rendered paraphyletic within the group. The southeastern Atlantic/western Indian Ocean Sarpa salpa was sister to a clade containing the eastern Atlantic Spondyliosoma cantharus, and the eastern Atlantic/Mediterranean centracanthid Spicara maena. These were sister to a group of western Indian Ocean fishes - the boopsines Pachymetopon aeneum + Polyamblyodon germanum and Gymnocrotaphus curvidens and the pagelline, Boopsoidea inornata. Most of these species have trophic similarities that may explain their evolutionary relatedness, as well as shared geographic rage. Most genera of the Denticinae (Argyrozona, Cheimerius, Dentex, Petrus, Polysteganus and Sparidentex) were found within sparid Group II (Figure 16, clade II and Figure 18, clade II) except for Sparidentex hasta, which was found in Group I. Within the Denticinae, Dentex was not monophyletic. In the unweighted and weighted analysis, Dentex dentex was sister to Cheimerius nufar and Dentex tumifrons was sister to the centracanthid Spicara alta. The placement of Dentex tumifrons with Spicara alta is novel, but enigmatic without a more complete understanding of the placement of the other members of Centracanthidae. Petrus rupestris, a southeastern Atlantic/western Indian Ocean species and the western Indian Ocean Polysteganus praeorbitalis formed a robust clades in both nucleotide analyses. Furthermore, Argyrozona argyrozona, a western Indian Ocean denticine was basal to Petrus + Polysteganus. Yet these fish were sister to a clade containing three western Indian Ocean Sparinae (Chrysoblephus, Cymatoceps and Porcostoma) as opposed to other denticines. Pterogymnus laniarius, a southeastern Atlantic/western Indian Ocean sparine fell outside of this whole group. Sparidentex hasta is problematic within the denticines. Munro (1948:276) placed it

54 40 within the Denticinae based on dentition, although it belongs outside of the Denticinae based on jaw morphology (K. Carpenter, unpublished data). In both nucleotide clades Sparidentex hasta was sister to Acanthopagrus berda. This may appear as an unlikely relationship, but Sparus hasta (senior synonym of Sparidentex hasta) was synonymized with Acanthopagrus berda (Forsskål 1775) by Bauchot & Skelton 1986:331, although they clearly are not congeners (K. Carpenter, unpublished data). The Diplodinae (Archosargus, Diplodus and Lagodon) were restricted to sparid Group I in the unweighted nucleotide clade, but they were polyphyletic in the weighted nucleotide tree. Diplodus formed a well supported, monophyletic clade in the unweighted and weighted trees. Diplodus holbrooki was sister to the Bermuda endemic species, Diplodus bermudensis and both were sister to D. argenteus and the South African D. cervinus. Oblada melanura a Mediterranean/Eastern Atlantic monotypic sparid, clustered with Diplodus in the unweighted and weighted analyses. The placement of the genus outside of Boopsinae is novel. In the unweighted analysis, Archosargus probatocephalus formed a stable node with Lagodon rhomboides but had little affinity for other genera in the Diplodinae of Akazaki (1962). The mtdna placed four genera of Western Atlantic Sparidae together; the diplodines, A. probatocephalus and L. rhomboides, were sister to the sparines Stenotomus chrysops and Calamus nodosus. The weighted analysis supported the Archosargus + Lagodon clade, but placed it outside Groups I + II and Stenotomus, and placed Calamus basal to all other Sparidae. The subfamily Pagellinae (Boopsoidea, Pagellus and Lithognathus) was polyphyletic within the Sparidae. The genus Pagellus were polyphyletic in the unweighted and weighted data analyses. Pagellus was the only sparid genus that was found in both Group I and Group II. The Mediterranean Pagellus bellottii was sister to the western Atlantic Pagrus pagrus in Group II, and Pagellus bogaraveo was sister to Lithognathus mormyrus in the unweighted analysis, but there was no support for this

55 41 relationship in the weighted clade. Pagellus appears to be a polyphyletic assemblage. As previously mentioned, Boopsoidea inornata fell within the boopsines and not with pagellines. The Pagrinae (Argyrops, Evynnis, Pagrus) were paraphyletic within sparid Group II. Within the Pagrinae the genus Pagrus was problematic. Pagrus was paraphyletic within Group II of the Sparidae. The Western Pacific genera of Pagrinae (Pagrus auratus, Evynnis japonica and Argyrops spinifer) formed a well supported clade in the unweighted analysis. The genetic relationship of Pagrus auratus to its geographic siblings rather than to other members of Pagrus is enigmatic and is supported by the close genetic distance found among Japanese sparids of Taniguchi et al. (1986). Either the taxonomic placement of Evynnis and Argyrops outside of Pagrus is in error, or Pagrus is not a monophyletic group. In the unweighted and weighted analyses, the subfamily Sparinae (Acanthopagrus, Calamus, Chrysoblephus, Chrysophrys, Porcostoma, Pterogymnus, Rhabdosargus, Sparodon, Sparus and Stenotomus) was distributed across both sparid Group I and II. As mentioned above, Calamus nodosus and Stenotomus chrysops formed a stable node that was sister to a clade containing other western Atlantic sparids in the unweighted tree. However, both Calamus and Stenotomus were basal to other Sparidae in the weighted analysis. Within Sparid Group II of both the unweighted and weighted analyses, there was a strong grouping of western Indian Ocean (WIO) and southeastern Atlantic-WIO sparids that included four members of the Sparinae (Cymatoceps nasutus, Chrysoblephus cristiceps, Porcostoma dentata and Pterogymnus laniarius) and three Denticinae (Argyrozona argyrozona, Petrus rupestris and Polysteganus praeorbitalis), suggesting an attraction of South African native (P. dentata and C. cristiceps) or South African distributed Sparidae. In Group I from the unweighted data, the sparines including Acanthopagrus berda + Sparidentex hasta, were sister to Rhabdosargus thorpei +

56 42 Sparodon durbanensis and Sparus auratus. These sparids had a broader distribution (WIO, Indo-Pacific and eastern Atlantic) and did not reflect the geographic similarity as found in the Sparinae from Group II. The placement of Sparidentex hasta with sparines primarily from the western Indian Ocean (except S. auratus from the eastern Atlantic) is possible evidence that Sparidentex hasta belongs outside of the Denticinae. Phylogenetic Relationships From the Amino acid residue data The Sparidae formed a well supported monophyletic group in the clade derived from the amino acid residue data, yet there was little support for phylogenetic structuring within the Sparidae; only three sister relationships were supported: Pachymetopon aeneum + Polyamblyodon germanum, Acanthopagrus berda + Sparidentex hasta, and Rhabdosargus thorpei + Sparodon durbanensis. Additionally, there was only weak support for independent groups in this data set. Notable within the Sparidae clade, Diplodus cervinus, the only non-western Atlantic form, was removed from other Diplodus, and this may reflect an isolation event that allowed for the co-evolution of sister groups with no genetic mixing across the Atlantic. In agreement with the weighted analysis, Calamus nodosus was basal to all other Sparidae. Weak evidence (decay=2) supported the Lethrinidae sister to the Sparidae in the amino acid residues, but there is no support for Sparoidea. Biogeography - The results of biogeographic analysis suggested a strong vicariant explanation to the structuring of genera within the Sparidae. There were two areas of sparid evolution, eastern Indian Ocean - western Pacific and western Indian Ocean - Mediterranean/Atlantic. These species probably had a Tethyan Sea common ancestor. However, little more can be drawn from this analysis, because the vicariance biogeography clade was based on a single tree example and this is considered equivocal

57 43 to a single transformation series explaining a clade (Wiley et al., 1991). It would be preferable to have multiple dependent data sets (phylogenies from other species) to test the biogeographic relationships of a group. Therefore, the power of this analysis is little more than can be derived from purely descriptive biogeography. Phylogenetic Conclusions The results of parsimony analyses based on the cytochrome b nucleotide data generated during this study: 1) established a close phylogenetic relationship of species, such as Polyamblyodon germanum and Polysteganus praeorbitalis; 2) established the monophyly of the family Sparidae; 3) estimated the validity of subfamilies within the Sparidae; and lastly 4) clarified the relationships of sparoid fishes within the percoids. There is a limit to the ability of these data to elucidate relationships without considering the subtle characteristics of nucleotide substitution within cyt b. The phylogenetic structuring, displayed in the consensus tree from the unweighted analysis, was dominated by changes in the third codon position (transitions > transversions). The partitioned Bremer values showed the majority of the support for a given clade came from the third codon position (Figure 16). In the weighted analysis, where all changes were considered from the first and second codon, and only transversions from the third position (transitions weight=0), there was an obvious reduction in the contribution of third positional support for clades and a subsequent increase in the proportion of support from first and second positions (Figure 18). The overall effect of down-weighting transitions during the weighted analysis was increased resolution for intermediate relationships. In the unweighted clade, the signal of intermediate percoid relationships was shaded by site saturation (accumulation of multiple substitutions at a site) in the third codon position. This resulted in unresolvable phylogenetic information for taxa that had divergences of the same magnitude as that of site saturation. By removing the saturated data, the

58 44 phylogenetic signal was derived from the more conserved codon positions, one and two, and from the less frequent transversional changes of codon position three. Conserved data possibly contained useful information of past evolutionary events that were invaluable in resolving intermediate perciform relationships. The most conserved data, derived from this study, was that of amino acid residue translations of the cytochrome b nucleotide data. The translations were informative in constructing a monophyletic Sparidae that was sister to the Lethrinidae, but were not informative in resolving percoid relationships. The two distinct groups deduced within the Sparidae revealed the inability of the current classification to define sub-structuring within the family. These groups are similar to the Lineages 2 & 3" found in Hanel and Strumbauer s (2000, Fig. 1.) 16S phylogeny of northeastern Atlantic and Mediterranean sparid. Clearly the subfamilies, as currently proposed, are not valid. Within each group, derived from cytochrome b, no distinct pattern could be visualized that reflects the current criteria for sub-structuring. For example, sparid Clade I contains all members of the current Boopsinae (herbivores with compressed outer incisiform teeth) and but also members of Sparinae, Pagellinae and Diplodinae. There is no external morphological character to unite members of this group, nor do they all belong to one feeding type (herbivore, carnivore and omnivore). There is no evidence overall for geographic similarity to unite all these fish, although there is some structuring within certain nodes based on geography. It is suggested from these data that feeding types evolved multiple times within the Sparidae. The phylogenetic relationships derived from the cytochrome b nucleotide data and the subsequent amino acid translations corroborate the Sparidae as monophyletic. However, none of the phylogenetic trees from these data support the division of the Sparidae into the previously defined subfamilies; the currently defined subfamilies are inadequate to explain the structuring produced from these data. Although, there were two

59 45 groups within the Sparidae, there is no unifying character/s within these groups to support defining them as subfamilies. Clearly a revision of the Sparidae is needed to redefine structuring between genera. The nucleotide data supported the Lethrinidae sister to the Sparidae and there was support, however minimal, for the Sparoidea..

60 TABLE 3. COLLECTION DATA FOR SPECIMENS USED. GENBANK ACCESSION NUMBER, MUSEUM COLLECTION NUMBERS AND COLLECTION LOCALITY ARE GIVEN. MUSEUM ACRONYMS ARE FOLLOWING (LEVITON ET AL., 1985 AND 1988). 46 All GenBank Museum Collection TAXA Accession# Catalog# Locality Outgroup Taxa Centropomidae Centropomus undecimalis AF No Voucher Florida (Collected by J. Gelschlecter) Cyprinidae Cyprinus carpio X61010 Sequences From GenBank Luxilus zonatus U66600 Sequences From GenBank Haemulidae Haemulon sciurus AF No Voucher Florida, Big Pine Key, W. of Bridge Pomadasys maculatus AF USNM uncat Philippines, Manila Market Lethrinidae Lethrinus ornatus AF USNM Philippines, Bolinao, Luzon Lethrinus rubrioperculatus AF USNM Uncat Australia, W. Australia CSIRO SS 8/95/45 Lutjanidae Caesio cuning AF USNM Philippines, Iloilo Panay, Market Lutjanus decussatus AF USNM Philippines., Northern Negros, Market Moronidae + (Lateolabrax) Dicentrarchus labrax X81566 Sequences From GenBank Dicentrarchus punctatus AF No Voucher fish market, Spain Lateolabrax japonicus AF VIMS Picture Voucher, Japan Market Sample Lateolabrax japonicus2 AF VIMS Picture Voucher, Japan Market Sample Lateolabrax latus AF MTUF Sasebo, Nagasaki Prefecture, Japan Morone americanus AF No Voucher VIMS Trawl Survey Chesapeake Bay Morone chrysops AF UT Cherokee Reservoir, Grainger Co, TN Morone mississippiensis AF Sequences From GenBank Morone saxatilis AF VIMS Uncat VIMS Trawl Survey Chesapeake Bay Nemipteridae Nemipterus marginatus AF USNM Philippines, Luzon, Manila, Market Scolopsis ciliatus AF USNM Philippines, Guimaras Island, JTW 95-1 Ingroup Taxa SPARIDAE Boopsinae Boops boops X81567 Sequences From GenBank Crenidens crenidens AF No Voucher Qatif Market, eastern Saudi Arabia Gymnocrotaphus curvidens AF RUSI Kenton-on-Sea, South Africa Oblada melanura AF No Voucher Spain, Azohia, Bay of Cartagena Pachymetopon aeneum AF RUSI Kenton-on-Sea, South Africa Polyamblyodon germanum AF RUSI Kenton-on-Sea, South Africa Sarpa salpa AF RUSI Kenton-on-Sea, South Africa Spondyliosoma cantharus AF ODU 2782 Fiumicino Fish Market, Italy Denticinae Argyrozona argyrozona AF RUSI Durban Fish Market, South Africa Cheimerius nufar AF RUSI Kenton-on-Sea, South Africa Dentex dentex AF Sequences From GenBank

61 Dentex tumifrons AF AMS I Nelson Bay, Australia Petrus rupestris AF RUSI Kenton-on-Sea, South Africa Polysteganus praeorbitalis AF RUSI Kenton-on-Sea, South Africa Sparidentex hasta AF NSMT-P Uncat Shuwaik Market, Kuwait City, Kuwait Diplodinae Archosargus probatocephalus AF VIMS Chesapeake Bay Diplodus argenteus AF NSMT-P Sea Life Park Tokyo, Origin: Argentina. Diplodus bermudensis AF No Voucher Bermuda Diplodus cervinus AF RUSI Kenton-on-Sea, South Africa Diplodus holbrooki AF ODU 2789 Atlantic, South Carolina Lagodon rhomboides AF VIMS Uncat Florida Keys, Bahia Honda Ocean Side Pagellinae Boopsoidea inornata AF ODU 2791 St. Sebastian Bay, South Africa Lithognathus mormyrus AF ODU 2784 Fiumicino Market, Italy Pagellus bogaraveo AF ODU 2785 Fiumicino Market, Italy Pagellus bellottii AF ODU 2792 R/V African, Station 17491, South Africa Pagrinae Argyrops spinifer AF AMS I N. Territory, Australia Evynnis japonica AF NSMT-P Miyazaki, Kyushu Prefecture, Japan Pagrus auratus AF No Voucher New Zealand, Sydney Market Pagrus auriga AF ODU 2786 V. Emmanul Market, Rome, Italy Pagrus pagrus AF ODU 2790 Atlantic, South Carolina Sparinae Acanthopagrus berda AF USNM Philippines, Manila, Market. Calamus nodosus AF No Voucher Atlantic S.E. Charleston, SC Chrysoblephus cristiceps AF RUSI Kenton-on-Sea, South Africa Cymatoceps nasutus AF RUSI Kenton-on-Sea, South Africa Porcostoma dentata AF RUSI Durban, South Africa Pterogymnus laniarius AF KENT SAPL1 Plettenberg Bay, South Africa Rhabdosargus thorpei AF RUSI Ponta do Ouro, Mozambique Sparodon durbanensis AF RUSI Kenton-on-Sea, South Africa Sparus auratus AF ODU 2787 Fiumicino Market, Italy Stenotomus chrysops AF VIMS Uncat Chesapeake Bay Centracanthidae Spicara alta AF ODU 2793 Carpenter, K.E. Spicara maena AF ODU 2788 Fiumicino Market, Italy MTUF-Museum of the Tokyo University of Fisheries, Tokyo, Japan; NSMT-P National Science Museum (Zoological Park) Tokyo, Japan; ODU- Old Dominion University, Norfolk, VA; RUSI- Rhodes University; J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa; UT University of Tennessee, Knoxville, TN; USNM- United States National Museum of Natural History, Washington, DC; VIMS- Virginia Institute of Marine Science, Gloucester Point, VA 47

62 TABLE 4. MULTIPLE ALIGNMENT OF NUCLEOTIDE SEQUENCES OF THE CYTOCHROME B GENE FROM THE SPARIDAE AND OUTGROUP SPECIES. TAXONOMIC NAMES WITH A SUFFIX OF GB ARE FROM GENBANK AND ARE INCLUDED WITH ORIGINAL SEQUENCES FOR EASY COMPARISON. 48

63 Acanthopagrus berda ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATTGCTAACCACGC [50] Archosargus probatocephalus ATGGCAAGCCTTCGAAAGACTCACCCCCTATTAAAAATTGCTAACCACGC [50] Argyrops spinifer ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCACGC [50] Argyrozona argyrozona ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCATGC [50] Boops boopsgb ATGGCTAGCCTTCGAAAAACGCACCCCCTATTAAAAATTGCTAATCACGC [50] Boopsoidea inornata ATGGCAAGCCTTCGAAAGACACACCCGCTATTAAAAATTGTTAATCATGC [50] Calamus nodosus ATGACAAATCTTCGAAAGACTCACCCCCTCCTGAAAATTGCCAATCACGC [50] Cheimerius nufar ATGGCAAGCCTCCGAAAAACCCACCCACTATTAAAGATTGCTAATCACGC [50] Chrysoblephus cristiceps ATGGCTAGCCTTCGAAAGACTCACCCCCTATTAAAAATTGCTAATCACGC [50] Crenidens crenidens ATGGCAAGTCTCCGAAAAACGCACCCCCTATTAAAAATCGCTAACCACGC [50] Cymatoceps nasutus ATGACAAGCCTTCGAAAAACTCACCCCCTATTAAAAATTGCTAATCATGC [50] Dentex dentexgb ATGGCAAGCCTCCGGAAAACCCACCCACTACTAAAAATTGCTAACCACGC [50] Dentex tumifrons ATGGCAAGCCTTCGAAAAACCCAGCCCTTACTAAAAATTGCTAACCACGC [50] Diplodus argenteus ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATCGCCAACCACGC [50] Diplodus bermudensis ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATCGCTAACCACGC [50] Diplodus cervinus ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATTGCTAACCACGC [50] Diplodus holbrooki ATGGCAAGCCTACGAAAAACACACCCCCTATTAAAAATCGCCAACCACGC [50] Evynnis japonica ATGGCAAGCCTTCGAAAGACCCACCCCTTATTAAAAATTGCTAACCACGC [50] Gymnocrotaphus curvidens ATGGCAAGCCTTCGAAAGACACACCCCCTATTAAAAATTGCTAACCACGC [50] Lagodon rhomboides ATGGCAAGCCTTCGAAAAACCCACCCCCTATTAAAAATCGCTAACCACGC [50] Lithognathus mormyrus ATGGCAAGCCTACGAAAAACACACCCCCTGCTAAAAATCGCTAACCACGC [50] Oblada melanura ATGGCAAGCCTTCGAAAAACACACCCCTTGTTAAAAATTGCTAACCACGC [50] Pachymetopon aeneum ATGGCAAGCCTTCGAAAGACGCACCCCCTACTAAAAATTGCTAACCACGC [50] Pagellus bogaraveo ATGGCAAGCCTTCGAAAAACGCACCCCCTATTAAAAATTGCTAATCACGC [50] Pagellus bellottii ATGGCAAGCCTCCGGAAGACTCACCCCTTATTAAAAATTGCTAATCATGC [50] Pagrus auratus ATGGCAAGCCTTCGAAAGACCCACCCCTTATTAAAAATTGCTAACCACGC [50] Pagrus auriga ATGGCAAGCCTCCGAAAAACCCATCCATTATTAAAAATTGCTAATCACGC [50] Pagrus pagrus ATGGCAAGCCTCCGAAAGACTCACCCCTTATTAAAAATTGCTAACCACGC [50] Petrus rupestris ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCACGC [50] Porcostoma dentata ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAATCACGC [50] Pterogymnus laniarius ATGGCAAGCCTTCGAAAGACCCACCCCTTGTTAAAAATTGCTAATCACGC [50] Polyamblyodon germanum ATGGCAAGCCTTCGAAAGACGCACCCCCTATTAAAAATTGCTAACCACGC [50] Polysteganus praeorbitalis ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCACGC [50] Rhabdosargus thorpei ATGGCTAGCCTCCGAAAAACTCACCCCCTCTTAAAAATCGCCAATCATGC [50] Sarpa salpa ATGGCAAGCCTCCGAAAAACGCACCCCCTATTAAAAATTGCTAACCATGC [50] Sparidentex hasta ATGGCAAGCCTTCGAAAAACGCATCCTTTATTAAAAATTGCTAACCACGC [50] Sparodon durbanensis ATGGCAAGTCTTCGAAAAACTCACCCCCTCTTAAAAATCGCCAATCACGC [50] Sparus auratus ATGGCAAGCCTTCGTAAGACACACCCCCTCTTAAAAATCGCTAATCACGC [50] Spondyliosoma cantharus ATGGCAAGCCTTCGAAAGACACACCCCCTATTAAAAATTGCGAACCACGC [50] Stenotomus chrysops ATGGCAAGCCTCCGAAAGACTCACCCCCTACTAAAAATTGCTAACCACGC [50] Spicara alta ATGGCCAGCCTTCGAAAGACGCACCCCTTATTAAAAATTGCTAACCACGC [50] Spicara maena ATGACAAGCCTTCGAAAGACACACCCTTTATTAAAAATTGCTAACCACGC [50] Cyprinus carpio ATGGCAAGCCTACGAAAAACACACCCTCTCATTAAAATCGCTAACGACGC [50] Luxilus zonatus ATGGCAAGCCTACGAAAAACCCACCCACTGATAAAAATCGCTAATGGCGC [50] Centropomus undecimalis ATGGCAAGCCTACGAAARNNCCACCCCCTCCTAAAAATCGCAAACGACGC [50] Dicentrarchus labraxgb ATGGCCGCCCTCCGTAAAACACACCCCCTATTAAAAATCGCAAATCATGC [50] Dicentrarchus punctatus ATGAGCGCCCTCCGTAAAACACACCCCCTACTAAAGATTGCAAATCACGC [50] Lateolabrax japonicus ATGGCAAGCCTTCGAAAAACCCACCCCCTACTAAAAATCGCAAACGACGC [50] Lateolabrax japonicus2 ATGGCAAGCCTTCGAAAAACCCACCCCCTGCTAAAAATCGCAAACGACGC [50] Lateolabrax latus ATGGCAAGCCTTCGAAAAACCCACCCCCTGCTAAAAATCGCAAACGACGC [50] Morone americanus ATGGCCTCGCTTCGTAAATCGCACCCACTGCTTAAAATCGCAAACAACGC [50] Morone chrysops ATGGCCGCCCTTCGTAAAACACATCCCCTACTAAAAATCGCAAATGACGC [50] Morone mississippiensisgb ATGGCCTCGCTTCGTAAATCGCACCCACTACTTAAAATCGCAAACAACGC [50] Morone saxatilis ATGGCCGCCCTTCGTAAAACGCACCCGCTACTAAAAATCGCAAACGACGC [50] Haemulon sciurus ATGGCCAACCCCCGAAAAACTCACCCCCTACTAAAGATTGCGAATGACGC [50] Pomadasys maculatus ATGGCAAACCTTCGTAAAACCCATCCATTATTAAAGATCGCAAACGATGC [50] Caesio cuning ATGGCAAGCCTACGCAAAACCCACCCACTACTAAAAATTGCAAACGACGC [50] Lutjanus decussatus ATGGCAAGCCTACGCAAAACCCACCCACTACTAAAAATTGCTAACGACGC [50] Lethrinus ornatus ATGGCTTGCTTACGCAAAACGCACCCCCTCCTAAAAATTGCAAACGACGC [50] Lethrinus rubrioperculatus ATGGCTAGCTTACGCAAGACCCATCCCCTCCTAAAAATTGCTAACGATGC [50] Nemipterus marginatus ATGGCCAGCCTTCGCAAGACGCCCCCCCTCCTAATAATTGCTAACAACGC [50] Scolopsis ciliatus ATGGCCAGCCTTCGCAAAACTCATCCTCTCCTTAAAATCGCAAATGACGC [50] 49

64 Acanthopagrus berda AGTAGTTGACCTACCTGCACCCTCCAACATTTCCGTTTGATGAAATTTTG [100] Archosargus probatocephalus ACTAGTTGACCTGCCCGCACCCTCCAACATTTCCGTCTGATGAAATTTTG [100] Argyrops spinifer AGTAGTTGACCTACCTGCACCATCAAATATTTCTGTCTGATGAAATTTCG [100] Argyrozona argyrozona AGTAGTTGACCTACCTGCGCCCTCCAANATTTCTGTTTGATGAAATTTTG [100] Boops boopsgb ATTAGTTGATCTCCCTGCACCATCCAATATTTCCGTCTGATGAAATTTTG [100] Boopsoidea inornata AGTAGTTGACCTACCTGCACCCTCCAACATTTCCGTCTGATGAAATTTTG [100] Calamus nodosus ACTAGTCGACCTACCCGCCCCTTCCAATATTTCTGTTTGATGAAATTTCG [100] Cheimerius nufar AGTAGTTGACCTACCTGCACCCTCTAATATTTCTGTCTGATGAAATTTTG [100] Chrysoblephus cristiceps AGTAGTTGATCTACCTGCGCCTTCCAACATTTCCGTCTGATGAAATTTTG [100] Crenidens crenidens AGTAGTTGACCTACCTGCACCCTCCAATATTTCAGTCTGATGAAACTTTG [100] Cymatoceps nasutus GGTAGTTGATCTACCGGCACCCTCCAACATTTCTGTCTGATGAAATTTTG [100] Dentex dentexgb AGTAGTTGACCTACCTGCACCCTCTAATATTTCTGTCTGATGAAATTTTG [100] Dentex tumifrons AGTAGTTGACTTACCTGCACCCTCCAATATCTCTGTTTGATGAAACTTCG [100] Diplodus argenteus AGTAGTCGACCTACCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG [100] Diplodus bermudensis AGTAGTCGACCTACCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG [100] Diplodus cervinus AGTAGTTGACCTACCTGCACCTTCCAATATTTCTGTTTGATGAAATTTTG [100] Diplodus holbrooki AGTAGTCGACCTACCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG [100] Evynnis japonica AGTAGTAGACCTACCTGCGCCATCGAATATTTCTGTCTGATGAAATTTTG [100] Gymnocrotaphus curvidens AGTAGTCGACCTTCCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG [100] Lagodon rhomboides ACTAGTCGACCTGCCCGCACCCTCCAATATTTCCGTTTGATGAAATTTTG [100] Lithognathus mormyrus AGTAGTTGACCTACCTGCACCATCCAATATTTCCGTTTGATGAAATTTTG [100] Oblada melanura AGTAGTCGATCTACCTGCACCTTCCAACATTTCCGTCTGATGAAACTTTG [100] Pachymetopon aeneum AGTAGTCGATCTACCTGCACCTTCTAACATTTCCGTCTGGTGGAACTTCG [100] Pagellus bogaraveo AGTAGTTGACCTACCTGCACCTTCCAATATTTCTGTCTGATGAAACTTTG [100] Pagellus bellottii AGTAGTTGACCTGCCTGCACCCTCTAATATTTCCGTTTGATGAAATTTTG [100] Pagrus auratus ACTAGTTGACCTGCCTGCACCATCGAATATTTCTGTCTGATGAAATTTTG [100] Pagrus auriga AGTAGTTGATCTACCTGCACCCTCTAATATTTCTGTCTGATGAAATTTTG [100] Pagrus pagrus AGTAGTAGACCTACCTGCACCCTCCAATATTTCTGTTTGATGAAATTTTG [100] Petrus rupestris ACTAGTTGACCTACCTGCGCCCTCAAACATTTCTGTATGATGAAATTTTG [100] Porcostoma dentata AGTAGTTGATCTACCTGCACCCTCCAACATTTCTGTCTGATGAAATTTTG [100] Pterogymnus laniarius AGTAGTTGACCTACCTGCGCCTTCCAACATTTCAGTATGATGAAATTTTG [100] Polyamblyodon germanum AGTAGTTGACCTACCTGCACCTTCTAACATCTCTGTTTGATGGGACTTCG [100] Polysteganus praeorbitalis ACTAGTTGACCTACCTGCGCCCTCAAACATTTCTGTATGATGAAATTTTG [100] Rhabdosargus thorpei GGTAGTGGACCTTCCTGCCCCCTCCAATATTTCAGTCTGATGAAATTTTG [100] Sarpa salpa ACTAGTTGATCTCCCTGCGCCCTCTAATATTTCCGTCTGATGAAATTTTG [100] Sparidentex hasta AGTAGTCGACCTACCTGCGCCCTCCAATATTTCCGTCTGATGAAATTTTG [100] Sparodon durbanensis AGTAGTAGACCTACCTGCCCCCTCCAACATTTCGGTCTGATGAAACTTTG [100] Sparus auratus AGTAATTGATCTACATGCACCCTCCAATATTTCCGTCTGATGAAATTTTG [100] Spondyliosoma cantharus ACTAGTTGACCTCCCCGCACCCGCTAACATTTCTGTCTGATGAAATTTTG [100] Stenotomus chrysops ACTCGTCGACCTACCTGCACCCTCCAACATTTCCGTCTGATGAAATTTTG [100] Spicara alta CCTGGTGGATCTGCCTGCACCCTCCAATATTTCTGTTTGATGAAATTTTG [100] Spicara maena ACTAGTTGACCTCCCCGCACCCTCTAACATCTCTGTCTGATGAAATTTTG [100] Cyprinus carpio ACTAGTTGACCTACCAACACCATCCAACATCTCAGCATGATGAAACTTTG [100] Luxilus zonatus ACTGGTTGACCTTCCAACACCATCAAACATCTCAGCGCTATGAAACTTCG [100] Centropomus undecimalis ACTAATTGACCTCCCAGCCCCCTCCAACATCTCAGCATGATGGAACTTCG [100] Dicentrarchus labraxgb ACTTGTTGACCTGCCGGCCCCTTCAAATATTTCAGTTTGATGAAATTTCG [100] Dicentrarchus punctatus ACTTGTTGATCTACCAGCCCCCTCCAACATTTCAGTTTGATGAAATTTCG [100] Lateolabrax japonicus ACTAGTCGACCTCCCTGCCCCCTCAAACATCTCAGTCTGATGAAATTTTG [100] Lateolabrax japonicus2 ACTGGTCGACCTCCCTGCTCCCTCAAACATCTCGGTCTGATGAAATTTTG [100] Lateolabrax latus ATTGGTAGACCTCCCTGCCCCCTCGAATATCTCAGTTTGATGAAACTTCG [100] Morone americanus ACTCGTTGACTTACCTGCCCCCTCAAATATCTCTGTTTGATGAAACTTTG [100] Morone chrysops ACTTGTTGACCTGCCCGCCCCCTCAAACATCTCTGTTTGATGAAACTTTG [100] Morone mississippiensisgb ACTCATTGACTTACCTGCCCCCTCAAATATCTCTGTTTGATGAAACTTTG [100] Morone saxatilis ACTTGTTGACTTACCTGCCCCTTCAAACATCTCTGTTTGATGAAATTTTG [100] Haemulon sciurus ACTAGTTGACCTCCCAGCCCCATCCAATATTTCTGTATGATGAAACTTTG [100] Pomadasys maculatus ATTAATTGACCTCCCTGCCCCCTCCAACATCTCCGTATGATGAAATTTTG [100] Caesio cuning ACTAGTTGATCTCCCCGCACCCTCCAATATTTCAGTATGATGAAACTTTG [100] Lutjanus decussatus ACTAGTTGACCTCCCCGCACCCTCTAATATTTCAGTATGATGAAACTTTG [100] Lethrinus ornatus AGTCCTTGACCTTCCAGCCCCTTCAAACATCTCAGTTTGATGAAACTTCG [100] Lethrinus rubrioperculatus AGTAGTCGACTTACCAGCCCCCTCTAACATTTCAGTATGATGAAACTTTG [100] Nemipterus marginatus CCTCATTGATCTCCGCGCGCCCTCCAATATCTCAGCCTGATGAAACTTCG [100] Scolopsis ciliatus CCTAGTTGACCTACCCGCCCCCGCCAATATTTCTGCATGATGAAATTTTG [100] 50

65 Acanthopagrus berda GGTCTCTCCTCGGTCTCTGCTTAATCTCCCAACTTCTCACAGGACTATTT [150] Archosargus probatocephalus GATCCCTACTTGGCCTTTGTTTAATTTCTCAACTTCTCACGGGCCTATTC [150] Argyrops spinifer GCTCCCTCCTCGGCCTCTGCCTAATCTCTCAGCTCCTTACAGGACTCTTC [150] Argyrozona argyrozona GTTCCCTGCTCGGCCTTTGCCTAATCTCTCAACTTCTCACAGGCCTGTTC [150] Boops boopsgb GTTCCCTGCTTGGCCTCTGTCTTATTTCCCAGCTCCTTACAGGGCTATTC [150] Boopsoidea inornata GATCCCTACTTAGCCTCTGTTTAATTTCTCAACTCCTTACAGGACTATTC [150] Calamus nodosus GATCTCTCCTTGGTCTCTGTTTAATTTCCCAGCTCCTTACAGGCCTTTTC [150] Cheimerius nufar GCTCCCTACTGGGTCTCTGCCTAATTTCTCAACTTCTCACAGGGCTGTTC [150] Chrysoblephus cristiceps GCTCCCTGCTCGGCCTCTGCCTAATCTCCCAACTCCTCACAGGATTATTC [150] Crenidens crenidens GATCCCTACTTGGCCTTTGTTTAGTCTCCCAACTACTTACAGGACTATTC [150] Cymatoceps nasutus GCTCTCTGCTCGGCCTCTGTCTAATCTCTCAACTCCTCACAGGGCTATTT [150] Dentex dentexgb GCTCCCTGCTCGGCCTCTGCTTAATTTCTCAAATCCTCACAGGACTGTTC [150] Dentex tumifrons GTTCCCTCCTCGGCCTCTGCCTGATTTCCCAACTCCTCACAGGCCTATTC [150] Diplodus argenteus GATCCTTACTTGGTCTCTGCTTAATTTCTCAACTCCTTACAGGACTTTTC [150] Diplodus bermudensis GATCCTTACTTGGTCTCTGCTTAATTTCTCAACTTCTTACAGGACTTTTT [150] Diplodus cervinus GATCCTTACTCGGTCTCTGCTTAATTTCTCAACTCCTTACAGGACTATTT [150] Diplodus holbrooki GATCCTTACTTGGTCTCCGCTTAATTTCCCAACTTCTTACAGGACTTTTT [150] Evynnis japonica GCTCCCTACTTGGCCTCTGCCTAATTTCTCAGCTCCTCACAGGACTGTTC [150] Gymnocrotaphus curvidens GATCCCTACTTGGTCTCTGTTGAATTTCCCAACTCCTCACAGGACTATTT [150] Lagodon rhomboides GGTCCCTACTTGGCCTCTGCTTAATCTCCCAACTCCTTACAGGCCTATTC [150] Lithognathus mormyrus GATCCCTACTTGGTCTCTGCCTCATCTCTCAACTTCTTACAGGGTTATTC [150] Oblada melanura GATCTTTACTCGGTCTCTGCCTAATTTCTCAACTCCTTACAGGACTATTT [150] Pachymetopon aeneum GATCCCTCCTTGGCCTCTGCTTAATCTCCCAACTCCTCACAGGACTATTC [150] Pagellus bogaraveo GATCCCTTCTTGGTCTCTGCCTAATCTCTCAACTCCTTACAGGACTATTT [150] Pagellus bellottii GATCCCTGCTCGGCCTTTGTTTAATCTCCCAACTCCTAACAGGATTATTC [150] Pagrus auratus GCTCTCTACTCGGCCTCTGCCTAATCTCTCAGATCCTCACAGGACTATTC [150] Pagrus auriga GCTCCTTACTCGGTCTCTGCCTAATTTCTCAACTACTCACAGGTCTTTTT [150] Pagrus pagrus GTTCCCTACTTGGCCTTTGCCTGATCTCCCAACTCCTAACAGGACTATTC [150] Petrus rupestris GCTCCCTGCTCGGTCTTTGCCTAATCTCTCAAATCCTCACGGGGCTATTC [150] Porcostoma dentata GTTCCCTGCTCGGCCTCTGCCTAATCTCCCAACTCCTTACAGGCTTATTC [150] Pterogymnus laniarius GCTCCCTGCTCGGCCTTTGCCTAATCTCCCAGCTCCTCACAGGATTGTTC [150] Polyamblyodon germanum GATCCCTCCTTGGCCTCTGCTTAATTTCCCAGCTCCTCACAGGACTATTC [150] Polysteganus praeorbitalis GCTCCCTGCTCGGTCTTTGCCTAATCTCTCAAATCCTCACGGGGCTATTC [150] Rhabdosargus thorpei GGTCCTTGCTGGGTCTATGCCTAATCTCGCAACTCCTAACAGGCCTATTT [150] Sarpa salpa GATCTTTACTTGGTCTTTGCCTGATCTCCCAGCTCCTCACAGGACTATTT [150] Sparidentex hasta GGTCCCTCCTCGGTCTCTGCTTAATCTCCCAACTTCTTACAGGACTATTT [150] Sparodon durbanensis GGTCCTTGCTCGGTCTATGCTTAATCTCTCAGCTCCTAACAGGGCGGTTT [150] Sparus auratus GATCCCTCCTCGGTCTCTGTCTAATTTCTCAGCTTCTGACAGGGCTATTC [150] Spondyliosoma cantharus GGTCCCTACTTGGTCTTTGCCTAATTTCTCAACTCCTCACAGGACTTTTC [150] Stenotomus chrysops GATCCCTCCTCGGCCTTTGTTTAATTTCCCAACTTCTTACAGGCCTGTTC [150] Spicara alta GCTCCCTGCTCGGCCTTTGCCTAATCTCCCAACTCCTTACAGGCCTATTC [150] Spicara maena GGTCCCTACTTGGTCTCTGTTTAATTTCCCAACTCCTCACAGGACTCTTC [150] Cyprinus carpio GATCCCTCCTAGGACTATGCTTAATTACCCAAATTTTAACCGGCCTATTC [150] Luxilus zonatus GATCCCTTCTAGGGTTGTGCTTAATCACTCAAATCCTCACCGGATTATTC [150] Centropomus undecimalis GCTCCCTCCTAGGCCTCTGCTTAATTGCCCAAATTCTTACAGGCCTATTT [150] Dicentrarchus labraxgb GTTCGCTCTTAGGCCTATGCTTGATTTCCCAAATTCTTACAGGTCTATTT [150] Dicentrarchus punctatus GCTCGCTCTTAGGCCTATGTTTGATCTCCCAAATCCTTACAGGCCTGTTT [150] Lateolabrax japonicus GTTCCCTTCTTGGCCTTTGCTTGATTACTCAAATCCTCACAGGGCTATTC [150] Lateolabrax japonicus2 GCTCTCTTCTTGGCCTCTGCTTGATCACTCAGATCCTCACAGGATTATTC [150] Lateolabrax latus GCTCTCTTCTAGGCCTCTGCTTGTTCACACAGATCATTACTGGGCTATTC [150] Morone americanus GCTCACTCCTGGGCCTCTGCTTAATTTCCCAAATTCTCACAGGCCTATTT [150] Morone chrysops GCTCACTCTTGGGCCTATGTTTAATTTCTCAGATCCTTACAGGGCTATTC [150] Morone mississippiensisgb GCTCACTCCTTGGCCTCTGTTTGATCTCCCAAATCCTCACAGGCCTATTT [150] Morone saxatilis GCTCACTCTTGGGCCTATGTCTAATTTCCCAAATCCTTACAGGCCTATTC [150] Haemulon sciurus GCTCCCTCCTAGGCCTCTGCCTCATTTCACAGATCGTCACCGGCCTTTTC [150] Pomadasys maculatus GCTCCCTACTAGGACTTTGTCTCATTTCCCAAATCGTTACGGGACTATTC [150] Caesio cuning GCTCTCTACTTGGCCTTTGCTTAATTGCCCAACTCCTAACAGGACTCTTC [150] Lutjanus decussatus GCTCTCTACTTGGCCTTTGCTTAATTGCCCAAATCCTAACAGGACTATTC [150] Lethrinus ornatus GCTCCCTCCTTGGTCTCTGCTTAATTGCCCAAATCTTAACCGGGCTTTTC [150] Lethrinus rubrioperculatus GTTCTCTTCTGGGTCTTTGCTTAATCGCTCAAATCCTAACAGGCCTGTTC [150] Nemipterus marginatus GGTCTCTACTAGGTCTTTGCTTAGCCGCCCAAATTTTAACAGGCCTGTTC [150] Scolopsis ciliatus GGTCTCTTCTAGGCCTTTGTCTGATTGCACAACTTCTAACAGGCCTATTT [150] 51

66 Acanthopagrus berda CTTGCTATACATTATACTTCCGATATTGCCACAGCCTTCTCCTCCGTAGC [200] Archosargus probatocephalus CTCGCTATACACTACACCTCAGATATCGCCACAGCATTTTCTTCTGTTGC [200] Argyrops spinifer CTTGCTATACACTACACCTCCGATATTGCCACAGCCTTCTCCTCTGTTGC [200] Argyrozona argyrozona CTCGCCATACACTACACCTCAGACATCGCCACAGCCTTTTCTTCTGTCGC [200] Boops boopsgb CTCGCCATGCACTATACCTCCGATATCGCCACAGCCTTCTCTTCCGTTGC [200] Boopsoidea inornata CTTGCTATACACTATACTTCAGATATCGCCACGGCCTTTTCTTCTGTCGC [200] Calamus nodosus CTTGCTATACATTATACCCCCGACATCGCTACAGCATTTTCTTCTGTTGC [200] Cheimerius nufar CTTGCCATACATTACACCTCAGACATCGCCACAGCTTTTTCTTCCGTTGC [200] Chrysoblephus cristiceps CTTGCCATACACTACACCTCAGATATTGCCACAGCTTTTTCTTCTGTCGC [200] Crenidens crenidens CTCGCCATACACTATACCTCCGACATCGCCACAGCCTTTTCTTCGGTTGC [200] Cymatoceps nasutus CTTGCCATACACTATACTTCAGATATTGCCACAGCCTTTTCTTCCGTCGC [200] Dentex dentexgb CTTGCTATGCATTACACCTCGGACATTGCTACAGCCTTTTCTTCTGTCGC [200] Dentex tumifrons CTCGCTATACACTACACCTCAGACATTAACACAGCCTTCTCTTCCGTTGC [200] Diplodus argenteus CTTGCTATACACTACACCTCTGATATCGCCACAGCCTTTTCTTCCGTAGC [200] Diplodus bermudensis CTTGCTATGCACTACACCTCTGATATCGCCACAGCCTTTTCTCCTGTAGC [200] Diplodus cervinus CTTGCTATACACTACACCTCTGATATCGCCACAGCCTTTTCTTCCGTAGC [200] Diplodus holbrooki CTTGCTATACACTACACCTCTGGTATCGCCACAGCCTTTTCTTCTGTAGC [200] Evynnis japonica CTTGCCATACATTATACCTCGGACATTGCCACAGCCTTTTCTTCTGTTGC [200] Gymnocrotaphus curvidens CTTGCTATACATTATACCTCAGATATTGCCACAGCCTTTTCTTCCGTTGC [200] Lagodon rhomboides CTCGCTATACACTACACTTCAGATATCGCTACAGCATTCTCCTCTGTTGC [200] Lithognathus mormyrus CTTGCTATGCATTATACCTCCGACATCGCCATAGCTTTCTCCTCCGTAGC [200] Oblada melanura CTCGCTATACACTACACCTCTGACATCGCCACGGCCTTTTCTTCTGTAGC [200] Pachymetopon aeneum CTTGCTATGCACTATACTTCAGATATTGCCACAGCCTTTTCTTCCGTTGC [200] Pagellus bogaraveo CTTGCTATACATTACACCTCCGATATTGCCACAGCCTTTTCCTCTGTCGC [200] Pagellus bellottii CTTGCCATACACTACACCTCAGACATTGCCACAGCCTTTTCCTCCGTCGC [200] Pagrus auratus CTTGCCATACACTATACCTCAGACATTGCTACAGCCTTTTCTTCCGTTGC [200] Pagrus auriga CTTGCCATACATTATACCTCAGACATTGCTACAGCCTTTTCCTCTGTTGC [200] Pagrus pagrus CTTGCCATACACTATACTTCAGATATCGCCACGGCTTTTTCTTCTGTTGC [200] Petrus rupestris CTTGCTATACACTACACCTCAGATATTGCCACTGCCTTTTCTTCCGTCGC [200] Porcostoma dentata CTTGCCATACACTATACCTCAGACATTGCCACAGCCTTTTCTTCTGTTGC [200] Pterogymnus laniarius CTTGCCATACATTATACCTCAGATATCGCTACAGCCTTTTCTTCTGTCGC [200] Polyamblyodon germanum CTTGCTATGCACTATACTTCAGATATCGCCACAGCCTTTTCTTCCGTTGC [200] Polysteganus praeorbitalis CTTGCTATACACTACACCTCAGATATTGCCACTGCCTTTTCTTCCGTCGC [200] Rhabdosargus thorpei CTTGCTATACACTACACTTCCGACATCGCCACAGCCTTTTCTTCTGTTGC [200] Sarpa salpa CTCGCCATGCATTACACCTCAGACATCGCCACAGCCTTTTCTTCTGTCGC [200] Sparidentex hasta CTTGCTATACATTACACTTCCGATATCGCCACAGCTTTTTCTTCCGTAGC [200] Sparodon durbanensis CTTGCAATACACTACACCTCCGACATCGCCACAGCCTTTTCATCCGTTGC [200] Sparus auratus CTCGCTATGCACTACACTTCCGATATCGCCACAGCCTTCTCTTCCGTAGC [200] Spondyliosoma cantharus CTTGCCATACATTATACTTCAGACATTGCCACAGCCTTTTCTTCTGTTGC [200] Stenotomus chrysops CTCGCTATGCACTATACTTCAGATATCGCAACAGCATTCTCTTCTGTTGC [200] Spicara alta CTCGCCATACATTACACCTCAGACATTGCCACAGCCTTCTCTTCCGTCGC [200] Spicara maena CTTGCTATACACTACACTTCGGATATTGCCACAGCCTTTTCTTCTGTTGC [200] Cyprinus carpio CTAGCCATACACTACACCTCAGACATTTCAACCGCATTCTCATCTGTTAC [200] Luxilus zonatus CTAGCTATACATTACACCTCTGACATCTCAACCGCATTTTCATCCGTCAC [200] Centropomus undecimalis CTAGCCATACACTATACATCCGACATCAACATAGCATTCACCTCTGTCGC [200] Dicentrarchus labraxgb TTAGCTATACATTATACTTCAGATATCGCAACAGCCTTCTCCTCCATCGC [200] Dicentrarchus punctatus TTGGCAATACACTACACCTCAGATATCGCTACAGCCTTCTCTTCTATCGC [200] Lateolabrax japonicus CTTGCAATACACTACACCTCAGATGTTGCCACCGCCTTCTCGTCCGTAGC [200] Lateolabrax japonicus2 CTTGCAATACACTACACCTCAGATGTTGCCACCGCCTTCTCGTCCGTAGC [200] Lateolabrax latus CTTGCAATACACTACACCTCGGATGTGGCAACTGCCTTTTCATCCGTGGC [200] Morone americanus CTGGCTATACACTATACCTCGGACATTGCCACAGCCTTCTCTTCTGTTGC [200] Morone chrysops CTAGCCATGCACTATACCTCTGATATTGCCACAGCCTTCTCCTCCGTTGC [200] Morone mississippiensisgb CTGGCCATACACTATACCTCGGACATTGCCACAGCCTTCTCTTCTGTTGC [200] Morone saxatilis CTAGCTATACATTATACCTCAGATATCGCTACAGCCTTCTCCTCCGTCGC [200] Haemulon sciurus CTAGCCATGCACTATACCTCTGACATCGCCACAGCCTTCTCATCCGTTGC [200] Pomadasys maculatus CTTGCTATACACTACACCTCCGACATCGCTACAGCTTTCTCATCTGTTGC [200] Caesio cuning CTCGCCATACACTACACCTCCGACATTAGCATGGCCTTCTCATCTGTCGC [200] Lutjanus decussatus CTCGCCATACACTATACATCCGACATTACCATAGCCTTCTCATCCGTCGC [200] Lethrinus ornatus CTCGCAATACATTACACTTCCGACATTGCCACCGCTTTCTCCTCCGTTGC [200] Lethrinus rubrioperculatus CTTGCAATACATTACACTTCTGATATCGCCACAGCATTCTCCTCTGTCGC [200] Nemipterus marginatus CTTGCAATACATTACACATCTGACATTGCAACAGCATTTTCTTCCGTCGC [200] Scolopsis ciliatus CTTGCCATACACTATACTTCCGATATTGCAACAGCTTTCTCTTCAGTCGC [200] 52

67 Acanthopagrus berda CCATATTTGCCGAGATGTAAATTATGGGTGGCTAATCCGAAACCTTCACG [250] Archosargus probatocephalus TCACATCTGCCGGGACGTTAATTACGAATGACTTATCCGAAACCTCCACG [250] Argyrops spinifer CCACATCTGCCGAGACGTAAACTACGGCTGACTAATCCGTAATCTTCACG [250] Argyrozona argyrozona TCACATTTGTCGAGATGTAAACTACGGCTGACTTATCCGCAACCTTCATG [250] Boops boopsgb CCACATCTGCCGAGATGTAAACTATGGCTGACTCATCCGAAACCTACATG [250] Boopsoidea inornata CCACATTTGCCGAGATGTAAACTACGGGTGACTCATCCGAAATCTTCACG [250] Calamus nodosus CCATATTTGCCGAGACGTAAACTATGGATGACTTATTCGCAATCTCCACG [250] Cheimerius nufar TCACATTTGTCGAGACGTAAACTACGGTTGACTTATCCGCAACCTCCATG [250] Chrysoblephus cristiceps CCACATCTGTCGAGACGTAAATGATGGCTGACTCATCCGCAACCTTCATG [250] Crenidens crenidens TCACATCTGCCGAGATGTTAACTATGGGTGACTAATCCGTAACCTCCACG [250] Cymatoceps nasutus CCACATCTGTCGAGACGTAAATTACGGCTGACTTATCCGAAACCTTCATG [250] Dentex dentexgb CCATATTTGTCGAGACGTAAACTACGGCTGACTTATCCGCAATCTCCATG [250] Dentex tumifrons ACACATCTGTCGAGACGTAAATTACGGATGACTTATCCGCAACCTCCATG [250] Diplodus argenteus CCACATCTGCCGAGACGTAAACTACGGATGACTAATCCGAAACCTCCACG [250] Diplodus bermudensis CCACATCTGCCGAGACGTAAACTACGGATGACTAATCCGAAACCTCCACG [250] Diplodus cervinus CCATATCTGCCGGGACGTAAACTACGGATGGCTTATCCGAAATCTCCATG [250] Diplodus holbrooki CCACATCTGCCGAGACGTAAACTACGGATGACTAATCCGAAACCTCCACG [250] Evynnis japonica CCATATCTGTCGAGACGTAAACTACGGCTGACTTATCCGCAATCTCCATG [250] Gymnocrotaphus curvidens CCACATCTGCCGAGATGTGAACTACGGGTGGCTCATCCGTAACCTTCATG [250] Lagodon rhomboides CCACATCTGTCGTGACGTAAATTACGGATGACTAATCCGAAACCTCCACG [250] Lithognathus mormyrus CCACATCTGTCGGGACGTAAACTACGGCTGACTTATCCGTAACCTCCACG [250] Oblada melanura CCACATCTGCCGAGATGTAAACTACGGATGGCTGATCCGAAACCTCCACG [250] Pachymetopon aeneum CCACATCTGTCGAGACGTGAACTACGGGTGACTCATCCGAAACCTTCACG [250] Pagellus bogaraveo CCACATCTGTCGAGACGTAAACTACGGATGGCTAATCCGAAATCTCCACG [250] Pagellus bellottii ACATATCTGTCGAGACGTAAACTACGGCTGACTTATCCGTAACCTCCATG [250] Pagrus auratus CCATATCTGCCGAGACGTAAACTACGGCTGACTTATCCGCAATCTCCATG [250] Pagrus auriga TCACATTTGTCGAGACGTAAACTACGGCTGACTTATCCGCAACCTTCATG [250] Pagrus pagrus ACACATTTGTCGAGACGTAAACTACGGCTGACTTATCCGTAATCTTCATG [250] Petrus rupestris CCACATCTGTCGAGACGTAAACTATGGATGACTTATCCGCAACCTCCATG [250] Porcostoma dentata TCACATCTGCCGAGACGTAAATTATGGATGACTAATCCGCAACCTTCATG [250] Pterogymnus laniarius CCACATCTGTCGAGACGTAAACTACGGCTGACTTATCCGCAACCTTCATG [250] Polyamblyodon germanum CCACATCTGCCGAGACGTAAACTACGGATGACTCATCCGAAACCTCCACG [250] Polysteganus praeorbitalis CCACATCTGTCGAGACGTAAACTATGGATGACTTATCCGCAACCTCCATG [250] Rhabdosargus thorpei CCATATCTGCCGGGACGTCAACTACGGATGGCTCATCCGAAACCTCCATG [250] Sarpa salpa ACACATTTGTCGAGACGTGAATTACGGCTGACTCATCCGGAATCTCCACG [250] Sparidentex hasta CCATATCTGCCGAGATGTTAACTACGGCTGACTAATCCGAAACCTTCACG [250] Sparodon durbanensis CCACATCTGTCGAGACGTGAACTACGGATGGCTTATCCGAAACCTTCATG [250] Sparus auratus CCACATCTGCCGAGATGTAAATTACGGATGGCTCATCCGAAACCTTCACG [250] Spondyliosoma cantharus ACACATTTGCCGAGATGTAAATTATGGCTGACTCATCCGAAATCTTCACG [250] Stenotomus chrysops TCATATTTGCCGAGACGTAAATTATGGATGACTTATCCGTAATCTTCACG [250] Spicara alta ACACATCTGCCGAGACGTAAATTACGGGTGGCTCATCCGAAATCTCCACG [250] Spicara maena ACACATCTGTCGAGATGTAAATTACGGCTGACTCATCCGAAATCTTCACG [250] Cyprinus carpio CCACATCTGCCGAGACGTAAATTACGGCTGACTAATCCGTAATGTACACG [250] Luxilus zonatus GCACATTTGCCGGGACGTTAACTATGGCTGACTTATCCGGAACATGCACG [250] Centropomus undecimalis TCACATCTGCCGAGATGTAAACTACGGATGGCTTATCCGAAACCTCCACG [250] Dicentrarchus labraxgb ACACATTTGTCGAGATGTTAACTATGGCTGACTTATTCGTAATCTTCACG [250] Dicentrarchus punctatus ACACATTTGTCGAGATGTCAACTATGGTTGACTTATCCGCAATCTTCACG [250] Lateolabrax japonicus ACATATTTGCCGCGACGTAAACTACGGCTGACTAATTCGAAATGTTCACG [250] Lateolabrax japonicus2 ACACATTTGCCGCGACGTAAACTACGGTTGACTAATTCGTAATATTCACG [250] Lateolabrax latus ACACATCTGCCGTGACGTGAACTACGGCTGACTAATTCGAAATGTCCACG [250] Morone americanus ACACATTTGCCGAGACGTAAACTACGGCTGGTTAATTCGTAACCTTCATT [250] Morone chrysops ACACATCTGCCGAGATGTAAATTACGGCTGACTTATTTGCAACCTCCACG [250] Morone mississippiensisgb ACACATTTGCCGAGATGTAAACTATGGTTGATTAATTCGTAATCTTCATT [250] Morone saxatilis ACACATTTGCCGAGATGTAAATTATGGATGACTAATTCGTAACCTTCACG [250] Haemulon sciurus CCATATCTGCCGAGACGTGAACTATGGCTGACTCATCCGAAACCTCCACG [250] Pomadasys maculatus CCATATTTGCCGAGATGTAAACTTCGGCTGACTTATTCGTAATCTACATG [250] Caesio cuning CCACATCTGCCGAGATGTAAACTACGGTTGACTAATCCGTAATCTCCACG [250] Lutjanus decussatus ACACATCTGCCGAGACGTAAACTACGGATGGCTCATCCGTAACCTACATG [250] Lethrinus ornatus CCACATTTGCCGAGACGTCAACTACGGCTGGCTCATCCGCAACCTTCATG [250] Lethrinus rubrioperculatus ACACATTTGCCGAGACGTTAACTATGGTTGGCTCATCCGCAACCTCCACG [250] Nemipterus marginatus CCACATCTGCCGAGACGTAAATTACGGCTGACTTATCCGAAATCTTCATG [250] Scolopsis ciliatus CCACATCTGCCGAGACGTAAACTATGGCTGACTGATCCGCAATCTGCACG [250] 53

68 Acanthopagrus berda CCAACGGAGCATCTTTTTTCTTCATCTGTATTTATCTTCACATTGGGCGG [300] Archosargus probatocephalus CCAACGGAGCATCGTTCTTCTTTATTTGCATTTATTTTCACATTGGACGA [300] Argyrops spinifer CCAATGGAGCATCCTTCTTTTTTATCTGCATTTACCTTCACATCGGACGA [300] Argyrozona argyrozona CCAACGGAGCATCTTTCTTCTTCATCTGCATTTATCTCCACATCGGTCGA [300] Boops boopsgb CCAACGGAGCATCTTTCTTCTTCATCTGCATTTACCTTCACATCGGCCGA [300] Boopsoidea inornata CCAACGGAGCATCTTTCTTTTTTATTTGTATTTACCTTCATATCGGGCGA [300] Calamus nodosus CCAACGGGGCTTCCTTCTTTTTCATTTGTATTTATCTTCACATTGGACGA [300] Cheimerius nufar CCAACGGAGCATCCTTCTTTTTCATCTGCATTTACCTCCACATCGGTCGA [300] Chrysoblephus cristiceps CCAACGGAGCATCTTTCTTCTTCATTTGTATTTATCTGCACATTGGACGA [300] Crenidens crenidens CTAACGGAGCATCCTTCTTTTTTATCTGCATTTACCTCCACATCGGACGA [300] Cymatoceps nasutus CTAACGGAGCATCTTTCTTCTTCATTTGTATTTATCTTCACATCGGACGG [300] Dentex dentexgb CTAATGGAGCATCTTTTTTCTTCATCTGCATTTACCTTCACATCGGACGA [300] Dentex tumifrons CCAACGGAGCCTCTTTCTTCTTTATTTGTATTTACCTTCACATCGGGCGA [300] Diplodus argenteus CCAACGGAGCATCTTTCTTCTTTATTTGTATTTACCTTCACATCGGGCGA [300] Diplodus bermudensis CCAACGGAGCATCTTTCTTCTTTATCTGTATTTACCTTCACATCGGGCGA [300] Diplodus cervinus CTAACGGAGCATCTTTCTTCTTTATCTGTATTTACCTCCACATCGGACGA [300] Diplodus holbrooki CCAACGGAGCATCTTTCTTCTTTATCTGTATTTACCTTCACATCGGGCGA [300] Evynnis japonica CCAATGGAGCATCTTTCTTTTTCATCTGCATCTACCTTCACATCGGACGG [300] Gymnocrotaphus curvidens CCAACGGAGCATCTTTCTTTTTTATTTGTATTTATCTTCATATCGGACGA [300] Lagodon rhomboides CTAACGGAGCATCATTCTTCTTTATTTGTATCTACCTTCACATCGGACGA [300] Lithognathus mormyrus CAAACGGAGCATCCTTCTTTTTTATTTGTATTTACCTCCATATCGGTCGG [300] Oblada melanura CCAACGGAGCATCCTTCTTCTTCATCTGTATTTATCTCCACATCGGACGA [300] Pachymetopon aeneum CCAACGGAGCATCTTTCTTTTTTATTTGTATTTATGTTCATATCGGACGA [300] Pagellus bogaraveo CTAATGGAGCATCTTTCTTCTTTATCTGTATTTACCTTCACATCGGACGG [300] Pagellus bellottii CTAATGGAGCATCCTTCTTCTTTATTTGCATCTACCTCCATATCGGACGG [300] Pagrus auratus CTAATGGAGCATCTTTCTTTTTCATCTGCATCTACCTTCACATCGGACGA [300] Pagrus auriga CCAACGGAGCATCCTTCTTTTTCATCTGCATTTACCTCCACATCGGACGA [300] Pagrus pagrus CTAACGGAGCATCCTTCTTTTTCATCTGCATCTACCTCCACATTGGCCGA [300] Petrus rupestris CCAACGGAGCATCCTTTTTCTTCATCTGCATCTATCTTCACATCGGAGGA [300] Porcostoma dentata CCAACGGAGCATCTTTCTTCTTCATTTGCATTTATCTTCACATCGGGCGA [300] Pterogymnus laniarius CCAACGGAGCCTCTTTCTTCTTCATTTGCATCTACCTTCACATTGGACGA [300] Polyamblyodon germanum CTAACGGAGCATCTTTCTTTTTTATTTGTATTTTCCTCCATATCGGACGA [300] Polysteganus praeorbitalis CCAACGGAGCATCCTTTTTCTTCATCTGCATCTATCTTCACATCGGACGA [300] Rhabdosargus thorpei CCAACGGAGCATCTTTCTTTTTCATTTGCATTTATTTACACATTGGCCGA [300] Sarpa salpa CCAACGGAGCATCGTTCTTTTTCATTTGCATTTATCTTCACATTGGACGA [300] Sparidentex hasta CTAACGGAGCTTCTTTTTTCTTCATCTGTATTTACCTCCACATCGGACGA [300] Sparodon durbanensis CCAATGGAGCATCCTTCTTTTTTATCTGCATTTATCTGCACATCGGCCGA [300] Sparus auratus CCAACGGAGCATCTTTCTTTTTTATTTGTATTTACCTCCATATCGGACGA [300] Spondyliosoma cantharus CCAACGGGGCATCTTTCTTTTTTATTTGCATTTACCTTCACATCGGACGA [300] Stenotomus chrysops CCAACGGAGCATCCTTCTTCTTCATCTGTATTTACCTTCACATTGGACGA [300] Spicara alta CCAACGGTGCATCCTTCTTCTTTATTTGCATCTACCTTCACATTGGGCGG [300] Spicara maena CCAACGGAGCATCTTTCTTTTTTATTTGTATTTACCTTCATATTGGGCGA [300] Cyprinus carpio CCAACGGAGCATCATTCTTCTTCATTTGCATCTACATACACATCGCCCGA [300] Luxilus zonatus CCAACGGAGCATCATTTTTCTTCATCTGTATTTACATGCACATTGCTCGT [300] Centropomus undecimalis CTAACGGCGCCTCTTTCTTCTTCATCTGCATGTACCTCCACATCGGCCGA [300] Dicentrarchus labraxgb CCAATGGTGCATCTTTCTTCTTTATTTGTATTTATCTTCACATTGGCCGA [300] Dicentrarchus punctatus CCAATGGCGCATCTTTCTTCTTTATTTGTATCTATCTTCATATTGGCCGA [300] Lateolabrax japonicus CCAACGGCACATCCTTCTTCTTCATCTGCATTTACATACATATTGGGCGG [300] Lateolabrax japonicus2 CCAACGGCACATCCTTCTTCTTCATTTGCATCTACATACATATCGGACGA [300] Lateolabrax latus CCAACGGCGCATCCTTCTTCTTCATTTGCATCTACATGCATATCGGGCGA [300] Morone americanus CTAATGGCGCATCTCTCTTCTTCATCTGTATTTACCTTCATATCGGCCGA [300] Morone chrysops CCAACGGCGCATCTCTCTTTTTTATCTGCATCTACCTCCACATTGGCCGA [300] Morone mississippiensisgb CTAATGGCGCATCTCTCTTCTTCATCTGCATTTATCTTCATATTGGTCGA [300] Morone saxatilis CCAACGGTGCATCTTTCTTTTTCATCTGTATTTATCTTCACATTGGCCGA [300] Haemulon sciurus CTAACGGCGCATCCTTCTTTTTCATCTGCATCTACCTCCACATCGGACGA [300] Pomadasys maculatus CTAATGGTGCATCCTTCTTCTTTATTTGTATCTACCTTCACATCGGACGA [300] Caesio cuning CCAACGGTGCCTCCTTCTTCTTCATCTGCATCTACCTCCACATCGGCCGA [300] Lutjanus decussatus CCAACGGTGCCTCCTTCTTCTTTATTTGCATCTACCTCCACATCGGCCGA [300] Lethrinus ornatus CAAACGGAGCCTCCTTCTTCTTCATCTGCATCTACCTTCACATCGGCCGA [300] Lethrinus rubrioperculatus CAAATGGAGCCTCCTTCTTCTTCATCTGCATCTACCTCCATATTGGCCGC [300] Nemipterus marginatus CTAATGGAGCATCTTTCTTCTTTATTTGCATCTACCTTCATATCGGCCGG [300] Scolopsis ciliatus CTAACGGAGCCTCCTTTTTCTTTATCTGCATCTACCTCCACATCGGCCGA [300] 54

69 Acanthopagrus berda GGACTCTACTACGGCTCCTACCTTTACAAAGAAACCTGAAATATTGGAGT [350] Archosargus probatocephalus GGGTTGTACTACGGCTCTTACCTCTACAAAGAGACATGAAACATTGGTGT [350] Argyrops spinifer GGGCTCTATTACGGCTCCTATCTTTATAAAGAAACATGAAACATCGGTGT [350] Argyrozona argyrozona GGCTTATACTATGGTTCCTACCTCTACAAAGAGACATGAAACATTGGTGT [350] Boops boopsgb GGACTTTACTACGGCTCGTACCTTTACAAAGAAACCTGAAATATTGGGGT [350] Boopsoidea inornata GGGCTTTATTACGGCTCATACCTTTATAAAGAAACATGAAATATCGGAGT [350] Calamus nodosus GGACTATACTACGGCTCCTATCTCTACAAAGAGACATGAAATATCGGAGT [350] Cheimerius nufar GGCCTTTACTATGGCTCTTACCTCTACAAAGAGACATGAAACATTGGTGT [350] Chrysoblephus cristiceps GGTCTCTACTATGGCTCCTACCTCTACAAAGAAACATGAAATATCGGTGT [350] Crenidens crenidens GGCCTTTACTATGGGTCTTATCTTTACAAAGAAACATGAAACATTGGAGT [350] Cymatoceps nasutus GGCCTATACTACGGCTCCTATCTCTACAAATGGACATGAAACATTGGTGT [350] Dentex dentexgb GGCCTCTACTATGGCTCCTACCTCTACAAAGAAACATGAAACATTGGCGT [350] Dentex tumifrons GGACTCTACTACGGCTCCTACCTCTACAAAGAAACATGAAACATCGGCGT [350] Diplodus argenteus GGACTTTATTATGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT [350] Diplodus bermudensis GGACTTTATTATGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT [350] Diplodus cervinus GGACTTTATTATGGCTCATACCTCTACAAAGAGACATGAAACATCGGAGT [350] Diplodus holbrooki GGACTTTATTATGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT [350] Evynnis japonica GGCCTTTACTATGGCTCTTATCTCTATAAAGAGACATGAAACATTGGTGT [350] Gymnocrotaphus curvidens GGACTTTATTACGGCTCGTACCTCTACAAAGAAACATGAAATATTGGAGT [350] Lagodon rhomboides GGACTTTACTATGGCTCCTACCTCTACAAAGAAACATGAAACATTGGAGT [350] Lithognathus mormyrus GGACTTTATTACGGCTCCTACCTCTACAAAGAAACATGAAATATTGGTGT [350] Oblada melanura GGACTTTATTACGGCTCTTATCTCTATAAAGAAACATGAAACATTGGAGT [350] Pachymetopon aeneum GGACTCTATTATGGCTCGTATCTTTACAAAGAAACATGAAACATTGGAGT [350] Pagellus bogaraveo GGACTCTATTACGGCTCCTATCTTTACAAAGAAACATGAAATATCGGAGT [350] Pagellus bellottii GGCCTTTATTACGGCTCTTACCTTTATAAAGAAACATGAAACATTGGTGT [350] Pagrus auratus GGCCTCTACTACGGCTCTTATCTCTATAAAGATACATGAAATATTGGTGT [350] Pagrus auriga GGTCTCTACTACGGCTCTTATCTCTATAAAGAGACATGAAACATTGGGGT [350] Pagrus pagrus GGCCTCTATTACGGGTCCTACCTCTATAAAGAAACGTGAAATATTGGTGT [350] Petrus rupestris GGCCTCTACTATGGTTCCTACCTGTACAAGGAAACATGAAATATTGGTGT [350] Porcostoma dentata GGGCTCTACTATGGCTCTTACCTCTACAAAGAGACATGAAACATTGGTGT [350] Pterogymnus laniarius GGCCTCTACTATGGTTCTTATCTCTACAAAGAAACGTGAAACATTGGCGT [350] Polyamblyodon germanum GGACTCTATTATGGCTCCTATCTTTACAAAGAGACATGAGACATCGGAGT [350] Polysteganus praeorbitalis GGCCTCTACTATGGTTCCTACCTGTACAAGGAAACATGAAATATTGGTGT [350] Rhabdosargus thorpei GGACTTTACTACGGTTCTTACCTATATAAAGAGACATGAAACATCGGGGT [350] Sarpa salpa GGACTTTATTACGGCTCCTATCTCTACAAAGAAACATGAAATATCGGAGT [350] Sparidentex hasta GGGCTTTATTACGGCTCCTACCTCTACAAAGAAACTTGAAACATCGGAGT [350] Sparodon durbanensis GGACTTTACTACGGCTCATACCCTTATAAGGTAACATGAAACATTGGAGT [350] Sparus auratus GGGCTCTACTACGGCTCTTATCTCTATAAAGATACATGAAACATCGGAGT [350] Spondyliosoma cantharus GGGCTTTACTATGGCTCATATCTCTATAAAGAAACATGAAACATCGGAGT [350] Stenotomus chrysops GGACTGTACTATGGCTCCTACCTCTATAAAGAAACATGAAACATCGGTGT [350] Spicara alta GGGCTCTATTACGGCTCTTACCTCTACAAAGAAACATGAAACATTGGTGT [350] Spicara maena GGTCTCTACTATGGCTCTTATCTCTATAAAGAGACATGAAACATCGGAGT [350] Cyprinus carpio GGCCTATACTACGGATCATACCTTTACAAAGAAACCTGAAACATTGGTGT [350] Luxilus zonatus GGCCTTTACTACGGGTCCTACCTTTATAAAGAAACCTGAAACGTTGGAGT [350] Centropomus undecimalis GGCCTTTATTACGGCTCCTACCTTTACAAAGAGACCTGAAATATCGGAGT [350] Dicentrarchus labraxgb GGCCTGTACTACGGCTCATACCTGTATAAAGAAACATGAAACATCGGGGT [350] Dicentrarchus punctatus GGCCTATATTACGGGTCATACTTATATAAAGAAACATGAAATATTGGAGT [350] Lateolabrax japonicus GGTCTTTACTACGGCTCCTACCTTTACAAAGAGACCTGAAACATCGGAGT [350] Lateolabrax japonicus2 GGTCTTTACTACGGCTCTTACCTGTACAAAGAGACCTGAAACATCGGAGT [350] Lateolabrax latus GGCCTTTACTATGGTTCCTACCTCTACAAAGAAACATGAAACGTCGGGGT [350] Morone americanus GGTCTCTATTATGGTTCCTACCTATATAAAGAGACATGAAACATTGGGGT [350] Morone chrysops GGCCTTTATTACGGCTCCTATTTATACAAAGAGACATGGAACATTGGGGT [350] Morone mississippiensisgb GGTCTCTACTATGGCTCCTACCTATATAAAGAGACGTGAAACATTGGGGT [350] Morone saxatilis GGTCTCTACTATGGCTCCTACTTGTATAAAGAAACGTGAAACATTGGAGT [350] Haemulon sciurus GGTTTATACTACGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT [350] Pomadasys maculatus GGACTCTATTACGGCTCATACCTATATAAAGAAACATGAAACATCGGAGT [350] Caesio cuning GGCCTTTACTACGGCTCGTACCTCTACAAAGAGACATGAAACATTGGAGT [350] Lutjanus decussatus GGCCTCTACTACGGATCATACCTTTACAAAGAGACATGAAACATTGGAGT [350] Lethrinus ornatus GGTCTGTACTATGGCTCCTACCTCTACAAAGAAACTTGAAACATCGGAGT [350] Lethrinus rubrioperculatus GGCCTATACTATGGATCTTACCTTTACAAAGAAACTTGAAATATCGGGGT [350] Nemipterus marginatus GGCCTATATTATGGATCCTATCTCTACATAGAGACATGAAACATCGGGGT [350] Scolopsis ciliatus GGACTATACTACGGCTCTTACCTTTATAAAGAGACATGAAATATCGGTGT [350] 55

70 Acanthopagrus berda CGTTCTCCTTCTCCTAGTTATAGCAACAGCCTTCGTAGGGTATGTACTCC [400] Archosargus probatocephalus CGTTCTCCTTCTCCTAGTAATAGCAACCGCCTTCGTAGGCTACGTCCTTC [400] Argyrops spinifer CGTCCTTCTCCTCCTTGTAATAGCAACAGCCTTCGTAGGCTATGTCCTTC [400] Argyrozona argyrozona CATTCTTCTTCTTCTCGTAATAGCAACAGCCTTTGTGGGCTACGTCCTCC [400] Boops boopsgb CGTTCTCCTCCTCCTAGTTATAGGAACCGCCTTCGTAGGCTATGTTCTCC [400] Boopsoidea inornata CATCCTCCTCCTCCTAGTTATAGGAACCGCCTTCGTAGGCTACGTTCTTC [400] Calamus nodosus AATTCTCCTCCTCCTGGTAATAATAACTGCCTTCGTAGGCTACGTTCTCC [400] Cheimerius nufar TATCCTTCTCCTTCTTGTAATGGCAACAGCCTTTGTAGGCTACGTCCTCC [400] Chrysoblephus cristiceps TATTCTCCTCCTCCTCGTAATAGCAACAGCCTTCGTGGGCTATGTCCTCC [400] Crenidens crenidens CGTTCTTCTTCGCCTAGTTATAGGAACTGCCTTCGTAGGATACGTTCTTC [400] Cymatoceps nasutus CATTCTACTTCTTCTCGTGATAGCAACAGCCTTCGTAGGCTACGTCCTCC [400] Dentex dentexgb TATCCTTCTTCTTCTTGTAATAGCAACAGCCTTCGTAGGCTACGTTCTCC [400] Dentex tumifrons TGTCCTTCTCCTCCTTGTAATAGCGACAGCTTTCGTAGGCTACGTTCTCC [400] Diplodus argenteus CGTCCTTCTTCTCCTAGTTATGGGAACTGCTTTCGTCGGCTACGTCCTTC [400] Diplodus bermudensis CGTCCTTCTTCTCCTAGTTATGGGAACTGCTTTCGTCGGCTACGTCCTTC [400] Diplodus cervinus CGTCCTTCTCCTCCTGGTCATAGGAACTGCTTTCGTCGGCTACGTCCTTC [400] Diplodus holbrooki CGTCCTTCTTCTCCTAGTTATGGGAACTGCTTTCGTCGGCTACGTCCTTC [400] Evynnis japonica CGTCCTCCTCCTCCTTGTAATAGCAACAGCCTTCGTAGGCTACGTCCTTC [400] Gymnocrotaphus curvidens TATTCTTCTTCTCCTGGTTATAGGAACTGCCTTTGTAGGCTACGTCCTCC [400] Lagodon rhomboides TGTCCTCCTCCTCTTAGTTATAGCAACCGCTTTTGTAGGCTACGTTCTCC [400] Lithognathus mormyrus TGTCCTCCTCCTTCTAGTTATAGGAACTGCCTTCGTAGGCTACGTCCTTC [400] Oblada melanura TGTCCTCCTGCTCCTAGTTATAGGAACTGCTTTCGTAGGTTACGTTCTTC [400] Pachymetopon aeneum TATTCTTCTTCTCCTAGTTATAGGAACTGCTTTCGTGGGCTACGTCCTTC [400] Pagellus bogaraveo TGTTCTCCTTCTTTTAGTTATAGGAACTGCCTTCGTGGGCTATGTACTCC [400] Pagellus bellottii TGTCCTCCTCCTCCTTGTAATAGCTACAGCCTTCGTAGGCTACGTTCTTC [400] Pagrus auratus CGTCCTCCTCCTCCTTGTGATAGCAACAGCCTTCGTAGGCTACGTTCTTC [400] Pagrus auriga AATCCTTCTTCTTCTTGTAATAGCAACAGCCTTTGTAGGCTACGTTCTTC [400] Pagrus pagrus TGTCCTCCTCCTCCTTGTAATAGCAACAGCCTTCGTAGGTTACGTCCTTC [400] Petrus rupestris CATCCTCCTCCTCCTTGTGATAGCAACAGCCTTCGTAGGCTATGTCCTCC [400] Porcostoma dentata TATTCTCCTCCTCCTCGTGATAGCCACAGCCTTCGTAGGGTACGTCCTCC [400] Pterogymnus laniarius CATTCTCCTTCTCCTCGTAATAGCCACAGCTTTCGTAGGCTATGTTCTCC [400] Polyamblyodon germanum CATTCTTCTTCTCCTAGTCATAGGAACTGCTTTCGTAGGCTACGTCCTTC [400] Polysteganus praeorbitalis CATCCTCCTCCTCCTTGTGATAGCAACAGCCTTCGTAGGCTATGTCCTCC [400] Rhabdosargus thorpei AGTTCTTTTACTCTTAGTAATAGGATCTGCCTTCGTTGGCTATGTCCTTC [400] Sarpa salpa CGTTCTCCTCCTCCTAGTCATAGGAACTGCCTTCGTAGGCTATGTCCTCC [400] Sparidentex hasta TGTCCTCCTCCTCCTAGTTATAGCAACAGCCTTTGTAGGTTACGTTCTCC [400] Sparodon durbanensis TGTTCTCCTTCTTTTAGTTATAGGAACTGCCTTCGTGGGCTACGTACTCC [400] Sparus auratus TGTCCTCCTCCTATTAGTTATAGGAACTGCTTTCGTAGGTTACGTACTCC [400] Spondyliosoma cantharus CATTCTTCTCTTACTCGTTATAGGAACCGCCTTTGTGGGCTATGTCCTCC [400] Stenotomus chrysops CGTTCTTCTTCTTCTGGTTATAGCAACTGCCTTCGTAGGCTACGTCCTCC [400] Spicara alta CGTCCTTCTCCTCCTCGTAATAGCAACAGCCTTCGTAGGCTACGTCCTCC [400] Spicara maena TGTACTTCTTCTCCTAGTTATAGCAACCGCCTTCGTAGGCTACGTCCTCC [400] Cyprinus carpio AGTCCTTCTACTACTAGTCATGATAACAGCCTTCGTTGGCTATGTTCTTC [400] Luxilus zonatus CGTACTACTCCTTCTAGTCATGATGACAGCCTTTGTGGGTTATGTACTCC [400] Centropomus undecimalis AATCCTCCTACTACTAGTAATAATAACCGCATCCGTCGGCTATGTCCTCC [400] Dicentrarchus labraxgb AATCCTTCTCCTCTTAGTAATAATGACAGCCTTCGTAGGCTATGTGTTGC [400] Dicentrarchus punctatus AGTGCTACTCCTCTTAGTAATAATAACAGCCTTTGTAGGTTACGTATTAC [400] Lateolabrax japonicus AGTCCTGCTCCTATTAGTTATAATGACTGCCTTCGTGGGCTACGTCCTCC [400] Lateolabrax japonicus2 AATTCTCCTCCTCCTAGTTATAATGACTGCCTTCGTGGGCTACGTCCTCC [400] Lateolabrax latus AGTCCTGCTCCTTTTAGTCATGATAACCGCCTTTGTAGGCTACGTCCTCC [400] Morone americanus TGTTCTCCTCCTATTAGTAATAATGACAGCTTTCGTAGGCTACGTCCTAC [400] Morone chrysops GGTTCTTCTCCTTTTAGTAATAATAACAGCCTTCGTGGGCTACGTCCTAC [400] Morone mississippiensisgb CATTCTCCTTCTCCTAGTAATAATAACAGCTTTCGTAGGTTACGTCTTAC [400] Morone saxatilis AGTTCTTCTCCTCTTAGTAATAATAACAGCTTTCGTAGGCTACGTCCTAC [400] Haemulon sciurus TGTACTCCTCCTCCTAGTTATGATAACCGCATTCGTAGGCTACGTCCTGC [400] Pomadasys maculatus TATCCTCCTCCTTCTAGTAATAATAACCGCATTCGTAGGCTACGTCCTGC [400] Caesio cuning CGTCCTTCTTCTCCTAGTGATAGCAACTGCGTTCGTAGGCTACGTCCTAC [400] Lutjanus decussatus CGTCCTGCTCCTCCTAGTAATAGCAACTGCCTTCGTAGGCTATGTACTCC [400] Lethrinus ornatus CGTCCTACTCCTTCTAGTAATGATGACCGCCTTTGTAGGGGATGTCCTTC [400] Lethrinus rubrioperculatus TGTCCTTCTTCTTTTAGTTATAATGACCGCCTTTGTAGGGTACGTCCTCC [400] Nemipterus marginatus AATCCTGCTATTATTAGTGATAATAACAGCATTCGTCGGTTACGTCCTAC [400] Scolopsis ciliatus TATTCTTCTTCTTCTGGTGATAATAACAGCCTTTGTAGGTTACGTCCTCC [400] 56

71 Acanthopagrus berda CTTGAGGTCAAATATCCTTTTGAGGAGCTACCGTAATTACCAACCTCCTA [450] Archosargus probatocephalus CATGAGGACAAATATCCTTCTGAGGGGCAACCGTCATTACTAACCTTCTA [450] Argyrops spinifer CATGAGGACAAATATCATTCTGAGGGGGTACTGTTATTACCAACCTTCTT [450] Argyrozona argyrozona CCTGAGGACAAATATCCTTCTGAGGGGCTACCGTCATTACTAACCTCCTT [450] Boops boopsgb CATGAGGACAAATGTCCTTCTGAGGAGCGACTGTCATTACCAACCTCCTA [450] Boopsoidea inornata CATGAGGACAAATATCTTTCTGAGGAGCAACCGTCATTACCAACCTCTTA [450] Calamus nodosus CATGAGGACAGATATCCTTCTGAGGAGCAACTGTCATCACTAACCTCCTA [450] Cheimerius nufar CATGAGGACAAATATCATTCTGAGGGGCTACCGTCATCACGAATCTTCTT [450] Chrysoblephus cristiceps CCTGAGGACAAATATCCTTCTGAGGGGCCACTGTTATTACCAACCTCCTT [450] Crenidens crenidens CCTGAGGACAAATATCTTTTTGAGGGGCAACTGTAATCACTAACCTCCTC [450] Cymatoceps nasutus CCTGAGGGCAAATATCCTTCTGAGGGGCCACCGTCATTACTAACCTCCTC [450] Dentex dentexgb CATGAGGACAAATATCATTCTGAGGAGCTACCGTCATCACCAATCTTCTC [450] Dentex tumifrons CATGAGGACAAATGTCCTTCTGAGGGGCCACCGTCATTACCAACCTCCTC [450] Diplodus argenteus CATGAGGACAAATGTCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTG [450] Diplodus bermudensis CATGAGGACAAATATCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTG [450] Diplodus cervinus CATGAGGACAAATGTCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTA [450] Diplodus holbrooki CATGAGGACAAATGTCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTG [450] Evynnis japonica CTTGAGGACAAATGTCATTCTGAGGGGCCACTGTCATTACCAACCTCCTT [450] Gymnocrotaphus curvidens CATGAGGACAAATATCCTTCTGAGGAGCAACTGTCATCACTAATCTCTTA [450] Lagodon rhomboides CATGAGGGCAGATATCCTTCTGAGGAGCGACCGTCATTACCAACCTCCTA [450] Lithognathus mormyrus CATGAGGACAAATGTTCTTCTGAGGGGCAACCGTCATCACCAACCTACTT [450] Oblada melanura CATGAGGACAAATATCCTTCTGAGGGGCAACCGTCATTACTAACCTCCTC [450] Pachymetopon aeneum CATGAGGACAAATATCCTTCTGAGGGGCAACTGTTATTACCAAACTCTTA [450] Pagellus bogaraveo CATGAGGACAAATGTCCTTCTGAGGGGCCACCGTCATTACTAACCTCCTG [450] Pagellus bellottii CATGAGGACAAATATCATTCTGAGGGGCTACTGTCATTACCAACCTTCTC [450] Pagrus auratus CTTGAGGACAAATATCCTTCTGAGGAGCCACTGTCATCACTAACCTCCTT [450] Pagrus auriga CATGAGGGCAAATATCGTTCTGAGGGGCCACCGTCATTACTAATCTCCTC [450] Pagrus pagrus CGTGAGGACAAATATCATTCTGAGGAGCCACCGTCATCACCAACCTCCTT [450] Petrus rupestris CGTGAGGGCAAATATCCTTGTGAGGCGCGACTGTCATTACCAACCTCGTT [450] Porcostoma dentata CTTGAGGACAAATATCCTTCTGAGGAGCCACTGTTATTACCAACCTCCTT [450] Pterogymnus laniarius CCTGAGGACAAATATCCTTCTGAGGGGCCACCGTTATTACCAACCTACTC [450] Polyamblyodon germanum CATGAGGACAAATATCCTTCTGAGGGGCGACTGTTATTACCAGCCTTTTA [450] Polysteganus praeorbitalis CCTGAGGACAAATATCATTCTGAGGGGCCACTGTTATTACCAACCTCCTC [450] Rhabdosargus thorpei CATGAGGACAGATATCTTTCTGAGGGGCAACCGTCATCACCAACCTTCTA [450] Sarpa salpa CATGAGGGCAAATATCCTTCTGAGGGGCAACCGTCATCACCAACCTCTTA [450] Sparidentex hasta CTTGAGGGCAAATATCCTTTTGAGGGGCAACCGTTATTACTAACCTCTTG [450] Sparodon durbanensis CATGAGGACAAATGTCTTTCTGAGGGGCTACCGTTATTACCAACCTTCTG [450] Sparus auratus CATGAGGACAAATATCTTTCTGAGGGGCAACTGTTATTACCAACCTTCTT [450] Spondyliosoma cantharus CCTGAGGACAAATGTCATTTTGGGGAGCAACCGTCATTACTAACCTCCTC [450] Stenotomus chrysops CATGAGGACAAATATCCTTTTGAGGAGCAACCGTCATTACTAACCTCCTA [450] Spicara alta CATGGGGACAAATATCCTTCTGAGGCGCTACCGTCATTACCAACCTCCTT [450] Spicara maena CCTGAGGACAAATGTCATTTTGAGGGGCAACCGTCATTACTAACCTCCTT [450] Cyprinus carpio CATGAGGACAAATATCCTTTTGAGGCGCCACAGTAATCACAAACCTCCTA [450] Luxilus zonatus CATGGGGCCAAATATCCTTCTGAGGTGCTACCGTTATTACAAATCTTCTA [450] Centropomus undecimalis CCTGAGGACAAATATCATTCTGAGGTGCTACCGTTATCACCAACCTCCTC [450] Dicentrarchus labraxgb CCTGAGGACAAATATCTTTTTGAGGCGCTACAGTTATTACTAATCTATTA [450] Dicentrarchus punctatus CCTGAGGACAAATATCCTTCTGAGGGGCTACAGTTATTACTAATTTATTA [450] Lateolabrax japonicus CATGAGGTCAAATATCCTTCTGAGGGGGCACCGTCATCACCAACCTCCTG [450] Lateolabrax japonicus2 CATGAGGGCAGATATCCTTCTGAGGGGGCACCGTCATCACTAACCTCCTG [450] Lateolabrax latus CGTGAGGCCAAATGTCTTTCTGGGGGGCCACCGTCATCACCAACCTTCTA [450] Morone americanus CGTGAGGTCAAATGTCTTTCTGAGGAGCAACAGTCATCACCAATTTATTA [450] Morone chrysops CCTGAGGCCAAATATCTTTTTGAGGGGCAACAGTTATTACCAATTTATTA [450] Morone mississippiensisgb CATGAGGCCAAATGTCCTTCTGAGGGGCAACAGTCATCACCAATTTATTA [450] Morone saxatilis CCTGAGGTCAGATATCTTTCTGAGGGGCAACAGTCATTACTAATTTATTA [450] Haemulon sciurus CGTGAGGACAAATGTCCTTCTGAGGTGCCACCGTCATCACAAACCTCCTC [450] Pomadasys maculatus CATGAGGACAAATGTCCTTTTGAGGTGCTACCGTCATCACAAACCTACTC [450] Caesio cuning CATGAGGACAAATGTCCTTCTGAGGTGCTACCGTCATTACCAACCTCCTC [450] Lutjanus decussatus CCTGAGGACAAATATCATTCTGAGGAGCCACCGTTATTACCAACCTGCTT [450] Lethrinus ornatus CATGAGGACAAATGTCTTTCTGAGGGGCCACAGTCATTACAAATCTCCTA [450] Lethrinus rubrioperculatus CATGAGGACAAATATCTTTCTGAGGGGCTACCGTAATTACAAACCTCCTC [450] Nemipterus marginatus CATGAGGCCAAATGTCATTCTGAGGCGCCACCGTAATTACAAACCTTCTT [450] Scolopsis ciliatus CCTGAGGCCAAATGTCATTCTGAGGTGCAACCGTAATCACTAACCTTTTA [450] 57

72 Acanthopagrus berda TCCGCCGTCCCCTATATTCGCGGAACACTCGTCCAATGAATTTGAGGTGG [500] Archosargus probatocephalus TCCGCTGTCCCTTACGTTGGAGGCACCCTAGTCCAATGAATTTGAGGAGG [500] Argyrops spinifer TCCGCTGTCCCTTATGTAGGCGGTACCCTTGTTCAATGAATTTGAGGGGG [500] Argyrozona argyrozona TCTGCCGTCCCATATGTAGGCGGCACCCTTGTACAATGAATTTGAGGAGG [500] Boops boopsgb TCCGCTGTCCCCTACGTCGGAGGGACCCTCGTTCAATGAATCTGGGGTGG [500] Boopsoidea inornata TCCGCTGTCCCTTACATTGGCGGTACCCTCGTCCAATGAATCTGAGGGGG [500] Calamus nodosus TCGGCTGTACCATATGTCGGGAGCACCCTAGTTCAATGAATCTGGGGAGG [500] Cheimerius nufar TCCGCCGTCCCATATGTAGGCGGCACCCTCGTTCAATGAATCTGAGGGGG [500] Chrysoblephus cristiceps TCCGCCGTTCCATATGTAGGCGGCACCCTTGTCCAATGAATCTGAGGAGG [500] Crenidens crenidens TCCGCTGTCCCCTACGTCGGCGGCACCTTCGTCCAATGAATTTGAGGCGG [500] Cymatoceps nasutus TCCGCCGTTCCATACGTAGGTGGCACCCTCGTCCAATGAATCTGAGGGGG [500] Dentex dentexgb TCCGCTGTCCCATATGTAGGTGGTACCCTAGTTCAATGAATTTGAGGGGG [500] Dentex tumifrons TCCGCTGTTCCCTACGTAGGCGGCACCCTTGTCCAATGAATTTGAGGGGG [500] Diplodus argenteus TCCGCCGTTCCCTACGTAGGAGGAACTCTCGTTCAATGGATCTGAGGCGG [500] Diplodus bermudensis TCCGCCGTTCCCTACGTAGGAGGAACTCTCGTTCAATGAATCTGAGGCGG [500] Diplodus cervinus TCCGCCGTTCCCTACGTAGGGGGAACTCTAGTTCAATGAATCTGAGGGGG [500] Diplodus holbrooki TCCGCCGTTCCCTACGTAGGAGGAACTCTCGTTCAATGGATCTGAGGCGG [500] Evynnis japonica TCTGCCGTCCCCTATGTAGGTGGCACCCTTGTTCAATGGATCTGAGGAGG [500] Gymnocrotaphus curvidens TCCGCTGTTCCCTACGTTGGTGGCACTCTCGTCCAATGAATCTGAGGAGG [500] Lagodon rhomboides TCCGCTGTTCCCTACATTGGAGGCACCCTAGTCCAATGAATTTGAGGAGG [500] Lithognathus mormyrus TCCGCCGTCCCTTATGTTGGTGGCACCCTCGTACAATGGATCTGAGGTGG [500] Oblada melanura TCTGCCGTCCCCTACGTCGGAGGGACCCTCGTCCAATGGATCTGAGGGGG [500] Pachymetopon aeneum TCCGCTGTTCCCTACGTTGGCGGCACCCTCGTCCAATGGATCTGAGGAGG [500] Pagellus bogaraveo TCTGCTGTCCCCTACGTCGGTGGAACCCTCGTTCAATGAATCTGAGGCGG [500] Pagellus bellottii TCCGCCGTCCCATACGTGGGCGGCACTCTCGTTCAATGAATCTGGGGCGG [500] Pagrus auratus TCTGCCGTTCCATATGTAGGTGGCACCCTTGTTCAATGGATTTGAGGAGG [500] Pagrus auriga TCTGCTGTCCCATACGTGGGCGGCACCCTCGTCCAATGAATCTGAGGGGG [500] Pagrus pagrus TCCGCCGTTCCCTACGTAGGCGGTACTCTCGTTCAATGGATTTGAGGAGG [500] Petrus rupestris TCCGCCGTCCCATATGTAGGCGGTACCCTCGTCCAATGAATTTGAGGGGG [500] Porcostoma dentata TCCGCCGTCCCATATGTGGGCGGCACCCTTGTCCAGTGAATTTGAGGTGG [500] Pterogymnus laniarius TCTGCCGTCCCATACGTCGGCGGCACCCTTGTCCAGTGAATTTGAGGGGG [500] Polyamblyodon germanum TCCGCTGTTCCCTACGTTGGCAGCACCCTCGTCCAATGAATCTGAGGAGG [500] Polysteganus praeorbitalis TCCGCCGTACCATACGTGGGTGGCACTCTCGTACAATGGATTTGAGGGGG [500] Rhabdosargus thorpei TCCGCCGTACCCTACATCGGTGGTACTCTTGTCCAATGATTCTGAGGTGG [500] Sarpa salpa ACCGCTGTCCCCTACGTTGGCGGCACCCTTGTCCAATGAATCTGGGGAGG [500] Sparidentex hasta TCCGCCGTCCCCTATGTTGGCGGAACACTTGTCCAATGAATTTGAGGGGG [500] Sparodon durbanensis TCCGCCGTACCCTACGTCGGCGGCACTCTTGTCCAATGAATTTGGGGGGG [500] Sparus auratus TCCGCCGTCCCCTATGTTGGAGGCACTCTTGTCCAATGAATTTGAGGAGG [500] Spondyliosoma cantharus TCCGCGGTTCCCTACGTCGGGGGCACTCTTGTGCAATGAATCTGAGGAGG [500] Stenotomus chrysops TCAGCCGTTCCCTACGTTGGAGGCACCCTAGTTCAGTGGATCTGGGGAGG [500] Spicara alta TCTGCCGTCCCATATGTAGGCGGCACCCTTGTACAATGAATCTGAGGGGG [500] Spicara maena TCCGCTGTTCCTTACGTTGGAGGCACTCTTGTACAATGAATCTGAGGGGG [500] Cyprinus carpio TCTGCCGTACCATACATGGGAGACATGTTAGTCCAATGAATCTGAGGTGG [500] Luxilus zonatus TCAGCAGTGCCTTATATAGGGGACACCCTTGTACAGTGGATTTGAGGCGG [500] Centropomus undecimalis TCCGCCGTACCCTACGTAGGAGACATCCTAGTCCAATGAATCTGAGGAGG [500] Dicentrarchus labraxgb TCCGCCGTACCTTATGTAGGTAATACACTAGTTCAGTGGATTTGAGGGGG [500] Dicentrarchus punctatus TCCGCCGTACCTTATGTAGGCAACACACTAGTTCAGTGAATTTGAGGAGG [500] Lateolabrax japonicus TCCGCTGTACCCTACGTAGGAAACACTCTCGTCCAATGAATCTGAGGCGG [500] Lateolabrax japonicus2 TCCGCTGTTCCATATGTAGGCAACACCCTGGTCCAATGAATCTGAGGCGG [500] Lateolabrax latus TCCGCCGTCCCCTACATCGGTAACACCCTTGTCCAATGGATTTGGGGCGG [500] Morone americanus TCTGCCGTCCCCTATGTAGGAAACACCCTGGTTCAATGAATCTGGGGCGG [500] Morone chrysops TCCGCTGTCCCCTATGTAGGGAACACCCTAGTTCAATGAATCTGAGGAGG [500] Morone mississippiensisgb TCCGCCGTCCCCTATGTAGGAAACACCCTAGTTCAATGGATCTGAGGTGG [500] Morone saxatilis TCCGCTTTGCCCTATGTAGGAAACACCCTAGTTCAATGAATCTGGGGCGG [500] Haemulon sciurus TCTGCCGTTCCCTACGTCGGAAACACACTAGTCCAATGAATCTGAGGGGG [500] Pomadasys maculatus TCAGCCGTCCCCTACGTTGGTAACACTCTCGTTCAATGAATCTGAGGGGG [500] Caesio cuning TGTGCGATCCCCTACGTGGGCAACACCCTAGTCCAATGAGTCTGAGGAGG [500] Lutjanus decussatus TCTGCCATTCCATACGTCGGCAACACCCTTGTCCAATGAATCTGGGGCGG [500] Lethrinus ornatus TCCGCCGTACCTTACGTTGGTAACACACTAGTTCAATGAATCTGAGGGGG [500] Lethrinus rubrioperculatus TCCGCCGTCCCATACGTAGGCAACACCCTAGTTCAATGAATCTGAGGGGG [500] Nemipterus marginatus TCTGCCGTCCCGTATGTCGGAAACACACTAGTTCAATGGATCTGAGGCGG [500] Scolopsis ciliatus TCCGCAGTCCCGTATGTCGGAAACATACTAGTCCAATGAATTTGAGGAGG [500] 58

73 Acanthopagrus berda ATTTTCAGTTGACAATGCAACCCTAACGCGCTTCTTCGCTTTCCACTTCC [550] Archosargus probatocephalus CTTCTCGGTAGACAACGCAACCTTAACCCGATTCTTCGCCTTCCACTTCC [550] Argyrops spinifer TTTCTCAGTAGACAATGCAACCCTAACCCGATTCTTTGCTTTCCATTTTC [550] Argyrozona argyrozona CTTTTCAGTAGACAACGCCACCCTCACTCGATTTTTTGCCTTCCACTTCC [550] Boops boopsgb CTTCTCGGTAGACAATGCAACTCTAACCCGCTTCTTTGCCTTCCACTTCC [550] Boopsoidea inornata ATTCTCAGTAGACAATGCAACCCTAACTCGCTTCTTTGCCTTCCATTTTC [550] Calamus nodosus GTTTTCAGTAGACAATGCAACCTTAACCCGATTCTTTGCCTTCCACTTCC [550] Cheimerius nufar CTTTTCAGTAGACAACGCCACCCTAACCCGATTTTTTGCCTTCCATTTCC [550] Chrysoblephus cristiceps CTTCTCGGTCGATAACGCCACCCTCACACGATTCTTCGCCTTCCACTTTC [550] Crenidens crenidens GTTTTCAGTCGACAATGCAACTCTCACCCGTTTCTTTGCCTTCCACTTTC [550] Cymatoceps nasutus CTTTTCAGTAGATAACGCCACTCTCACACGATTCTTTACCTTCCACTTCC [550] Dentex dentexgb CTTCTCGGTAGATAATGCCACCTTAACCCGATTTTTTGCCTTCCACTTCC [550] Dentex tumifrons CTTCTCTGTAGACAACGCTACCTTAACCCGGTTCTTTGCCTTCCACTTCC [550] Diplodus argenteus ATTTTCAGTAGACAATGCAACCCTAACCCGATTCTTCGCCTTCCACTTCC [550] Diplodus bermudensis GTTTTCAGTAGACAATGCAACCCTAACCCGATTCTTCGCCTTCCACTTCC [550] Diplodus cervinus GTTTTCAGTAGACAATGCGACCCTGACCCGCTTCTTTGCCTTCCACTTCC [550] Diplodus holbrooki GTTTTCAGTAGACAATGCAACCCTAACCCGATTCTTCGCCTTCCACTTCC [550] Evynnis japonica CTTTTCAGTAGACAACGCCACCTTAACTCGGTTTTTTGCCTTCCACTTCC [550] Gymnocrotaphus curvidens GTTTTCAGTAGATAATGCAACACTAACCCGCTTCTTTGCCTTCCATTTTC [550] Lagodon rhomboides CTTTTCAGTAGACAACGCAACCCTAACCCGGTTCTTTGCCTTCCACTTCC [550] Lithognathus mormyrus ATTCTCAGTAGACAATGCAACTTTAACCCGCTTCTTTGCCTTCCACTTCC [550] Oblada melanura ATTTTCGGTAGATAACGCCACCCTAACCCGCTTCTTTGCCTTCCACTTTC [550] Pachymetopon aeneum ATTTTCAGTAGATAACGCCACCTTAACCCGCTTCTTTGCCTTCCACTTTC [550] Pagellus bogaraveo CTTCTCAGTTGACAATGCAACCCTAACTCGCTTCTTTGCTTTCCACTTCC [550] Pagellus bellottii CTTTTCAGTAGACAACGCTACCCTAACCCGATTCTTCGCCTTCCACTTCC [550] Pagrus auratus CTTTTCAGTAGACAATGCCACCTTAACTCGGTTCTTTGCCTTCCACTTCC [550] Pagrus auriga CTTCTCAGTAGATAACGCCACCCTAACCCGATTTTTTGCCTTCCACTTTC [550] Pagrus pagrus CTTCTCAGTAGATAACGCTACCCTAACCCGATTCTTTGCCTTCCACTTCC [550] Petrus rupestris CTTTTCGGTAGATAACGCCACTCTCACACGATTCTTTGCCTTCCACTTCC [550] Porcostoma dentata CTTTTCAGTAGATAACGCCACTCTCACACGATTCTTTGCCTTCCACTTCC [550] Pterogymnus laniarius CTTTTCAGTAGACAACGCCACCCTAACCCGATTTTTTGCCTTCCACTTCC [550] Polyamblyodon germanum ATTTTCAGTTGATAACGCCACCTTAACCCGCTTCTTTGCCTTCCACTTTC [550] Polysteganus praeorbitalis GTTTTCAGTAGATAACGCCACCCTCACACGATTCTTCGCCTTCCACTTCC [550] Rhabdosargus thorpei CTTTTCAGTTGACAACGCAACCCTTACCCGCTTCTTTGCCTTCCATTTCC [550] Sarpa salpa GTTGTCAGTTGACAACGCAACACTAACCCGCTTCTTTGCCTTCCACTTTC [550] Sparidentex hasta GTTTTCAGTTGACAACGCAACCCTAACCCGCTTCTTCGCTTTCCACTTCC [550] Sparodon durbanensis CTTTTCAGTCGACAACGCAACCCTAACCCGCTTCTTTGCCTTCCACTTCC [550] Sparus auratus GTTTTCAGTTGATAATGCAACCCTGACCCGCTTCTTTGCCTTCCATTTCC [550] Spondyliosoma cantharus TTTTTCAGTAGACAATGCAACCCTAACCCGTTTCTTTGCCTTCCACTTCC [550] Stenotomus chrysops TTTCTCAGTCGACAACGCAACCTTAACCCGATTCTTTGCCTTCCACTTCC [550] Spicara alta CTTCTCAGTAGATAACGCCACCCTAACCCGATTCTTTGCCTTCCACTTCC [550] Spicara maena GTTCTCAGTAGACAATGCAACCTTAACCCGCTTCTTCGCCTTCCACTTCC [550] Cyprinus carpio GTTCTCAGTAGACAATGCAACACTAACACGATTCTTCGCATTCCACTTCC [550] Luxilus zonatus CTTTTCAGTAGATAACGCCACGTTAACACGATTCTTCGCCTTCCACTTCC [550] Centropomus undecimalis CTTCTCAGTTGACAACGCAACCCTCACCCGATTCTTTGCCTTCCACTTCC [550] Dicentrarchus labraxgb CTTTTCAGTAGATAACGCCACTCTTACACGGTTCTTCGCGTTCCACTTCC [550] Dicentrarchus punctatus GTTTTCAGTAGATAACGCCACCCTCACACGGTTCTTCGCATTCCACTTCC [550] Lateolabrax japonicus CTTTTCAGTAGACAATGCCACCCTTACCCGCTTCTTCGCCTTCCACTTTT [550] Lateolabrax japonicus2 TTTTTCAGTAGATAACGCCACCCTTACCCGCTTTTTCGCTTTCCACTTTC [550] Lateolabrax latus GTTTTCAGTAGATAACGCCACCCTTACCCGTTTCTTCGCTTTCCACTTCC [550] Morone americanus CTTTTCAGTCGATAACGCTACACTCACACGATTCTTTGCTTTCCACTTCC [550] Morone chrysops CTTCTCAGTTGATAATGCCACACTCACACGATTCTTCGCTTTCCACTTCC [550] Morone mississippiensisgb CTTTTCAGTTGATAACGCCACACTCACACGATTCTTTGCTTTCCACTTCC [550] Morone saxatilis CTTCTCAGTTGATAACGCCACACTCACACGATTCTTCGCTTTCCACTTCC [550] Haemulon sciurus CTTCTCTGTAGACAATGCAACGCTAACTCGCTTCTTTGCCTTCCATTTCC [550] Pomadasys maculatus TTTCTCCGTTGACAACGCCACCCTCACTCGATTCTTTGCCTTCCACTTCC [550] Caesio cuning CTTTTCGGTAGATAACGCCACCCTCACCCGATTCTTCGCATTCCACTTCC [550] Lutjanus decussatus CTTCTCAGTAGACAACGCCACCCTAACCCGCTTCTTCGCATTCCACTTCC [550] Lethrinus ornatus ATTCTCAGTAGACAACGCAACACTAACCCGCTTCTACGCCCTCCACTTCC [550] Lethrinus rubrioperculatus CTTTTCGGTTGACCACGCAACCCTAACCCGATTCTTCGCCTTCCACTTCT [550] Nemipterus marginatus ATTCTCAGTAGATAATGCCACCCTCACCCGATTCTTTGCATTCCACTTCC [550] Scolopsis ciliatus CTTCTCAGTTGACCACGCCACACTCACCCGTTTCCTTACCTTCCACTTCC [550] 59

74 Acanthopagrus berda TCCTCCCTTTTATTGTAGCCGCTATAACTATACTCCACCTCCTCTTCCTA [600] Archosargus probatocephalus TCCTTCCATTCATCGTAGCAGCAATAACTATGCTCCACCTCCTATTCCTG [600] Argyrops spinifer TCCTCCCCTTTATTGTTGCAGCCATAACTATACTTCACCTTCTCTTCTTA [600] Argyrozona argyrozona TTCTGCCCTTTATTGTTGCAGCCGTAACTATACTTCACCTTCTTTTCCTA [600] Boops boopsgb TCCTCCCCTTCGTCGTTGCAGCCATGACCATGCTTCACCTCCTCTTCCTA [600] Boopsoidea inornata TTCTTCCCTTTGTTGTCGCAGCCATAACCATGCTTCACCTCCTATTCCTG [600] Calamus nodosus TTTTCCCCTTTGTTGTTGCAGCTATAACTATGCTGCACCTCCTTTTCCTA [600] Cheimerius nufar TCCTTCCCTTTATTGTCGCAGCCGTAACTATACTCCACCTTCTCTTCCTG [600] Chrysoblephus cristiceps TCCTGCCCTTTATTGTTGCAGCCATAACCATGCTTCATCTTCTTTTCTTA [600] Crenidens crenidens TCCTCCCCTTTATCGTTGCAGCTATAACTATACTCCACCTACTGTGCCTT [600] Cymatoceps nasutus TTCTACCCTTTATCGTTGCAGCTATAACTATACTTCACCTCCTTTTCTTA [600] Dentex dentexgb TCCTCCCCTTTATTGTTGCGGCCGTAACTATGCTCCACCTTCTTTTTCTG [600] Dentex tumifrons TTCTGCCCTTCATTGTAGCAGCCATAACCATACTTCATCTTCTTTTCTTA [600] Diplodus argenteus TTCTCCCCTTCATTGTCGCCGCCATAACCATGCTTCACCTCTTATTCCTG [600] Diplodus bermudensis TTCTCCCCCTCGTTGTCGCCGCCATAACCATGCTTCACCTCTTATTCCTG [600] Diplodus cervinus TTCTTCCCTTCATTATTGCTGCCATGACCATGCTTCACCTCTTATTCCTG [600] Diplodus holbrooki TTCTTCCCTTCGTTGTCGCCGCCATAACCATGCTTCACCTCTTATTCCTG [600] Evynnis japonica TCTTCCTCTTTATTGTTGCAGCCATAATCATACTTCATCTTCTTTTCTTA [600] Gymnocrotaphus curvidens TTCTTCCCTTTGTTGTCGCAGCCATAACCTTACTTCACCTACTGTTCCTG [600] Lagodon rhomboides TCCTTCCATTCATCGTAGCAGCAATAACAATACTTCACCTTCTATTCCTA [600] Lithognathus mormyrus TCCTTCCCTTCATTGTTGCCGCTATGACAATGCTCCATCTGCTATTTCTT [600] Oblada melanura TCCTTCCCTTTATTGTTGCCGCCATAACTATGCTCCACCTCCTATTTTTA [600] Pachymetopon aeneum TCCTTCCCTTTGTTGTCGCAGCCATAACCATACTTCACCTACTATTCTTA [600] Pagellus bogaraveo TCCTACCCTTCGTCGTAGCCGCTATAACCATACTGCACCTCTTATTCCTT [600] Pagellus bellottii TCCTGCCCTTCATTGTTGCAGCCATAACCATACTACATCTTCTCTTCTTA [600] Pagrus auratus TTCTACCTTTTATTGTTGCAGCCATGACTATACTTCACCTTCTTTTCTTA [600] Pagrus auriga TCCTGCCTTTCATTGTTGCAGCCGTAACCATACTCCATCTTCTTTTCTTA [600] Pagrus pagrus TCCTTCCCTTTATTGTTGCAGCCATAACTATGCTTCACCTTCTTTTCCTA [600] Petrus rupestris TCCTGCCCTTTATTGTTGCAGCCATGACCATGCTTCACCTTCTTTTCTTA [600] Porcostoma dentata TCCTGCCCTTTATTGTTGCAGCCATAACCATGCTTCACCTTCTTTTCTTA [600] Pterogymnus laniarius TCCTGCCCTTTATCGTCGCAGCCATAACCATACTTCACCTTCTTTTCCTC [600] Polyamblyodon germanum TCCTCCCCTTTGTTGTCGCAGCCATAACCATACTTCACCTACTATTCCCG [600] Polysteganus praeorbitalis TCCTACCATTTATCGTCGCAGCTATAACCATACTCCACCTTCTTTTCTTA [600] Rhabdosargus thorpei TCCTCCCCTTTATTGTTGCAGCCATAACTATGCTTCACCTCCTATTCCTT [600] Sarpa salpa TCCTTCCCTTCGTCGTTGCGGCTATAACCATACTTCATCTCCTTTTCCTG [600] Sparidentex hasta TCCTCCCCTTTATTGTTGCCGCCATGACTATACTCCACCTCCTCTTCCTA [600] Sparodon durbanensis TCCTCCCCTTTATTGTTGCAGCCATGACTATGCTACACCTTCTATTCCTT [600] Sparus auratus TTCTCCCCTTCGTCATTGCAGCCATAACCATACTGCATCTTCTGTTCCTC [600] Spondyliosoma cantharus TTCTTCCCTTCATTGTTGCAGCTATGACCATACTTCACCTCTTATTCCTA [600] Stenotomus chrysops TCCTCCCCTTTATTGTTGCAGCAATAACTATGCTCCACCTCCTATTCCTA [600] Spicara alta TTCTGCCCTTTATTGTAGCAGCCATAACTATACTTCACCTTCTTTTCTTA [600] Spicara maena TCCTTCCTTTCATTGTTGCAGCCATAACCATACTTCACCTCTTATTCCTG [600] Cyprinus carpio TACTACCATTTGTTATTGCCGCCGCAACCATCATCCACCTGCTGTTCCTC [600] Luxilus zonatus TGTTCCCATTCGTCATCGCCGGCGCAACTGTTCTCCACTTACTATTTTTA [600] Centropomus undecimalis TACTTCCCTTTGTAGTCGCAGCCATAATAATCCTCCATCTCTTATTCCTA [600] Dicentrarchus labraxgb TATTCCCATTCGTAATCGCTGGTGCCACAATACTACACCTCCTTTTTCTT [600] Dicentrarchus punctatus TCTTTCCATTCGTAATTGCAGGTGCCACCCTTCTGCACCTTCTTTTCCTC [600] Lateolabrax japonicus TATTCCCCTTCATTATTGCGGGGGCAACCGTCATCCATCTGCTTTTCCTC [600] Lateolabrax japonicus2 TGTTCCCCTTCGTTATTGCGGGAGCAACCCTCATCCATCTGATTTTCCTC [600] Lateolabrax latus TATTCCCCTTCGTCATTGCGGGTGCAACGTTTATTCACCTGCTTTTCCTT [600] Morone americanus TTTTCCCATTCATCATTGCCGCCGCCACCCTCTTACACCTCCTCTTTCTC [600] Morone chrysops TCTTCCCATTTGTCATCGCTGCTGCCACCGTCTTACACCTTTTGTTCCTC [600] Morone mississippiensisgb TTTTCCCATTCATCATTGCCGCTGCCGCTATCTTACACCTCCTCTTCCTC [600] Morone saxatilis TCTTCCCGTTCGTCATTGCTGCTGCCACCATTTTACACCTCCTTTTCCTT [600] Haemulon sciurus TTCTCCCCTTCATCATCGCCGCCGCAACGGTCATCCACCTTCTTTTCCTC [600] Pomadasys maculatus TTCTTCCACTTATCGTTACAGCTGCAACCCTAATTCACCTCTTATTCCTC [600] Caesio cuning TTCTACCCTTTATCATCGCAGCAGTAACCATACTCCACCTCCTATTCCTG [600] Lutjanus decussatus TCCTCCCGTTCATCATTGCAGCCGTTACAATACTACACCTGCTTTTCCTC [600] Lethrinus ornatus TCTCTCCATTCGTAATTGCAGCAGCCACAACACCTCACCTCCGGTTCCTA [600] Lethrinus rubrioperculatus TATTCCCCTTCGTCATTGCAGCAGCCACTATACTTCACCTTCTTTTCCTC [600] Nemipterus marginatus TATTCCCATTTGTCATTGCCGCTATAACCCTCCTACATTTGCTTTTCCTA [600] Scolopsis ciliatus TCTTCCCGTTTGTAATTGCAGCTGCTACCCTCCTTCACCTTCTGTTCCTC [600] 60

75 Aanthopagrus berda CATGAAACAGGCTCAAACAATCCTCTAGGTTTAAACTCCGACACGGACAA [650] Archosargus probatocephalus CACGAAACAGGATCAAACAACCCCCTCGGCCTAAACTCCGACACAGACAA [650] Argyrops spinifer CACGAAACGGGCTCAAATAATCCTCTGGGCCTAAACTCAGACACAGATAA [650] Argyrozona argyrozona CATGAAACTGGCTCAAATAACCCCCTCGGGCTAAACTCAGACGCAGATAA [650] Boops boopsgb CACGAAACAGGCTCAAACAACCCAATCGGCCTAAACTCTGACACAGACAA [650] Boopsoidea inornata CATGAAACAGGCTCAAACAACCCCCTTGGTCTAAACTCTGACACAGACAA [650] Calamus nodosus CACGAAACAGGCTCAAATAACCCCCTCGGCCTAAACTCCGACACAGATAA [650] Cheimerius nufar CACGAAACAGGCTCAAACAACCCCCTTGGCCTAAACTCAGACACAGACAA [650] Chrysoblephus cristiceps CATGAGACAGGTTCAAATAACCCTCTCGGCCTAAACTCAGACACAGACAA [650] Crenidens crenidens CACGAAACAGGCTCAAACAACCCCCTCGGCCTGAACTCTGACACAGACAA [650] Cymatoceps nasutus CATGAAACAGGCTCAAACAACCCCCTTGGTTTAAACTCAGACACAGACAA [650] Dentex dentexgb CACGAAACAGGCTCAAACAACCCCCTTGGCCTAAACTCCGACACGGACAA [650] Dentex tumifrons CACGAAACAGGCTCAAACAATCCCCTCGGCCTAAACTCAGACACAGACAA [650] Diplodus argenteus CATGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGACACAGACAA [650] Diplodus bermudensis CATGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGACACAGACAA [650] Diplodus cervinus CACGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGATACAGACAA [650] Diplodus holbrooki CATGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGACACAGACAA [650] Evynnis japonica CATGAAACAGGCTCATATAATCCCCTCGGGGTAAATTCAGACACAGACAA [650] Gymnocrotaphus curvidens CATGAAACAGGCTCAAACAACCCCCTTGGTCTAAACTCTGATACAGACAA [650] Lagodon rhomboides CACGAAACAGGATCAAACAATCCCCTCGGCCTAAACTCCGACACAGATAA [650] Lithognathus mormyrus CACGAAACAGGCTCAAACAACCCCCTCGGTCTCAACTCCGACACAGATAA [650] Oblada melanura CATGAAACAGGCTCAAATAACCCCCTTGGCCTAAACTCTGACACAGACAA [650] Pachymetopon aeneum CATGAAACAGGCTCAAACAACCCCCTTGGTCTTAACTCTGATACAGATAA [650] Pagellus bogaraveo CATGAAACAGGTTCAAACAATCCACTCGGCCTAAATTCTGATACAGACAA [650] Pagellus bellottii CATGAAACAGGATCAAACAACCCCTTAGGCCTAAACTCAGACACAGACAA [650] Pagrus auratus CACGAAACAGGCTCAAATAACCCTCTCGGCTTGAACTCAGATACAGACAA [650] Pagrus auriga CACGAGACAGGCTCAAACAATCCCCTAGGTTTAAACTCAGATACAGACAA [650] Pagrus pagrus CACGAAACAGGCTCAAACAACCCCCTCGGCTTAAACTCAGACACAGACAA [650] Petrus rupestris CACGAAACAGGCTCAAACAACCCACTCGGCTTAAACTCAGACGCGGACAA [650] Porcostoma dentata CATGAAACAGGCTCAAACAATCCCCTCGGTCTAAACTCAGACACAGACAA [650] Pterogymnus laniarius CACGAGACAGGTTCAAACAACCCGCTCGGCTTAAACTCAGACACAGATAA [650] Polyamblyodon germanum CATGACACAGGCTCAAACAACCCCCTTGGCCTTAATTCTGACACAGATAA [650] Polysteganus praeorbitalis CATGAAACAGGCTCAAACAACCCCCTAGGACTGAACTCAGACGCAGACAA [650] Rhabdosargus thorpei CATGAAACAGGCTCTAATAACCCCCTCGGACTAAATTCTGACACAGACAA [650] Sarpa salpa CACGAAACTGGTTCAAATAACCCCCTCGGCCTAAACTCCGACACAGATAA [650] Sparidentex hasta CACGAAACAGGCTCCAACAACCCCCTCGGCCTGAACTCCGACACAGACAA [650] Sparodon durbanensis CATGAAACAGGCTCTAACAACCCCCTTGGTCTAAACTCTGACACGGACAA [650] Sparus auratus CATGAAACAGGCTCTAACAACCCCCTCGGCCTAAATTCTGACACAGATAA [650] Spondyliosoma cantharus CACGAAACTGGCTCAAACAACCCCCTTGGCCTAAACTCTAACACAGACAA [650] Stenotomus chrysops CATGAAACAGGCTCAAACAATCCCCTCGGCCTAAATTCTGACACAGACAA [650] Spicara alta CACGAAACAGGCTCAAACAACCCTCTCGGCCTAAATTCAGACACAGACAA [650] Spicara maena CACGAAACCGGGTCTAACAACCCCCTCGGCCTAAACTCTGACACAGACAA [650] Cyprinus carpio CACGAAACAGGATCAAACAACCCGATCGGACTAAACTCAGACGCAGACAA [650] Luxilus zonatus CACGAAACAGGCTCGAACAACCCTGCCGGGTTAAACTCCGACGCCGATAA [650] Centropomus undecimalis CACGAAACAGGCTCAAACAACCCAATAGGCCTAAACTCCAACGTAGACAA [650] Dicentrarchus labraxgb CATCAAACGGGCTCCAATAACCCCTTAGGCCTTAACTCAGATGTAGATAA [650] Dicentrarchus punctatus CACCAGACCGGCTCCAACAACCCCCTGGGCCTGAACTCAGACGTGGACAA [650] Lateolabrax japonicus CACGAAACAGGATCCAACAACCCCCTTGGCCTTAACTCCGACGCGGACAA [650] Lateolabrax japonicus2 CACGAAACAGGATCCAACAACCCCCTTGGGCTTAACTCCGAAGCGGACAA [650] Lateolabrax latus CATGAAACAGGGTCCAACAACCCCCTTGGCCTCAACTCCGACGCAGATAA [650] Morone americanus CATGAGACAGGCTCCAACAATCCTCTAGGCCTCAACTCCGATGTGGATAA [650] Morone chrysops CATGAAACAGGGTCCAACAACCCCTTAGGCCTTAACTCTGATGTAGACAA [650] Morone mississippiensisgb CACGAAACAGGGTCTAATAATCCCCTAGGCCTCAACTCTGATATAGATAA [650] Morone saxatilis CATGAGACGGGGTCCAATAATCCCTTAGGCCTCAACTCTGATGTAGATAA [650] Haemulon sciurus CACCAAACAGGCTCGAACAATCCCCTCGGCCTAAACTCAGACGCAGACAA [650] Pomadasys maculatus CACGAAACAGGATCAAACAATCCCCTTGGACTGAACTCAGACGCCGACAA [650] Caesio cuning CACGAAACTGGGTCAAACAACCCTCTCGGCCTAAACTCAGACGCGGACAA [650] Lutjanus decussatus CACGAAACAGGGTCTAACAACCCTCTAGGCCTAAACTCAGACGTAGACAA [650] Lethrinus ornatus CACGAAACCGGGTCAAACAACCCCCTGGGCCTAAACTCAGACTCAGATAA [650] Lethrinus rubrioperculatus CATGAGACTGGCTCAAATAACCCTTTGGGACTAAACTCAGACTCGGACAA [650] Nemipterus marginatus CACGAAACAGGCTCCAACAACCCCCTAGGCCTCTCATCAGACACAGATAA [650] Scolopsis ciliatus CACGAAACCGGCTCAAATAACCCCCTCGGACTTAATTCTGATACAGATAA [650] 61

76 Acanthopagrus berda AATTTCTTTCCACCCATACTTCTCTTACAAAGACCTTCTAGGTTTCGCTG [700] Archosargus probatocephalus AATTTCATTCCACCCTTACTTCTCATACAAAGACCTCCTGGGATTCGCAG [700] Argyrops spinifer AATTTCCTTCCACCCGTACTTCTCTTACAAAGACCTACTGGGATTTGCAG [700] Argyrozona argyrozona AATTTCCTTCCACCCATATTTCTCTTATAAAGACTTGCTCGGGTTTGCAG [700] Boops boopsgb AATTTCTTTCCACCCATACTTCTCTTACAAAGATTTGCTAGGATTTGCAG [700] Boopsoidea inornata AATTTCTTTTCACCCATACTTCTCTTACAAAGACCTCTTAGGATTTGCAG [700] Calamus nodosus AATCTCCTTCCATCCATACTTTTCTTACAAAGATCTCCTAGGATTTGCGG [700] Cheimerius nufar AATTGCTTTCCACCCCTACTTCTCTTACAAGGACCTACTTGGTTTCGCAG [700] Chrysoblephus cristiceps GATTTCCTTTCACCCTTACTTTTCTTACAAAGACTTACTTGGATTTGCAG [700] Crenidens crenidens AATTTCCTTCCACCCCTATTTCTCATACAAAGACCTTCTGGGCTTTGCAG [700] Cymatoceps nasutus AATTTCCTTCCACCCTTACTTTTCTTACAAAGACTTACTTGGATTTGCAG [700] Dentex dentexgb AATTTCTTTCCACCCTTACTTCTCTTACAAAGACCTCCTTGGATTTGCAG [700] Dentex tumifrons AATTTCTTTCCACCCATACTTTTCTTACAAAGACTTACTTGGGTTCGCAG [700] Diplodus argenteus AATTTCTTTCCACCCATACTTCTCCTACAAAGACCTTCTAGGGTTTGCAG [700] Diplodus bermudensis AATTTCTTTCCACCCATACTTCTCCTATAAAGACCTTCTAGGGTTTGCAG [700] Diplodus cervinus AATTTCTTTCCACCCATACTTTTCCTACAAAGACCTTCTAGGATTTGCAG [700] Diplodus holbrooki AATTTCCTTCCACCCATACTTCTCCTATAAAGACCTTCTAGGCTTTGCAG [700] Evynnis japonica AATCTCTTTCCACCCATACTTATCTTACAAAGACCTGCTTGGTTTTGCAG [700] Gymnocrotaphus curvidens AATTTCTTTTCACCCATACTTTTCTTATAAAGACGTTTTAGGATTTGCAG [700] Lagodon rhomboides AATTTCATTCCACCCATACTTCTCATACAAAGACCTCCTAGGATTCGCAG [700] Lithognathus mormyrus AATTTCATTCCACCCATACTTTTCTTACAAGGACCTTTTAGGCTTTGCGG [700] Oblada melanura AATTTCTTTCCACCCATATTTCTCCTACAAAGACCTTTTAGGATTCGCAG [700] Pachymetopon aeneum AATTTCTTTTCACCCATATTTTTCTTACAAAGACCTTTTAGGATTTGCAG [700] Pagellus bogaraveo AATTTCTTTTCACCCATACTTCTCTTACAAAGACCTACTAGGATTTGCAG [700] Pagellus bellottii AATTTCCTTCCACCCATACTTTTCTTACAAAGACCTACTCGGCTTCGCAG [700] Pagrus auratus AATCTCTTTCCACCCATATTTTTCCTACAAAGACCTGCTCGGTTTCGCAG [700] Pagrus auriga AATCTCCTTCCACCCTTATTTCTCTTATAAAGACCTACTTGGGTTTGCAG [700] Pagrus pagrus AATCTCCTTCCACCCATATTTCTCTTATAAAGACCTACTTGGATTCGCAG [700] Petrus rupestris GATTTCTTTCCACCCATACTTTTCTTACAAAGACTTACTTGGATTTGCAG [700] Porcostoma dentata AATTTCTTTCCACCCTTACTTTTCTTACAAGGACTTACTTGGGTTTGCAG [700] Pterogymnus laniarius AATTTCTTTCCACCCATACTTCTCTTACAAAGACCTGCTTGGATTTGCAG [700] Polyamblyodon germanum AATCTCTTTTCACCCATACTTTTCTTATAAAGACCTTTTAGGATTTGCAG [700] Polysteganus praeorbitalis AATCTCTTTTCATCCCTACTTTTCCTATAAAGACCTACTTGGGTTTGCAG [700] Rhabdosargus thorpei AATTTCGTTCCACCCATACTTTTCTTATAAAGACCTCCTTGGATTTGCAG [700] Sarpa salpa AATGTCATTCCATCCATACTTTTCTTACAAAGACCTGCTAGGGTTTGCAG [700] Sparidentex hasta AATTTCTTTCCACCCATACTTCTCTTATAAAGACCTCCTAGGATTTGCAG [700] Sparodon durbanensis AATCTCGTTCCACCCATACTTTTCTTACAAAGATCTTCTTGGATTTGCAG [700] Sparus auratus AATTTCTTTCCACCCATACTCCTCATATAAAGACCTTCTTGGATTCGCAG [700] Spondyliosoma cantharus AATTTCCTTTCACCCATACTTCTCTTACAAAGATCTGCTAGGGTTTGCAG [700] Stenotomus chrysops AATTTCTTTCCACCCATACTTCTCTTACAAGGATTTATTAGGGTTCGCAG [700] Spicara alta AATTTCTTTCCACCCATATTTTTCTTACAAAGACCTGCTTGGATTTGCAG [700] Spicara maena AATTTCTTTCCACCCATACTTCTCTTACAAAGACCTATTGGGATTTGCAG [700] Cyprinus carpio AGTCTCTTTCCACCCGTACTTCTCATACAAAGACCTCCTTGGGTTCGTAA [700] Luxilus zonatus AATCTCCTTCCACCCTTACTTCTCCTATAAAGACCTCCTTGGCTTCGTTC [700] Centropomus undecimalis AATCCCATTTCACCCCTACTTCTCCTACAAAGACCTCCTCGGCTTCGTAG [700] Dicentrarchus labraxgb AATCTCATTCCACCCCTACTTCTCATACAAAGATCTCCTAGGGTTCGCAA [700] Dicentrarchus punctatus AATTTCATTCCACCCTTACTTCTCATACAAAGACCTTCTCGGCTTCGCAA [700] Lateolabrax japonicus AATCCCCTTCCACCCGTACTTCTCCTATAAAGACCTGCTCGGCTTTGCGG [700] Lateolabrax japonicus2 AATCCCTTTCCACCCGTATTTCTCCTACAAAGACCTGCTAGGATTTGCAG [700] Lateolabrax latus AATCCCCTTCCACCCGTACTTTTCCTACAAAGACCTGCTAGGGTTCGCAG [700] Morone americanus AATCCCATTCCACCCCTATTTTTCATACAAAGACCTCCTAGGAGCCACAG [700] Morone chrysops AATCCCATTTCACCCCTACTTTTCATACAAAGACATTTTAGGCTTCGCAG [700] Morone mississippiensisgb AATCCCATTCCACCCCTACTTTTCATACAAAGACCTCCTAGGGTTCACAG [700] Morone saxatilis AATTCCATTCCACCCCTATTTCTCATACAAAGATCTTTTAGGGTTCGCAG [700] Haemulon sciurus AATCTGATTCCACCCATATTTCTCATATAAAGACCTCCTAGGCTTTGCAG [700] Pomadasys maculatus AATCTCATTCCACCCCTATTTGTCCTACAAAGAGGTGTTAGGCTTTGTAG [700] Caesio cuning AATGTCTTTCCACCCCTACTTCTCATACAAAGACCTCCTAGGCTTCGTAG [700] Lutjanus decussatus AATCTCCTTCCACCCTTACTTCTCCTATAAAGACCTACTAGGCTTCGTGG [700] Lethrinus ornatus AATCTCCTTCCACCCCTACTTCTCCTACAAAGACCTCCTAGGATTTGCAG [700] Lethrinus rubrioperculatus AATTTCTTTCCACCCTTACTTCTCCTATAAAGACCTGCTAGGATTTGCAG [700] Nemipterus marginatus AATCTCTTTCCATCCATACTTCTCCTACAAGGACCTTCTGGGCTTTGCAG [700] Scolopsis ciliatus AATCTCTTTCCACCCATACTTCTCATACAAAGACCTTATCGGCTTCGCAG [700] 62

77 Acanthopagrus berda GTGTGATTATTCTACTAACTTGTCTTGCACTATTCGCCCCCAATCTTCTT [750] Archosargus probatocephalus GTGTAATTATTTTACTAACCTGCCTCGCATTATTCGCCCCCAGCCTCTTA [750] Argyrops spinifer GTGTGATTATCCTATTAACTTGCCTCGCATTATTTGCCCCTAACCTCCTA [750] Argyrozona argyrozona GGGTGCTCATCTTACTAACCTGCCTCGCACTATTTTCTCCTAACCTCTTA [750] Boops boopsgb GCGTAATTATTCTACTCACTTGCCTTGCATTATTCGCCCCCAACCTTCTA [750] Boopsoidea inornata CTGTAATCATTTTACTAACCTGCCTCGCACTATTTGCCCCCAACCTCCTG [750] Calamus nodosus GGGTAATCATTTTACTAACCTGCCTCGCACTATTTTCCCCCAACCTCTTA [750] Cheimerius nufar GCGTAATTATCTTATTAACCTGCCTCGCACTATTTGCCCCCAACCTGCTA [750] Chrysoblephus cristiceps GAGTAATTATTTTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCTTA [750] Crenidens crenidens GAGTAATCATTTTACTAACCTGCCTCGCGCTATTCGCCCCCAACCTCTTA [750] Cymatoceps nasutus GAGTAATTATCTTATTAACCTGCCTCGCACTATTTGCTCCCAACCTCCTA [750] Dentex dentexgb GCGTCATTATCTTACTAACCTGTCTCGGACTATTTGCCCCTAACCTCTTA [750] Dentex tumifrons GCGTAATTATCTTGTTAACCTGCCTCGCACTATTTGCCCCCAATCTCCTA [750] Diplodus argenteus GTGTAATCATTCTATTAACCTGTCTTGCACTATTTGCCCCCAACCTTCTC [750] Diplodus bermudensis GTGTAATCATTCTATTAACCTGTCTTGCACTATTTGCCCCCAACCTTCTC [750] Diplodus cervinus GTGTAATTATTCTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCCTC [750] Diplodus holbrooki GTGTAATCATTCTATTAACCTGTCTTGCACTATTTGCCCCCAACCTTCTC [750] Evynnis japonica GCGTAATTATTTTATTAACCTGTCTAGCACTATTTGCTCCAAACCTCCTA [750] Gymnocrotaphus curvidens GCGTGATCATTCTATTGACTTGCCTGGCATTATCTGCCCCCAACCTCCTA [750] Lagodon rhomboides GCGTAATCATTCTACTAACCTGCCTCGCACTATTTGCCCCCAATCTCTTA [750] Lithognathus mormyrus GAGTAATTATTCTGTTAACCTGCCTGGCACTGTTTGCCCCCAACCTCCTT [750] Oblada melanura GCGTAATCATCTTACTGACCTGTCTTGCACTATTTGCCCCCAACCTTCTT [750] Pachymetopon aeneum GGGTAATCATTCTACTAACTTGCCTTGCATTATTTGCCCCCAACCTCCTA [750] Pagellus bogaraveo GCGTAATCATTCTATTAACCTGCCTTGCACTATTTGCCCCTAACCTTCTC [750] Pagellus bellottii GCGTAATTATTCTACTAACTTGTCTTGCACTATTTGCCCCTAACCTCTTG [750] Pagrus auratus CCGTGATCATTTTATTAACTTGCCTTGCACTATTCACCCCGAACCTGCTA [750] Pagrus auriga GCGTAGTCATTCTACTAACCTGCCTTGCATTATTTGCCCCTAACATCTTA [750] Pagrus pagrus GCGTAATTATTCTATTAACCTGTCTTGCACTATTCGCCCCCAACCTCCTG [750] Petrus rupestris GAGTAATTATTTTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCCTA [750] Porcostoma dentata GGGTAATTATCTTACTAACCTGCCTCGCACTATTTGCCCCCAACCTCTTG [750] Pterogymnus laniarius GCGTAATCATCCTACTAACCTGCCTTGCACTATTTGCCCCCAACCTGTTA [750] Polyamblyodon germanum GGGTAATCATTCTACTGACTTGCCTTGCATTATTTGCTCCCAACCTCCTG [750] Polysteganus praeorbitalis GGGTAATCATCCTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCCTG [750] Rhabdosargus thorpei GCGTAATTATGTTATTAACCTGCCTCGCTTTATTTGCCCCCAACCTACTT [750] Sarpa salpa GCGTAATCATTTTATTAACCTGCCTTGCACTGTTTGCCCCCAACCTCCTA [750] Sparidentex hasta GCGTAATTATTCTATTAACTTGCTTAGCATTATTTGCCCCCAACCTGCTT [750] Sparodon durbanensis GCGTAATTATCCTTCTCACTTGCCTTGCCTGATTTGCCCCAAACCTGCTC [750] Sparus auratus CTGTAATTATCTTATTAACTTGTCTTGCCCTATTCGCCCCTAATCTCCTA [750] Spondyliosoma cantharus GCCTGCTTATTTTATTAACCTGCCTCGCATTATTCGCCCCCAACCTCCTG [750] Stenotomus chrysops GCGTAAATATTTTACTAACCTGCCTCGCACTATTTGCCCCCAACCTCCTG [750] Spicara alta GCGTGATTATACTACTAACCTGCCTCGCACTATTCGCCCCCAACCTCTTA [750] Spicara maena CTGTAATTATCCTATTAACCTCCCTTGCTCTATTTGCCCCCAACCTTCTA [750] Cyprinus carpio TTATACTCCTAGCTCTTACACTACTAGCACTATTCTCCCCTAACTTACTA [750] Luxilus zonatus TGTTATTGCTGGCCCTCACCTCTCTAACGTTTTTCTCCCCCACCCTGCTC [750] Centropomus undecimalis TTCTACTCTTCACCCTCACCTCCCTGGCCCTATTCCTGCCAAACCTCTTA [750] Dicentrarchus labraxgb TTGTTCTAATTGGATTAACTAGCCTCGCACTGTTTTCCCCTAACCTCCTA [750] Dicentrarchus punctatus TCGTTTTAATTGGCCTAGCTAGCCTCGCACTGTTCTCCCCCAACCTGCTG [750] Lateolabrax japonicus TTCTTCTAACCGCACTCGCCTCGCTAGCACTATTCTCCCCCAACCTCCTG [750] Lateolabrax japonicus2 TTCTTCTAACCGCACTTGCCTCGCTAGCGCTATTCTCCCCTAACCTCCTC [750] Lateolabrax latus TCCTTTTAACCGCACTCGCCGCACTAGCGCTCTTTTCTCCGAACCTCTTA [750] Morone americanus CCGTTCTAATTGGCCTCACCTCCCTCGCCTTATTCTCCCCCAACCTCCTA [750] Morone chrysops CCGTCCTAGTTGGCCTGACTTCTCTCGCCCTGTTCTCCCCAAACATCTTA [750] Morone mississippiensisgb CCGTCCTAATTAGCCTCACCTCCCTCGCCTTATTTTCTCCTAACCTCCTG [750] Morone saxatilis CCGTCCTAATTGGTCTCACCTCTCTTGCCTTATTCTCCCCTAACCTCTTA [750] Haemulon sciurus TTCTACTTATTGCCCTCACATGCCTGGCCCTCTTCTCCCCCAACCTCCTC [750] Pomadasys maculatus TACTCCTCATTGCACTCGCATGCCTAGCCCTCCTTTCCCTTAACCTGCTA [750] Caesio cuning TCGTACTGATCGCACTAGTCTGCCTGGCATTATTTGCCCCCAACCTTCTA [750] Lutjanus decussatus TCGTTCTTATCGCACTAACCTCCCTAGCACTATTCTCACCCAACCTTCTT [750] Lethrinus ornatus CAGTGTTAATTGCCCTGACCTCTCTTGCTCTCTTCTCACCCAATTTGCTA [750] Lethrinus rubrioperculatus CAGTACTAATTGCTCTTACCTCCTTAGCCCTATTCTCTCCTAACCTCCTT [750] Nemipterus marginatus CCGTCATCATCTTTCTTACATGCTTAGCACTATTTTCCCCCAACCTCTTA [750] Scolopsis ciliatus CCATTCTTATTACCCTTACTTGCCTTGCTCTCTTCTCCCCTAATCTCCTT [750] 63

78 Acanthopagrus berda GGAGACCCAGACAACTTCACCCCCGCAAACCCTCTAGTTACCCCACCCCA [800] Archosargus probatocephalus GGAGACCCAGACAACTTTACCCCTGCAAACCCACTAGTTACCCCACCCCA [800] Argyrops spinifer GGAGACCCAGATAACTTCACACCTGCAAATCCCCTCGTCACTCCCCCTCA [800] Argyrozona argyrozona GGAGATCCAGACAACTTTACCCCTGCAAATCCTCTAGTCACCCCTCCACA [800] Boops boopsgb GGAGACCCAGACAACTTCACCCCCGCAAACCCGCTAGTCACACCACCCCA [800] Boopsoidea inornata GGAGACCCCGACAACTTTACCCCAGCAAACCCACTGGTCACTCCACCCCA [800] Calamus nodosus GGCGACCCAGATAACTTTACACCTGCAAATCCTCTAGTCACCCCTCCTCA [800] Cheimerius nufar GGAGATCCAGACAATTTCACGCCTGCAAACCCATTAGTCACTCCCCCCCA [800] Chrysoblephus cristiceps GGAGATCCAGACAATTTCACTCCTGCAAACCCACTAGTTACCCCTCCCCA [800] Crenidens crenidens GGAGACCCAGACAACTTCACCCCAGCGAATCCCCTAGTCACCCCTCCCCA [800] Cymatoceps nasutus GGAGACCCTGACAATTTTACCCCTGCAAACCCACTAGTTACCCCTCCCCA [800] Dentex dentexgb GGAGACCCAGACAATTTTACACCTGCAAACCCACTAGTCACACCCCCTCA [800] Dentex tumifrons GGCGACCCGGACAACTTCACCCCCGCAAACCCATTAGTTACTCCTCCCCA [800] Diplodus argenteus GGGGACCCAGACAACTTCACCCCAGCTAATCCCCTAGTCACACCACCACA [800] Diplodus bermudensis GGGGACCCAGACAACTTCACCCCAGCTAATCCCCTAGTCACACCACCACA [800] Diplodus cervinus GGAGACCCAGACAACTTCACCCCAGCCAACCCTTTAGTCACACCACCACA [800] Diplodus holbrooki GGGGACCCAGACAACTTCACCCCAGCTAATCCCCTAGTCACACCGCCACA [800] Evynnis japonica GGAGACCCAGATAATTTCACCCCTGCAAACCCTCTAGTCACTCCCCCTCA [800] Gymnocrotaphus curvidens GGAGACCCAGACAACTTCACCCCAGCAAACCCACTAGTTACACCACCCCA [800] Lagodon rhomboides GGAGACCCGGACAACTTCACCCCTGCAAACCCCCTTGTCACCCCACCCCA [800] Lithognathus mormyrus GGCGACCCAGATAATTTTACCCCAGCAAACCCTCTAGTTACCCCACCCCA [800] Oblada melanura GGGGACCCGGATAACTTCACCCCAGCAAATCCTTTAGTCACTCCGCCCCA [800] Pachymetopon aeneum GGAGACCCAGACAACTTCACCCCTGCGAATCCATTAGTTACCCCTCCCCA [800] Pagellus bogaraveo GGAGACCCAGACAACTTCACCCCAGCAAACCCCCTAGTCACCCCTCCCCA [800] Pagellus bellottii GGAGACCCAGACAATTTTACACCAGCCAACCCACTAGTTACCCCTCCTCA [800] Pagrus auratus GGAGACCCAGACAATTTCACCCCCGCGAACCCCCTAGTCACTCCCCCTCA [800] Pagrus auriga GGAGACCCAGACAATTTTACGCCTGCAAACCCATTAGTTACCCCCCCCCA [800] Pagrus pagrus GGAGATCCGGACAATTTTACGCCTGCGAACCCACTGGTTACACCCCCTCA [800] Petrus rupestris GGAGATCCAGACAACTTCACCCCTGCAAACCCCCTAGTCACCCCTCCCCA [800] Porcostoma dentata GGAGACCCAGACAATTTCACTCCTGCAAACCCGCTAGTTACCCCTCCCCA [800] Pterogymnus laniarius GGAGACCCAGACAATTTCACCCCTGCAAATCCATTAGTCACCCCTCCCCA [800] Polyamblyodon germanum GGAGACCCAGACAACTTCACCCCTGCAAATCCACTAGTTACCCCTCCCCA [800] Polysteganus praeorbitalis GGAGACCCAGACAATTTCACCCCTGCAAACCCCCTGGTCACCCCCCCCCA [800] Rhabdosargus thorpei GGAGACCCAGATAACTTCACCCCTGCAAACCCCTTAGTTACCCCTCCCCA [800] Sarpa salpa GGAGACCCCGACAACTTCACCCCAGCAAATCCTCTAGTTACCCCGCCCCA [800] Sparidentex hasta GGAGACCCAGATAACTTCACCCCCGCAAACCCATTAGTCACCCCTCCCCA [800] Sparodon durbanensis GGGGACCCTGAGAATTTTACCCCGGCAAACCCCCTAGTCACCCCTCCCCA [800] Sparus auratus GGGGACCCAGACAATTTCACCCCGGCAAATCCTCTAGTTACCCCTCCTCA [800] Spondyliosoma cantharus GGAGACCCTGACAACTTCACGCCTGCAAACCCCTTGGTCACCCCCCCCCA [800] Stenotomus chrysops GGAGACCCCGATAATTTTACCCCTGCAAACCCACTAGTTACTCCACCCCA [800] Spicara alta GGAGACCCGGACAACTTCACCCCCGCAAACCCCCTAGTTACCCCTCCCCA [800] Spicara maena GGAGACCCCGACAATTTTACACCTGCAAATCCTTTAGTTACCCCCCCCCA [800] Cyprinus carpio GGAGACCCAGAAAACTTCACCCCCGCAAACCCTCTAGTTACACCACCCCA [800] Luxilus zonatus GGCGACCCAGAGAACTTCACCCCGGCGAACCCGCTAGTTACCCCACCGCA [800] Centropomus undecimalis GGAGACCCCGACAACTTCACCCCCGCAAACCCACTAGTTACCCCACCCCA [800] Dicentrarchus labraxgb GGAGACCCAGACAATTTTACACCAGCCAATCCGCTGGTAACCCCTCCCCA [800] Dicentrarchus punctatus GGGGACCCGGACAACTTTACACCCGCCAACCCACTCGTAACCCCGCCCCA [800] Lateolabrax japonicus GGTGATCCGGACAATTTCACCCCCGCAAACCCGCTAGTTACGCCCCCACA [800] Lateolabrax japonicus2 GGTGACCCGGACAATTTCACCCCTGCAAACCCATTAGTTACTCCCCCACA [800] Lateolabrax latus GGTGACCCGGATAATTTCACCCCAGCGAACCCGCTAGTCACTCCCCCACA [800] Morone americanus GGGGACCCAGACAACTTCACGCCCGCCAACCCACTCGTGACGCCCCCTCA [800] Morone chrysops GAGCACCAAGATAACTTCACGCCAGCCAACCCCCTTGTGACTCCTCCTCA [800] Morone mississippiensisgb GGGGACCCAGACAACTTCACGCCTGCCAACCCACTCGTAACACCCCCTCA [800] Morone saxatilis GGGGATCCAGATAACTTCACACCAGCCAACCCACTCGTAACGCCCCCGCA [800] Haemulon sciurus GGAGACCCAGACAATTTCACACCAGCCAACCCCTTAGTTACCCCACCTCA [800] Pomadasys maculatus GGAGACCCAGACAACTTCACTCCCGCCAACCCCCTAGTGACACCACCTCA [800] Caesio cuning GGCGACCCAGACAACTTCACCCCAGCCAACCCCCTAGTGACTCCCCCTCA [800] Lutjanus decussatus GGCGACCCAGACAACTTCACCCCCGCCAACCCCCTAGTGACACCCCCACA [800] Lethrinus ornatus GGGGACCCAGACAATTTCACGCCCGCCAACCCACTAGTCACCCCTCCCCA [800] Lethrinus rubrioperculatus GGTGACCCAGACAACTTCACCCCCGCCAACCCCCTGGTTACTCCGCCCCA [800] Nemipterus marginatus GGAGACCCAGACAATTTCACCCCTGCAAACCCGCTAGTCACCCCACCCCA [800] Scolopsis ciliatus GGAGACCCCGACAATTTTACCCCAGCCAACCCGCTAGTTACCCCTCCACA [800] 64

79 Acanthopagrus berda CATTAAACCCGAATGATATTTCCTATTTGCATACGCTATCCTACGCTCAA [850] Archosargus probatocephalus CATTAAACCCGAATGATACTTCCTATTTGCATACGCAATTCTCCGTTCCA [850] Argyrops spinifer TATTAAACCCGAGTGATACTTCCTGTTTGCATATGCAATTCTGCGCTCAA [850] Argyrozona argyrozona TATTAAGCCCGAATGATACTTTTTATTTGCATACGCAATTCTCCGCTCTA [850] Boops boopsgb CATTAAGCCTGAGTGATACTTCCTGTTTGCCTATGCCATTCTACGCTCAA [850] Boopsoidea inornata CATTAAACCCGAGTGGTACTTCTTATTTGCATACGCAATTTTACGCTCAA [850] Calamus nodosus CATCAAGCCTGAATGATATTTCCTGTTTGCATACGCAATTCTACGATCGA [850] Cheimerius nufar TATTAAACCTGAATGATACTTCCTGTTTGGTTACGCAATTCTCCGCTCAA [850] Chrysoblephus cristiceps TATTAAACCCGAATGATACTTCCTATTTGCATACGCAATTCTCCGCTCTA [850] Crenidens crenidens CATTAAGCCTGAATGATACTTCTTATTCGCATACGCGATCCTACGCTCAA [850] Cymatoceps nasutus TATTAAACCCGAATGATATTTTCTATTTGCTTACGCAATTCTCCGCTCTA [850] Dentex dentexgb TATCAAGCCTGAATGATATTTCCTATTTGCATACGCAATTCTCCGGTCAA [850] Dentex tumifrons CATTAAGCCTGAGTGATATTTCCTATTTGCTTATGCAATCCTCCGCTCAA [850] Diplodus argenteus TATCAAGCCTGAATGAAACTCCCTATTTGCGTACGCGATTCTACGCTCAA [850] Diplodus bermudensis TATCAAGCCTGAATGATACTTCCTATTTGCGTACGCGATTCTGCGCTCAA [850] Diplodus cervinus TATCAAGCCAGAATGATACTTCCTGTTTGCGTACGCAATTCTACGCTCGA [850] Diplodus holbrooki TATCAAGCCTGAATGATACTTCCTATTTGCGTACGCGATTCTGCGCTCAA [850] Evynnis japonica TATTAAGCCCGAATGGTATTTCCTATTTGCATACGCGATTCTACGCTCGA [850] Gymnocrotaphus curvidens TATTAAGCCCGAATGATATTTCTTATTCGCGTACGCAATTCTGCGCTCAA [850] Lagodon rhomboides CATTAAACCCGAATGGTACTTCCTATTCGCATACGCAATTCTCCGCTCAA [850] Lithognathus mormyrus TATCAAGCCTGAATGATACTTCCTGTTTGCCTACGCAATTCTACGCTCGA [850] Oblada melanura TATTAAGCCTGAATGATACTTCCTGTTTGCGTACGCAATTCTACGCTCAA [850] Pachymetopon aeneum CATTAAACCCGAATGATACTTCCTATTTGCATACGCAATTCTACGCTCAA [850] Pagellus bogaraveo TATTAAACCTGAATGATATTTCTTATTTGCATACGCAATCCTCCGCTCAA [850] Pagellus bellottii TATTAAACCCGAATGATACTTCCTATTTGCATACGCCATCCTGCGCTCAA [850] Pagrus auratus TATCAAGCCCGAATGATACTTCCTATTTGCGTACGCAATTCTACGCTCAA [850] Pagrus auriga TATCAAGCCTGAATGATATTTCTTATTTGCGTACGCAATTCTACGCTCAA [850] Pagrus pagrus TATTAAACCCGAATGATACTTCCTATTTGCGTATGCAATTCTACGCTCAA [850] Petrus rupestris TATTAAGCCCGAATGGTATTTTCTGTTTGCATACGCAATTCTCCGCTCTA [850] Porcostoma dentata TATTAAACCCGAATGGTACTTTCTGTTTGCATACGCAATTCTCCGCTCTA [850] Pterogymnus laniarius CATTAAGCCCGAATGATATTTCTTATTCGCATACGCCATCCTTCGCTCAA [850] Polyamblyodon germanum CATTAAACCCGAGTGATACTTTCTATTTGCATACGCAATTCTACGCTCAA [850] Polysteganus praeorbitalis TATTAAACCCGAATGATACTTCCTGTTTGCGTACGCAATTCTCCGCTCTA [850] Rhabdosargus thorpei CATTAAACCCGAATGATACTTCCTATTTGCCTATGCAATCTTACGCTCAA [850] Sarpa salpa CATTAAACCTGAATGATACTTCTTATTTGCGTATGCTATTCTACGCTCAA [850] Sparidentex hasta TATTAAACCCGAATGGTACTTCTTATTTGCGTATGCCATCTTACGTTCAA [850] Sparodon durbanensis CATCAAGCCCGAGTGATATTTCCTGTTTGCCTACGCAATCTTGCGCTCAA [850] Sparus auratus CATTAAGCCCGAGTGATATTTCTTATTTGCCTACGCAATTTTACGCTCAA [850] Spondyliosoma cantharus TATTAAGCCCGAGTGATATTTTTTGTTTGCGTACGCTATTCTTCGCTCAA [850] Stenotomus chrysops TATCAAGCCCGAATGATACTTCCTGTTTGCATACGCAATTCTACGCTCAA [850] Spicara alta CATTAAGCCCGAATGATACTTCTTATTTGCCTATGCAATTCTCCGTTCAA [850] Spicara maena TATTAAACCCGAATGATATTTCCTGTTTGCATACGCCATTCTTCGATCAA [850] Cyprinus carpio CATCAAACCAGAATGATACTTCCTATTTGCCTACGCCATCCTACGATCAA [850] Luxilus zonatus CATTCAACCCGAGTGGTACTTCTTGTTCGCCTACGCTATTATCCGGTCTA [850] Centropomus undecimalis CATCAAGCCCGAATGATACTTCCTATTTGCCTACGCCATTCTCCGCTCCA [850] Dicentrarchus labraxgb TATTAAGCCCGAGTGATACTTTTTATTTGCCTACGCTATTCTTCGCTCAA [850] Dicentrarchus punctatus TATTAAACCCGAATGATACTTTTTATTTGCTTACGCTATTCTTCGCTCCA [850] Lateolabrax japonicus TATTAAACCAGAGTGATATTTCCTATTTGCTTACGCCATTCTCCGATCAA [850] Lateolabrax japonicus2 TATCAAGCCAGAGTGATATTTCCTGTTTGCTTACGCCATTCTCCGATCAA [850] Lateolabrax latus CATCAAGCCAGAGTGATACTTTTTATTTGCTTACGCCATCCTACGATCAA [850] Morone americanus CATTAAACCAGAATGATATTTCCTATTTGCCTACGCCAATCTTCGGTCAA [850] Morone chrysops CATCAAGCCAGAATGATACTTCCTGTTTGCCTATGCCATCCTTCGATCAA [850] Morone mississippiensisgb CATCAAGCCAGAATGATACTTCCTATTTGCCTACGCTATCCTTCGGTCAA [850] Morone saxatilis CATTAAACCAGAATGATATTTCCTATTTGCCTACGCCATTCTTCGATCAA [850] Haemulon sciurus CATTAAGCCCGAATGATATTTCCTGTTCGCATACGCCATTCTCCGCTCAA [850] Pomadasys maculatus CATTAAGCCAGAATGATATGTCCTATTCGCATACGCCATTCTCCGTTCAA [850] Caesio cuning TGTCAAGCCTGAATGATACTTCCTGTTTGCTTACGCCACCCTCCGGTCAA [850] Lutjanus decussatus CATCAAGCCCGAATGATACTTCCTATTCGCATACGCCATTCTACGTTCGA [850] Lethrinus ornatus CATTAAGCCTGAGTGATATTTCCTCTTTGCCTACGCCATTCTACGTTCAA [850] Lethrinus rubrioperculatus TATTAAACCTGAATGATACTTCCTCTTTGCATACGCTATCCTTCGATCAA [850] Nemipterus marginatus TATTAAGCCGGAGTGATATTTCCTATTTGCATATGCCATTCTACGGTCAA [850] Scolopsis ciliatus TATTAAGCCAGAGTGATACTTCCTCTTTGCGTACGCAATCCTACGATCGA [850] 65

80 Acanthopagrus berda TTCCTAATAAACTAGGAGGAGTCCTTGCCCTCTTGGCATCTATCTTAGTT [900] Archosargus probatocephalus TCCCTAATAAACTAGGAGGTGTCCTAGCCCTCCTAGCCTCCATTCTAGTC [900] Argyrops spinifer TTCCAAACAAACTAGGAGGTGTCCTTGCCCTCCTAGCTTCCATCCTTGTG [900] Argyrozona argyrozona TTCCCAACAAACTAGGGGGAGTCCTGGCCCTTCTAGCCTCCATCCTAGTC [900] Boops boopsgb TTCCCAACAAACTAGGAGGCGTCCTAGCCCTTTTAGCTTCTATTTTAGTC [900] Boopsoidea inornata TTCCCAACAAACTAGGAGGAGTCCTCGCCGTTTTAGCCTCAATTCTAGTT [900] Calamus nodosus TTCCTAATAAACTAGGGGGCGTACTAGCACTTCTAGCCTCAATCCTTGTT [900] Cheimerius nufar TTCCAAATAAACTAGGAGGAGTCCTTGCCCTCCTAGCTTCTATTCTAGTA [900] Chrysoblephus cristiceps TCCCTAACAAATTAGGGGGAGTCCTGGCCCTCCTTGCCTCTATTCTAGTC [900] Crenidens crenidens TTCCTAACAAGCTCGGAGGAGTCCTTGCCCTCTTAGCCTCCATTCTTGTC [900] Cymatoceps nasutus TTCCAAATAAGCTGGGAGGAGTCCTCGCTCTCCTCGCCTCTATTCTAATC [900] Dentex dentexgb TTCCAAATAAACTAGGCGGAGTCCTGGCCCTCCTAGCTTCTATTCTGGTC [900] Dentex tumifrons TTCCGAATAAATTAGGCGGTGTCCTCGCCCTCCTCGCCTCTATTCTAGTA [900] Diplodus argenteus TCCCCAACAAACTAGGGGGAGTCCTTGCCCTCCTTGCCTCCATGCTAGTC [900] Diplodus bermudensis TCCCCAACAAACTGGGGGGAGTTCTTGCCCTCCTTGCCTCCATTCTAGTC [900] Diplodus cervinus TCCCTAATAAACTAGGAGGAGTTCTTGCCCTCCTTGCCTCTATCCTAGTC [900] Diplodus holbrooki TCCCCAACAAACTAGGAGGAGTTCTTGCCCTCCTTGCCTCCATTCTAGTC [900] Evynnis japonica TTCCAAACAAACTAGGGGGAGTCCTAGCCCTTCTAGCCTCTATCCTTGTA [900] Gymnocrotaphus curvidens TTCCTGACAAACTAGGGGGAGTCCTCGCTCTCCTGGCCTCCATTCTAGTT [900] Lagodon rhomboides TTCCTAATAAACTAGGGGGCGTTTTAGCCCTCCTAGCCTCTATCCTAGTC [900] Lithognathus mormyrus TTCCTAACAAACTGGGAGGGGTCCTTGCCCTTCTGGCCTCTATCCTGGTC [900] Oblada melanura TTCCGAATAAACTAGGAGGAGTTCTTGCCCTCCTTGCCTCCATCCTAGTT [900] Pachymetopon aeneum TTCCCAACAAATTAGGAGGGGTCCTTGCCCTCCTTGCCTCCATCCTAGTC [900] Pagellus bogaraveo TTCCCAATAAACTCGGAGGGGTCCTTGCCCTCTTAGCCTCCATCCTAGTT [900] Pagellus bellottii TCCCAAACAAACTAGGCGGAGTCCTCGCCCTCCTAGCCTCTATTCTAGTA [900] Pagrus auratus TTCCAAACAAACTAGGAGGAGTCCTGGCTCTTCTAGCCTCTATCCTCGTA [900] Pagrus auriga TTCCAAATAAACTAGGTGGAGTCTTAGCCCTCCTAGCCTCCATCCTAGTA [900] Pagrus pagrus TTCCAAATAAACTGGGCGGAGTCCTAGCCCTCCTAGCCTCTATTCTAGTA [900] Petrus rupestris TTCCAAACAAGCTGGGAGGAGTCCTGGCCCTCTTAGCCTCTATTCTAGTC [900] Porcostoma dentata TTCCAAACAAACTAGGAGGGGTCCTGGCCCTCCTTGCCTCCATCCTAGTC [900] Pterogymnus laniarius TCCCCAATAAACTAGGAGGAGTCCTAGCCCTCCTGGCCTCTATCTTAGTC [900] Polyamblyodon germanum TTCCTAACAAATTAGGAGGAGTCCTTGCCCTCCTTGCCTCCATCCTAGTC [900] Polysteganus praeorbitalis TCCCAAACAAACTAGGGGGAGTCCTAGCCCTCCTCGCATCTATTCTGGTC [900] Rhabdosargus thorpei TTCCTAACAAGCTAGGTGGGGTACTTGCCCTATTGGCCTCCATTCTAGTC [900] Sarpa salpa TTCCTAATAAACTAGGGGGCGTACTAGCCCTCCTAGCCTCCATTCTAGTC [900] Sparidentex hasta TTCCTAACAAGCTAGGAGGAGTTCTTGCCCTCCTGGCCTCCATCCTAGTC [900] Sparodon durbanensis TCCCTAACAAACTAGGAGGAGTTCTTGCCCTACTGGCCTCAATTTTAGTC [900] Sparus auratus TCCCTAACAAGCTAGGAGGGGTCCTTGCCCTCTTGGCCTCTATTCTAGTC [900] Spondyliosoma cantharus TTCCTAACAAACTAGGAGGCGTCCTAGCCCTCCTAGCTTCAATCCTAGTC [900] Stenotomus chrysops TTCCAAACAAACTAGGAGGTGTCCTGGCCCTTCTGGCTTCTATCCTAGTC [900] Spicara alta TTCCAAACAAACTGGGGGGAGTCCTAGCCCTTCTAGCCTCCATCCTAGTC [900] Spicara maena TCCCGAATAAACTAGGAGGTGTTCTGGCCCTGCTAGCTTCAATCCTGGTC [900] Cyprinus carpio TTCCAAACAAACTCGGAGGTGTCCTTGCACTCCTATTCTCCATTCTGGTA [900] Luxilus zonatus TTCCAAACAAGCTAGGGGGAGTCCTAGCGCTATTATTCAGTATTCTAGTA [900] Centropomus undecimalis TCCCAAACAAACTAGGAGGAGTACTCGCACTCCTGTCCTCGATCCTAGTC [900] Dicentrarchus labraxgb TCCCAAACAAACTAGGCGGGGTGTTGGCATTACTAGCATCTATTCTAGTA [900] Dicentrarchus punctatus TTCCGAACAAGCTAGGCGGAGTATTGGCACTACTAGCATCTATTTTAGTA [900] Lateolabrax japonicus TTCCGAACAAGCTAGGTGGTGTACTAGCCCTTCTATTCTCCATCTTAGTA [900] Lateolabrax japonicus2 TTCCTAACAAACTAGGTGGTGTTTTAGCCCTCCTATTCTCCATTTTAGTG [900] Lateolabrax latus TTCCTAACAAACTAGGCGGCGTTTTAGCCCTGCTGTTTTCCATCTTAGTA [900] Morone americanus TCCCTAATAAACTGGGAGGAGTTCTAGCACTACTGGCATCTATCTTAGTG [900] Morone chrysops TCCCCAATAAATTAGGAGGAGTGCTAGCATTACTAGCATCCATTTTAGTA [900] Morone mississippiensisgb TCCCTAATAAACTGGGAGGGGTTCTAGACTTACTGGCATCTATCTTAGTG [900] Morone saxatilis TTCCTAACAAATTAGGGGGAGTGTTAGCATTACTAGCATCTATTTTAGTA [900] Haemulon sciurus TTCCGAATAAACTAGGAGGAGTTCTTGCCCTCCTGGCCTCCATCCTAGTT [900] Pomadasys maculatus TGCCAAACAAACTCGGAGGAGTTTTAGCCCTACTCGCCTCAAGTCTTGTC [900] Caesio cuning TTCCCAACAAACTCGGAGGCGTCCTAGCCCTGCTCGCCTCAATCCTCGTG [900] Lutjanus decussatus TTCCCAACAAACTAGGAGGCGTCCTAGCCCTCCTCGCCTCAATCCTAGTA [900] Lethrinus ornatus TTCCCAACAAACTAGGGGGTGTCCTAGCTCTACTTGCCTCTATCCTAGTT [900] Lethrinus rubrioperculatus TCCCCAATAAACTAGGGGGTGTCCTGGCCCTACTTGCTTCCATCTTAGTC [900] Nemipterus marginatus TTCCAAATAAGCTGGGCGGGGTGCTCGCTTTATTAGCCTCAATCCTCGTC [900] Scolopsis ciliatus TTCCAAATAAACTTGGAGGTGTCTTAGCCCTTCTAGCCTCTATCCTAGTA [900] 66

81 Acanthopagrus berda CTTATGGTTGTTCCCATACTCCACACTTCCAAACAACGAAGCCTAACCTT [950] Archosargus probatocephalus CTCATAGTTGTCCCCATCCTTCACACCTCTAAACAACGAAGCCTAACTTT [950] Argyrops spinifer CTTATAGTCGTCCCGATCCTCCACACATCCAAACAACGAAGTCTCACATT [950] Argyrozona argyrozona CTAATACTCGTCCCCTTCCTTCACACATCCAAACAACGAAGTCTCACATT [950] Boops boopsgb CTTATAGTAGTCCCACTCCTCCACACTTCTAAACAACGAAGCCTAACCTT [950] Boopsoidea inornata CTTATAGTTGTCCCTATTCTTCACACCTCTAAACAACGAAGCCTAACCTT [950] Calamus nodosus CTCATGATTGTACCAATTCTCCACACCTCTAAGCAACGAAGCCTAACCTT [950] Cheimerius nufar CTTATGGTTGTCCCCATCCTCCACACATCTAAACAACGAAGCCTTACATT [950] Chrysoblephus cristiceps CTAATAGTTGTTCCCATCCTCCACACATCTAAACAACGAAGCCTCACATT [950] Crenidens crenidens CTTATGGTTGTCCCAATCCTGCACACCTCTAAACAACGAAGCCTGACCTT [950] Cymatoceps nasutus CTAATACTTGTCCCCCTCCTTCACACATCTAAACAACGAAGCCTCACATT [950] Dentex dentexgb CTAATAGTTGTTCCCATCCTCCACACATCTAAACAACGAAGCCTTACATT [950] Dentex tumifrons TTGATGGTAGTTCCTATCCTTCACACCTCTAAGCAACGAAGCCTTACATT [950] Diplodus argenteus CTCATAGTGGTCCCCAGCCCCCATACCCCTAAACAACGAAGCCTTACCAG [950] Diplodus bermudensis CTCATAGTTGTCCCCATCCTCCATACCTCTAAACAACGAAGCCTTACCTT [950] Diplodus cervinus CTTATAGTCGTCCCCATCCTCCACACCTCTAAACAACGAAGCCTAACCTT [950] Diplodus holbrooki CTCATAGTTGTCCCCATCCTCCACACCTCTAAACAACGAAGCCTTACCTT [950] Evynnis japonica CTAATGGTTGTTCCTATTCTCCACACATCTAAACAACGAAGCCTCACATT [950] Gymnocrotaphus curvidens CTAATGGTTGTCCCCATTCTTCACACCTCTAAACAACGAAGCCTAACCTT [950] Lagodon rhomboides CTTATGATTGTGCCCATTCTTCATACCTCTAAACAACGAAGTCTGACCTT [950] Lithognathus mormyrus CTTATAGTTGTACCAATCCTTCACACCTCTAAACAACGGAGCCTCACCTT [950] Oblada melanura CTTATGGTCGTCCCCATCCTCCACACCTCTAAACAACGAAGCCTAACTTT [950] Pachymetopon aeneum CTGATAGTTGTTCCTATCCTACATACTTCTAAGCAACGCAGCCTAACCTT [950] Pagellus bogaraveo CTCATGGTTGTACCCATCCTTCACACCTCCAAACAACGGAGCTTAACCTT [950] Pagellus bellottii CTCATAGTTGTACCTATTCTTCATACATCCAAACAACGAAGTCTGACCTT [950] Pagrus auratus CTAATGGTCGTCCCCATCCTCCACACATCTAAACAGCGAAGCCTCACATT [950] Pagrus auriga TTAATAGTTGTTCCCATTCTTCACACATCTAAGCAACGAAGCCTTACATT [950] Pagrus pagrus CTCATGGTCGTTCCCATTCTTCATACATCCAAACAACGAAGTCTAACATT [950] Petrus rupestris CTAATAGCCGTCCCCATCCTTCACATATCTAAGCAACGAAGCCTTACATT [950] Porcostoma dentata CTGATAGTTGTCCCCATCCTCCACACATCTAAACAACGAAGCCTCACATT [950] Pterogymnus laniarius CTGATAGTTGTCCCCATCCTCCACACATCTAAGCAACGAAGCCTTACGTT [950] Polyamblyodon germanum CTGATAGTTGTTCCTACCCTACACACTTCTAAACAACGCAGCCTAACCTT [950] Polysteganus praeorbitalis CTAATAGTTGTCCCCATCCTACACACATCCAAACAGCGAAGCCTCACATT [950] Rhabdosargus thorpei CTCATAATTGTCCCCATCCTTCACACCTCTAAACAACGAAGCCTCACTTT [950] Sarpa salpa CTAATAGTTGTTCCCCTCCTCCACACCTCTAAACAACGAAGCCTAACCTT [950] Sparidentex hasta CTCATGGTTGTTCCCATACTCCACACTTCCAAACAACGAAGTCTAACCTT [950] Sparodon durbanensis CTCGTAGTTGTCCCTGTCCTCCACACCTCCAAGCAGCGGAGCCTGACCTT [950] Sparus auratus CTAATGGTTGTCCCCATTCTCCACACCTCTAAACAACGAAGCCTCACCTT [950] Spondyliosoma cantharus TTTTTGGTCGTACCTATTTTTCACACCTCTAAACAACGAAGCTTAACTTT [950] Stenotomus chrysops CTTATGGTCGTCCCAATCCTGCACACCTCCAAACAACGAAGCTTAACTTT [950] Spicara alta TTAATGGTTGTCCCTATTCTCCACACATCTAAACAACGAAGCCTAACATT [950] Spicara maena CTCATGGTTGTGCCCATTCTTCACACCTCTAAACAACGGAGCCTAACCTT [950] Cyprinus carpio TTAATAGTAGTACCACTACTACACACCTCAAAACAACGAGGACTAACATT [950] Luxilus zonatus CTATTGGTGGTCCCCATTTTACATACCTCAAAGCAACGAGGACTAACCTT [950] Centropomus undecimalis CTCATACTAGTACCCCTTCTCCACACCTCAAAACAACGAGGCCTAATATT [950] Dicentrarchus labraxgb CTTATAGTAGTACCCTATTTACATACATCAAAACAACGAAGTATAACATT [950] Dicentrarchus punctatus CTTATAGTAGTACCCTTTTTACATACATCCAAACAACGAAGTATAACATT [950] Lateolabrax japonicus CTTATACTGGTCCCAATCCTCCACACATCAAAACAACGAGCCCTAACCTT [950] Lateolabrax japonicus2 CTTATACTAGTCCCCATCCTCCACACGTCAAAACAACGAGCTTTGACCTT [950] Lateolabrax latus CTTATACTAGTCCCGATCCTTCACACATCGAAACAACGAGCCCTAACTTT [950] Morone americanus CTCATAACAGTACCTTTTCTCCACACATCTAAACAACGAAGCTTAACATT [950] Morone chrysops CTCATAGCAGTGCCTTTCCTACACACATCGAAACAACGAAGTTTAACATT [950] Morone mississippiensisgb CTCTTAACAGTACCTTTTCTGCATACATCCAAACAACGAAGCTTAACATT [950] Morone saxatilis CTCATAGTAGTACCCTTTCTACATACATCAAAACAACGAAGTCTAACATT [950] Haemulon sciurus CTGATGGTAGTCCCCATCCTTCACACATCTAAACAACGAAGCCTCACCTT [950] Pomadasys maculatus CTCATAGTCGTCCCCTTCCGTCATACATCTAAACAACGAAGCCTTACCTT [950] Caesio cuning CTCATAGTCGTACCAATCCTCCACACCTCCAAACAACGAGGACTAACGTT [950] Lutjanus decussatus CTTATGGTCGTTCCCATCCTCCACACCTCTAAACAACGAGGCCTAACATT [950] Lethrinus ornatus CTTATAGTGGTGCCAATTCTACACACCTCAAAACAACGAAGCCTCACATT [950] Lethrinus rubrioperculatus CTTATAGTAGTTCCGATCCTCCACACCTCCAAACAACGAAGCCTTACATT [950] Nemipterus marginatus CTCATGCTGGTCCCACTTCTCCACACATCCAAACAACGAAGCCTCACCTT [950] Scolopsis ciliatus CTTATACTAGTTCCTATCCTCCACACTTCTAAGCAACGAAGTCTAACATT [950] 67

82 Acanthopagrus berda CCGACCATTTACTCAATTCCTATTCTGAGCACTCATTGCAAATGTGGTAA [1000] Archosargus probatocephalus CCGACCCCTTACCCAATTCCTATTCTGAGCACTCATTGCAAACGTAGCCA [1000] Argyrops spinifer TCGTCCCATCACTCAGTTCCTATTCTGAGCACTCATTGCAAACGTAGCCA [1000] Argyrozona argyrozona CCGGCCAATTTCTCAATTTCTATTCTGAATACTTATTGCTAATGTGGCCA [1000] Boops boopsgb CCGACCCGTGACCCAATTCCTATTTTGAGCACTTATTGCAAACGTAGCAA [1000] Boopsoidea inornata CCGACCTGCCACTCAATTCCTATTCTGAACACTCATTGCAAACGTAGCAA [1000] Calamus nodosus CCGACCTCTGACTCAGTTCTTATTCTGAGCACTTATCGCAAACGTGGTAG [1000] Cheimerius nufar CCGGCCTGTCACTCAATTCCTGTTCTGAGCACTCATTGCAAATGTAGCTA [1000] Chrysoblephus cristiceps CCGACCAGTAACCCAATTCCTATTTTGAGCGCTCATCGCAAATGTAGCGA [1000] Crenidens crenidens CCGACCAGTTACCCAGTTCCTATTCTGAGCACTAATTGCAAACGTAGCAA [1000] Cymatoceps nasutus CCGACCAGTGACCCAATTCCTATTCTGAACGCTCACTGCGAATGTAGCAG [1000] Dentex dentexgb CCGACCTATAACTCAATTCCTGTTTTGAGCACTCATTGCAAACGTAGCAA [1000] Dentex tumifrons CCGGCCATTAACCCAATTCCTGTTCTGACTGCTCATTGCAAACGTAGCAA [1000] Diplodus argenteus CCGACCAGTAACCCAGATCCTATTCTGAGCACTTATTGCAAACGTAGCTA [1000] Diplodus bermudensis CCGACCAGTAACCCAGTTCCTATTCTGAGCACTTATTGCAAACGTAGCTA [1000] Diplodus cervinus CCGACCAGTGACCCAATTCCTATTCTGAACACTTATTGCAAACGTGGCTA [1000] Diplodus holbrooki CCGGCCAGTAACCCAGTTCCTATTCTGAGCACTTATTGCAAACGTAGCTA [1000] Evynnis japonica TCGACCTATAACTCAATTCCTATTTTGAGCACTCATCGCAAACGTAGCAA [1000] Gymnocrotaphus curvidens CCGACCTGTCACCCAATTCCTGTTCTGAGCACTCATTGCAAACGTGGCAA [1000] Lagodon rhomboides CCGACCCCTCACCCAATTCTTATTCTGAACACTCATTGCAAATGTAGCCA [1000] Lithognathus mormyrus CCGACCAGTGACCCAATTCTTGTTCTGAGCTCTCATTGCAAACGTAGCCA [1000] Oblada melanura CCGACCAGTTACCCAATTCCTATTCTGAGCACTCATTGCAAACGTAGCCA [1000] Pachymetopon aeneum CCGACCTATCACCCAGTTCCTATTCTGGGCACTCACTGCAAACGTAGCAA [1000] Pagellus bogaraveo CCGGCCAGTTACTCAATTCTTGTTCTGAGCACTTATTGCAAACGTTGCAA [1000] Pagellus bellottii CCGGCCCATAACCCAATTCCTGTTCTGAGCACTTATTGCAAACGTAGCTA [1000] Pagrus auratus TCGACCTGTCACCCAGTTCCTGTTTTGAGCACTCATTGCAAATGTAGCAA [1000] Pagrus auriga TCGACCCATAACTCAATTCCTGTTCTGAGCGCTCATTGCAAACGTAGCAA [1000] Pagrus pagrus CCGACCCATAACTCAGTTCCTGTTTTGAGCGCTCATTGCAAATGTAGCAA [1000] Petrus rupestris CCGGCCAATCACCCAATTCCTTTTCTGAACGCTCATTGCAAATGTAGCAA [1000] Porcostoma dentata CCGACCAATGACCCAATTCCTGTTCTGAGCACTCATGGCAAATGTAGCAA [1000] Pterogymnus laniarius CCGGCCCGTAACCCAATTCCTATTTTGAGCACTAATTGCAAACGTAGCAA [1000] Polyamblyodon germanum CCGGCCTATCACCCAGTTCCTATTCTGGGCACTCATCGCAAACGTAGCAA [1000] Polysteganus praeorbitalis CCGACCAATAACTCAATTCCTATTCTGAGCACTAATTGCAAATGTAGCAA [1000] Rhabdosargus thorpei CCGACCAGCCACTCAATTCCTATTCTGGACGCTCATCGCCAACGTAGCAA [1000] Sarpa salpa CCGACCCATAACCCAATTCCTATTCTGAGCACTCATTGCAAACGTAGCAA [1000] Sparidentex hasta CCGACCCGTTACTCAATTCCTATTCTGAGCACTTATTGCAAACGTGGCAA [1000] Sparodon durbanensis CCGGCCAGTTACCCAATTCCTGTTTTGAACACTCATCGCCAACGTAGCTA [1000] Sparus auratus CCGACCAGTCACCCAATTCCTATTCTGAGCACTCGTTGCAAACGTAGCAA [1000] Spondyliosoma cantharus CCGGCCCCTAACCCAATTCTTATTCTGAACACTAATTGCAAATGTTGCAA [1000] Stenotomus chrysops CCGACCTATAACCCAATTCTTATTCTGAGCACTTATTGCAAACGTAGCCA [1000] Spicara alta TCGACCCGTGACTCAATTCCTCTTCTGAGCACTCATTGCAAACGTAGCAA [1000] Spicara maena CCGACCCGTGACCCAATTCTTATTCTGAACACTAGTCGCGAACGTAGCAA [1000] Cyprinus carpio CCGCCCCATCACCCAATTCCTATTCTGAACCCTAGTAGCGGACATAATTA [1000] Luxilus zonatus CCGGCCAATCACTCAGTTTTTATTCTGAACCTTAGTGGCAGATATAGTTA [1000] Centropomus undecimalis CCGACCCGCCTCACAACTCCTATTCTGAGTTCTCGTSGCAGACGTAGCCA [1000] Dicentrarchus labraxgb CCGACCCGTAACACAGTTTTTATTCTGGGCTCTCGTCGCTGATGTTATAA [1000] Dicentrarchus punctatus TCGCCCCCTGACACAATTTCTATTTTGAACCCTTGTTGCGGATGTTATGG [1000] Lateolabrax japonicus CCGACCTATTACCCAATTCCTTTTCTGAACACTCATTGCGGACGTTGCCA [1000] Lateolabrax japonicus2 CCGACCAATCACGCAATTCCTCTTCTGAACACTCATCGCAGATGTCGCCA [1000] Lateolabrax latus CCGGCCTATCACTCAGTTCCTCTTCTGGACGCTAATCGCAGATGTTGCCA [1000] Morone americanus CCGTCCATTAACCCAGCTTCTATTTTGAACCCTTATTGCAGATGTAGTAA [1000] Morone chrysops CCGCCCGTTAACCCAGCTTCTATTTTGGGCCCTAATTGCAGACGTAGCAA [1000] Morone mississippiensisgb CCGTCCATTAACCCAATTTCTGTTTTGAACCCTTATTGCAGATGTAATAA [1000] Morone saxatilis CCGCCCGTTAACCCAGCTTCTATTCTGAACCCTCATTGCAGATGTAGCAA [1000] Haemulon sciurus CCGCCCGGTCACACAGTTCCTCTTCTGAACACTCATTGCAGACGTTGCAA [1000] Pomadasys maculatus CCGACCACTATCCCAACTCCTATTCTGAACACTCGTTGCCGATGTTGCCA [1000] Caesio cuning CCGACCTGTAACTCAGTTCCTATTCTGGACCCTAATTGCAAACGTCGCCA [1000] Lutjanus decussatus CCGGCCCGTCACTCAATTCTTATTCTGAACCTTAATCGCAAACGTTGCCA [1000] Lethrinus ornatus CCGACCCTTAACCCAGTTCCTATTCTGAACACTAATTGCTAACGTCGCAA [1000] Lethrinus rubrioperculatus CCGGCCTTTGACCCAATTCCTGTTTTGGACCTTAATCGCCAACGTTGCCA [1000] Nemipterus marginatus CCGACCAATCTCCCAGTTCTTGTTTTGAGTGCTGATTGCGGACGTCGCCA [1000] Scolopsis ciliatus CCGGCCAATTTCTCAATTCCTATTCTGAACGCTAATCGCAGACGTTGCCA [1000] 68

83 Acanthopagrus berda TTCTCACATGAATTGGAGGTATGCCAGTTGAAGAACCTTACATTATTATT [1050] Archosargus probatocephalus TCCTAACATGAATCGGAGGAATGCCAGTTGAAGAACCATACATTATCATC [1050] Argyrops spinifer TCCTCACATGAATTGGCTTTTTGCTCGTTGAAGACCCATATATTATTATT [1050] Argyrozona argyrozona TTCTCACATGAATTGGTGGTATGCCCGTCGAAGATCCGTATATCATTATT [1050] Boops boopsgb TCCTAACCTGAATTGGAGGAATGCCAGTCGAAGAACCTTATATTATTATT [1050] Boopsoidea inornata TCCTGACATGAATTGGAGGAATACCAGTTGAAGAGCCCTATATCATCATT [1050] Calamus nodosus TTTTAACATGAATTGGGGGCATGCCGGTCGAAGACCCATATATTATTATT [1050] Cheimerius nufar TCCTTACATGAATTGGCGGAATGCCCGTTGAAGACCCATACATTATTATT [1050] Chrysoblephus cristiceps TTCTTACATGAATTGGCGGAATACCCGTCGAAGACCCATACATCATTATT [1050] Crenidens crenidens TTCTTACATGAATCGGCGGGATACCAGTTGAAGAACCATACATCATCATC [1050] Cymatoceps nasutus TTCTTACATGAATTGGCGGCATACCCGTCGAAGACCCCTATATTATCATT [1050] Dentex dentexgb TCCTTACTTGAATTGGCGGAATGCCCGTTGAAGACCCATACATCATTATC [1050] Dentex tumifrons TCCTTACATGAATTGGTGGAATGCCCGTTGAAGATCCATATATTATTATT [1050] Diplodus argenteus TCCTCACATGAATCGGAGGAATGCCAGCCGAAGAACCTTACAAAATTATT [1050] Diplodus bermudensis TCCTCACATGAATCGGAGGAATACCAGTTGAAGAACCTTACATTATTATT [1050] Diplodus cervinus TCCTCACATGAATCGGAGGGATACCAGTTGAAGACCCTTACATTATTATT [1050] Diplodus holbrooki TCCTCACATGAATCGGAGGAATACCAGTTGAAGAACCTTATATTATTATT [1050] Evynnis japonica TCCTCACATGAATCGGCGGAATGCCCGTTGAGGACCCATACATCGTTATT [1050] Gymnocrotaphus curvidens TCCTGACATGAATCGGAGGGATACCAGTCGAAGGGCCCTATATTATTATC [1050] Lagodon rhomboides TCCTAACATGAATTGGAGGGATACCAGTTGAAGACCCTTATATTATCATC [1050] Lithognathus mormyrus TCCTCACATGAATTGGCGGAATACCTGTTGAAGAGCCTTATATCATTATT [1050] Oblada melanura TCCTCACATGAATCGGAGGAATACCAGTCGAAGAACCTTACATTATTATC [1050] Pachymetopon aeneum TTTTAACATGAATTGGGGGAATGCCAGTTGAAGAACCTTATATCATTATC [1050] Pagellus bogaraveo TCCTCACATGAATTGGAGGAATACCCGTTGAAGAGCCTTACATTATTATT [1050] Pagellus bellottii TCCTTACGTGAATTGGAGGAATACCAGTCGAAGATCCGTACATCGTCATT [1050] Pagrus auratus TCCTCACATGAATCGGCGGAATGCCCGTTGAAGACCCGTACATCATTATT [1050] Pagrus auriga TCCTCACATGAATTGGTGGAATACCAGTTGAAGACCCGTACATCATTATC [1050] Pagrus pagrus TTCTTACATGAATTGGTGGAATGCCCGTTGAAGACCCATACATCATTATT [1050] Petrus rupestris TCCTTACATGAATTGGTGGAATGCCCGTCGAAGACCCATACATTGTCATT [1050] Porcostoma dentata TCCTCACATGAATTGGCGGAATGCCTGTCGAAGACCCTTATATTGTTATT [1050] Pterogymnus laniarius TTCTCACATGAATCGGCGGAATACCCGTTGAAGACCCTTACATTGTTATT [1050] Polyamblyodon germanum TTTTAACATGAATTGGTGGAATGCCAGTTGAGGAACCTTATATCATTATC [1050] Polysteganus praeorbitalis TTCTTACATGAATCGGAGGCATACCAGTTGAAGACCCATACATTATCATT [1050] Rhabdosargus thorpei TCCTTACATGAATTGGAGGAATGCCCGTCGAAGAACCTTACATCATTATT [1050] Sarpa salpa TTTTAACTTGAATTGGAGGAATACCAGTTGAAGAACCCTACATCATCATT [1050] Sparidentex hasta TTCTCACATGAATTGGAGGCATACCAGTTGAAGAGCCTTACATTATCATT [1050] Sparodon durbanensis TTCTCACATGAATTGGGGGAATACCAGTCGAAGAGCCCTATATTATTATT [1050] Sparus auratus TTCTCACATGAATCGGAGGAATGCCAGTCGAAGAGCCTTACATCATTATT [1050] Spondyliosoma cantharus TCCTGACCTGAATCGGAGGAATACCAGTTGAAGACCCCTACATTATGATT [1050] Stenotomus chrysops TCCTAACATGAATTGGAGGGATGCCAGTTGAAGAACCATACATTATTATC [1050] Spicara alta TCCTCACATGAATTGGGGGCATACCCGTCGAAGACCCATATATTGTCATC [1050] Spicara maena TTCTCACCTGAATCGGAGGCATACCAGTTGAAGACCCCTACATTATGATT [1050] Cyprinus carpio TCCTAACATGAATTGGAGGCATACCAGTAGAGCATCCCTTCATCATTATT [1050] Luxilus zonatus TTCTGACATGAATTGGGGGTATACCTGTAGAACACCCATACATTATTATT [1050] Centropomus undecimalis TCCTAACCTGAATCGGCGGAATACCGGTTGAACACCCCTATATCATTGTT [1050] Dicentrarchus labraxgb TTCTAACTTGAATTGGAGGCATGCCCGTTGAGCACCCTTTTATTATTATC [1050] Dicentrarchus punctatus TTCTCACTTGAATTGGGGGTATGCCAGTTGAACACCCCTTTATTATTATT [1050] Lateolabrax japonicus TTCTCACTTGAATCGGAGGCATGCCTGTTGAACACCCATTCATTATTATT [1050] Lateolabrax japonicus2 TTCTCACGTGAATCGGGGGCATACCAGTTGAGCACCCATTCATTATTATT [1050] Lateolabrax latus TTCTCACCTGGATCGGAGGTATGCCAGTCGAACACCCATTTATTATCATC [1050] Morone americanus TTCTCACTTGAATTGGAGGAATGCCTGTTGAACACCCATTTATTATTATT [1050] Morone chrysops TCCTCACTTGAATTGGAGGAATGCCTGTCGAACATCCTTTCATTATTATT [1050] Morone mississippiensisgb TTCTTACTTGGATTGGCGGAATGCCTGTCGAACACCCCTTCATTATTATT [1050] Morone saxatilis TTCTCACTTGAATCGGAGGAATGCCTGTTGAACACCCCTTTATTATCATC [1050] Haemulon sciurus TCCTCACATGAATTGGAGGCATGCCTGTCGAACACCCCTTCATTATTATT [1050] Pomadasys maculatus GTCTTACATGAATCGGTGGCATGCCTGTAGAACACCCCTACATCATCATC [1050] Caesio cuning TCCTCACTTGAATTGGCGGAATACCCGTCGAGCATCCATTCATCATCATC [1050] Lutjanus decussatus TCCTTACCTGAATCGGCGGAATACCCGTCGAACATCCATTCATCATCATC [1050] Lethrinus ornatus TTCTCACGTGAATCGGGGGAATACCCGTCGAGCACCCCTTTATCATTATC [1050] Lethrinus rubrioperculatus TCCTTACATGGATTGGAGGAATGCCTGTTGAGCATCCATTCATTATTATC [1050] Nemipterus marginatus TTCTTACATGAATTGGAGGAATGCCAGTAGAAGACCCCTACATTATCATT [1050] Scolopsis ciliatus TTCTTACATGGATCGGGGGAATGCCCGTAGAACATCCATACATTATTATT [1050] 69

84 Acanthopagrus berda GGTCAAATCGCCTCTCTCACCTACTTCTCCCTCTTCCTAGTTATTATCCC [1100] Archosargus probatocephalus GGCCAAGTTGCCTCCCTAACCTACTTCTCCCTCTTCCTAATTATTATTCC [1100] Argyrops spinifer GGTCAAATTGCATCCCTAACCTACTTCGCCCTCTTCTTACTTATCATACC [1100] Argyrozona argyrozona GGCCAAATTGCATCTCTCACCTACTTCGCACTCTTCCTGTTTATCATTCC [1100] Boops boopsgb GGCCAAATTGCATCCCTAACCTACTTCTCGCTCTTCTTACTTATTATTCC [1100] Boopsoidea inornata GGCCAAATTGCATCCCTAACCTATTTTTCCATCTTCCTAATTATTATCCC [1100] Calamus nodosus GGTCAAATCGCATCACTAACCTATTTCTCCCTCTTCTTAATTATTATTCC [1100] Cheimerius nufar GGCCAAATTGCTTCCCTCACCTATTTTGCTCTCTTCCTGCTAATTATACC [1100] Chrysoblephus cristiceps GGTCAAATTGCATCCCTCACCTACTTTGCTCTCTTCCTATTTATCATCCC [1100] Crenidens crenidens GGTCAAGTTGCATCCCTAACTTACTTCTCCCTCTTCCTAATTATTATCCC [1100] Cymatoceps nasutus GGGCAAATTGCATCCCTCACCTACTTCGCTCTTTTCCTATTTATTAATAC [1100] Dentex dentexgb GGCCAGATCGCTTCCCTCACTTACTTTGCGCTTTTCCTGTTTATCTTCCC [1100] Dentex tumifrons GGCCAGATCGCATCCCTTACGTACTTCGCCCTTTTCCTAATTATTATTCC [1100] Diplodus argenteus GGCCAAATCGCATCCCTCACCAACATCTCCCTCTTCCTAGTTGTTAACCC [1100] Diplodus bermudensis GGCCAAATCGCATCCCTCACCTACTTCTCCCTCTTCCTAGTTGTTATCCC [1100] Diplodus cervinus GGCCAAATTGCATCCCTCACCTACTTCTCCCTTTTCCTAGTCATTATCCC [1100] Diplodus holbrooki GGCCAAATCGCATCCCTCACCTACTTCTCCCTCTTCCTAGTTGTTATCCC [1100] Evynnis japonica GGTCAAATTGCATCCCTTACTTACTTTGCTCTTTTCTTGCTTATCATCCC [1100] Gymnocrotaphus curvidens GGCCAAATTGCATCCCTAACCTACTTTTCCCTCTTCCTAGTCATTATCCC [1100] Lagodon rhomboides GGCCAGATTGCTTCCCTGACCTACTTCTCCCTCTTCCTAATTATTATCCC [1100] Lithognathus mormyrus GGTCAAATTGCATCCCTAACCTATTTCTCCCTCTTCCTTGTAGTCATACC [1100] Oblada melanura GGCCAAATCGCATCCCTCACCTATTTCTCCCTCTTCCTAGTAATCATCCC [1100] Pachymetopon aeneum GGCCAAATTGCGTCTTTAACCTACTTTTCCCTCTTTCTAATCATTATCCC [1100] Pagellus bogaraveo GGCCAAGTCGCATCCCTAACCTACTTTTCCCTCTTTTTAGTTATTATCCC [1100] Pagellus bellottii GGTCAAATCGCATCCCTTACATACTTTGCTCTCTTCCTGCTTATTATCCC [1100] Pagrus auratus GGTCAAATTGCATCCCTGACTTATTTTGCCCTTTTCCTACTTATCATACC [1100] Pagrus auriga GGCCAGATTGCCTCCCTTACCTACTTTGCTCTCTTTCTGTTCATCATCCC [1100] Pagrus pagrus GGCCAAATCGCATCCCTTACCTACTTCGCCCTTTTCCTGCTTATTATTCC [1100] Petrus rupestris GGCCAAATTGCATCCCTCACCTACTTCGCCCTTTTCCTCTTTATTATTCC [1100] Porcostoma dentata GGTCAAGTTGCATCCCTCACCTACTTCGCTCTTTTCCTGTTTATTATTCC [1100] Pterogymnus laniarius GGCCAAATTGCATCTCTTACCTACTTCGCCCTATTCCTATTCATTATCCC [1100] Polyamblyodon germanum GGTCAAATTGCGTCCTTAACTTACTTCTCCCTCTTTCTAATCATTATCCC [1100] Polysteganus praeorbitalis GGACAAATTGCATCTCTTACCTACTTCGCTCTTTTCCTATTTATTATACC [1100] Rhabdosargus thorpei GGCCAAGTGGCATCCCTATCTTACTTCTCCCTCTTCCTAATTATCATGCC [1100] Sarpa salpa GGCCAAGTCGCATCCCTAACCTACTTTTCACTATTCCTAGTTATTATTCC [1100] Sparidentex hasta GGCCAAATCGCATCTCTTACCTATTTCTCCCTCTTCCTAGTTATCATCCC [1100] Sparodon durbanensis GGCCAGGTTGCATCTCTAACGTACTTCTCCCTCTTCCTCATTATCATACC [1100] Sparus auratus GGCCAAGTTGCATCACTAACCTACTTCTCTCTTTTCCTAGTCATTATTCC [1100] Spondyliosoma cantharus GGCCAAATTGCATCCGTGACGTACTTATCCCTCTTCCTAATTATTATCCC [1100] Stenotomus chrysops GGCCAAATCGCATCCTTAACCTACTTCGCCCTCTTCCTAATTATTATCCC [1100] Spicara alta GGACAAGTCGCATCCCTAACTTATTTCGCTCTCTTCTTACTCATTATCCC [1100] Spicara maena GGTCAAGTCGCATCCCTAACCTACTTCTCCTTATTTCTCATTATCATCCC [1100] Cyprinus carpio GGACAAATTGCATCCGTCCTATACTTCGCACTATTCCTCATTTTTATGCC [1100] Luxilus zonatus GGCCAAGTCGCCTCAGTTCTGTACTTTGCATTATTCCTCCTCCTTGCCCC [1100] Centropomus undecimalis GGACAAATCGCATCCCTCCTCTACTTCCTACTATTCTTAGTGCTCATACC [1100] Dicentrarchus labraxgb GGCCAAGTTGCTTCCTTACTGTATTTCCTCTTGTTCCTTGTCTTCATCCC [1100] Dicentrarchus punctatus GGCCAAGTTGCCTCCTTATTGTATTTCCTCTTATTCCTGGTCCTCATCCC [1100] Lateolabrax japonicus GGACAAATCGCTTCTCTACTCTACTTCCTTATTTTTTTAGTACTATTCCC [1100] Lateolabrax japonicus2 GGACAAATCGCTTCTCTACTCTACTTCCTTATTTTTCTAGTCCTCTTTCC [1100] Lateolabrax latus GGACAATTAGCTTTTTTGTTTTATTTCTTTATCTTCTTAGTGTTATTCCC [1100] Morone americanus GGCCAAATCGCCTCGCTCTTATATTTTCTTCTTTTCCTCGTGCTCATACC [1100] Morone chrysops GGCCAAATCGCCTCTCTCCTGTACTTTCTTCTCTTTCTTGTTTTTATACC [1100] Morone mississippiensisgb GGCCAAATCGCCTCCCTCTTATATTTTCTTCTTTTTCTTGTATTTATACC [1100] Morone saxatilis GGCCAAGTCGCCTCACTCTTATACTTCCTTCTCTTCCTTGTTTTCATACC [1100] Haemulon sciurus GGACAAGTCGCCTCCTTCCTGTACTTCTTCCTATTCCTAGTCTTCACGCC [1100] Pomadasys maculatus GGCCAAATTGCCTCTTTTCTGTACTTCTCCCTATTTTTAGTCCTGTTCCC [1100] Caesio cuning GGACAAATCGCCTCCGTCCTGTACTTCTTGTTATTCCTAGTCCTCACCCC [1100] Lutjanus decussatus GGACAAATCGCCTCCGTTCTATACTTCCTACTATTCCTAGTGTTCGCCCC [1100] Lethrinus ornatus GGCCAAATCGCCTCCCTGCTCTACTTCTCCCTCTTCCTAATCATCACCCC [1100] Lethrinus rubrioperculatus GGCCAGATTGCCTCACTGCTTTACTTTTCACTCTTCCTAATCATCACACC [1100] Nemipterus marginatus GGCCAAGTCGCATCTGTCCTCTATTTCTCCATTTTCTTGGTCTTCATGCC [1100] Scolopsis ciliatus GGCCAAATCGCATCAGTACTTTATTTCTCTATCTTCCTCCTCCTAATACC [1100] 70

85 Acanthopagrus berda TGCAGCGGCAACAGTGGAAAACAAGGTACTAGGCTGACAA [1140] Archosargus probatocephalus TACAGTAGCCATAGTAGAAAACAAAGTATTAGGTTGACAA [1140] Argyrops spinifer TGCGACAGCATTAGTAGAAAATAAAGTCTTAGGCTGACAA [1140] Argyrozona argyrozona TGTAGCAGCACTCGTAGAAAACAAAGTGCTGGGCTGTAAC [1140] Boops boopsgb TATAGCAGCAACTTTAGAAAACAAAGTACTAGGCTGACAA [1140] Boopsoidea inornata CGCAACAGCAATTTTAGAGAACAAAGTACTAAACTGGTAA [1140] Calamus nodosus TGTAACAGCCACAGTGGAAAATAAGGTGCTAGGCTGACAA [1140] Cheimerius nufar TGTTGCCGCATTAGCAGAAAACAAGGTATTAGGCTGACAA [1140] Chrysoblephus cristiceps TGCAGCAGCATTAGCAGAGAACAAAGTACTAGGCTGACAA [1140] Crenidens crenidens TACAGCAGCAGCTGTAGAGAACAAAGTCCTAGGCTGACAA [1140] Cymatoceps nasutus TGCAGCAGCACTAGTAGAAAACAAAATGCTAGGCTGACAA [1140] Dentex dentexgb TGTCACAGCATTAGTAGAAAACAAAGTATTAGGCTGACAA [1140] Dentex tumifrons CACAACAGCGTTAGCAGAAAATAAAATATTAAGTTTACAA [1140] Diplodus argenteus AGCCGCAGCAGTTTTAGAAAACAAGGTGTTAGGCTGACAA [1140] Diplodus bermudensis TGCCGCAGCAGTTTTAGAAAACAAAGTGTTAGGCTGACAA [1140] Diplodus cervinus TGCTGCAGCAACTATAGAAAACAAGGTATTAGGCTGACAG [1140] Diplodus holbrooki TGCCGCAGCAGTTTTAGAAAACAAAGTGTTAGGCTGACAA [1140] Evynnis japonica CGCAACAGCATTAGTAGAGAACAAAGTACTTGGCTGACAA [1140] Gymnocrotaphus curvidens CGCAGCAGCAACTATGGAAAACAAAGTGCTAGGCTGGCAA [1140] Lagodon rhomboides CATAGCAGCCACGGTGGAAAATAAAATACTAAGCTGACAA [1140] Lithognathus mormyrus CGCGGCTGCAGCCATTGAAAACAAAGTACTAGGCTGACAG [1140] Oblada melanura TGCCGCAGCAGTGATAGAAAACAAAGTATTAGGCTGACAA [1140] Pachymetopon aeneum CGCAACAGCGACCATTGAAAATAAAATGCTAGGCTGACAG [1140] Pagellus bogaraveo CGCAGCAGCAACGATGGAAAATAAAGTGTTAGGCTGACAG [1140] Pagellus bellottii CGCCACAGCACTAGCAGAAAACAAAGTGTTAGGCTGACAA [1140] Pagrus auratus CACAGCAGCATTAGTAGAAAACAAAGTGCTAGGTTGACAA [1140] Pagrus auriga TGTCACAGCAATAGCAGAGAACAAAGTACTAGGCTGACGA [1140] Pagrus pagrus TGCCACAGCATTAGTAGAAAATAAAGTGTTAGGCTGACAA [1140] Petrus rupestris TACAGCAGCACTGGCAGAAAACAAAATGCTAGGCTTACAA [1140] Porcostoma dentata TGCAGCAGCACTAGCAGAAAATAAAGTGCTAGGCTGACAA [1140] Pterogymnus laniarius CGCAGCAGCACTAGCAGAAAACAAAGTGCTAGGCTGACAA [1140] Polyamblyodon germanum TGCAACAGCAACCATTGAAAATAAAATGCTAGGCTGACAA [1140] Polysteganus praeorbitalis TGCAGCAGCACTAGTAGAAAACAAAGTCCTAGGCTGACAA [1140] Rhabdosargus thorpei AGCCGCAGCAACTTTAGAAAATAAAGTCCTAGGCTGACGG [1140] Sarpa salpa TGCAGCAGCAACTTTAGAAAATAAAGTATTAGGCTGACAA [1140] Sparidentex hasta TACAGCAGCAACTATAGAGAACAAAGTGTTAGGCTGACAA [1140] Sparodon durbanensis AGCTGCAGCAACCCTGGAAAATAAGGCCCTAGGCTGGCAG [1140] Sparus auratus CGCCGCAGCCACTATGGAAAACAAAGTCTTAGGCTGACAA [1140] Spondyliosoma cantharus CACAGCAGCAACCTTAGAAAATAAAGTTTTAGGCTGGCAA [1140] Stenotomus chrysops CGCGACAGCCACAGTAGAAAACAAAGTGTTAGGCTGATAA [1140] Spicara alta CACAGCAGCGTTAGCAGAAAACAAAGTTTTAGGCTGGAAA [1140] Spicara maena TACAGCAGCAACTTTAGAAAATAAAGTCTTAGGCTGACGA [1140] Cyprinus carpio ACTAGCAGGATGGTTAGAAAATAAAGCACTAAAATGAGCT [1140] Luxilus zonatus ACTTGCAGGATGAGCAGAGAACAAGGCATTGAAATGAGCT [1140] Centropomus undecimalis ACTGGCAGGCTGATGGGAAAATAAACTCTTAAACTGGCAA [1140] Dicentrarchus labraxgb CGTTGTTGGAGAATTAGAGAACAAAGCTTTAGAGTGGCTT [1140] Dicentrarchus punctatus TGTTGTCGGGGAGCTAGAAAACAAAGCTTTAGAGTGACTT [1140] Lateolabrax japonicus GCTAGCGGGCTGACTAGAAAATAAAGCTCTCGGATGAACT [1140] Lateolabrax japonicus2 CGTGGCGGGCTGATTAGAAAATAAGGCTCTCGGATGAACT [1140] Lateolabrax latus TCTAGCAGGCTGATTAGAAAATAAAGCTCTTGGATGAACT [1140] Morone americanus CATGGCCGGCGAATTAGAAAACAAAGCTCTAGGGTGACTT [1140] Morone chrysops CATTGCAGGGGAACTAGAGAATAAAGCCCTAGAATGACTT [1140] Morone mississippiensisgb TATTGCCGGCGAATTAGAAAACAAGGCCCTAGGATGATCC [1140] Morone saxatilis CATTGTAGGCGAACTAGAAAATAAGGCTCTAGAATGACTT [1140] Haemulon sciurus ACTAGCAAGCTGGCTTGAGAACAAAGCACTCGGATGAGCC [1140] Pomadasys maculatus GCTAGCAGGCTGACTCGAGAACAAAGTAATAGGCTGGTCC [1140] Caesio cuning CTTAGCAGGATGACTAGAAAACAAAGCCCTCGGATGAGTC [1140] Lutjanus decussatus ACTAGCAGGATGACTAGAAAACAAAGCCCTTGGATGGCTT [1140] Lethrinus ornatus GGCTGCAGGCTGATTCGAAAACAAGTCACTAGGATGACGA [1140] Lethrinus rubrioperculatus CGCCGCAGGCTGATTTGAAAACAAGTCACTAGGATGGCGA [1140] Nemipterus marginatus TCTCGTAGGAGCAGTAGAAAATAAAGTTATAGGCTGAACA [1140] Scolopsis ciliatus CTTGCAGGATGAGCAGGGAATAAAATCCTTCGCTGAGCAT [1140] 71

86 72 TABLE 5. CYTOCHROME B NUCLEOTIDE SEQUENCE CHARACTERISTICS Total Characters= st Codon 2 nd Codon 3 rd Codon Totals Characters Constant Characters (42%) Uninformative Characters (10%) Informative Characters (48%) % of Informative - Ts 66% 59% 68% % of Informative - Tv 34% 41% 32%

87 73 TABLE 6. PAIRWISE VALUES OF MEAN % SEQUENCE DIVERGENCE DERIVED FROM UNCORRECTED P GENETIC DISTANCE FOR ALL TAXA, INGROUP TAXA AND OUTGROUP TAXA Groups Uncorrected Distance %Divergence Number of Comparisons Standard Deviation All N= Ingroup Taxa N= Outgroup Taxa N= Sparidae -vs- All N= Lutjanidae -vs- All N= Haemulidae -vs- All N= Nemipteridae -vs- All N= Lethrinidae -vs- All N= Centracanthidae -vs- Lutjanidae N= Centracanthidae -vs- Haemulidae N= Centracanthidae -vs- Nemipteridae N= Centracanthidae -vs- Lethrinidae N= Haemulidae -vs- Lutjanidae N= Haemulidae -vs- Nemipteridae N= Haemulidae -vs- Lethrinidae N= Lethrinidae -vs- Lutjanidae N= Lethrinidae -vs- Nemipteridae N= Lutjanidae -vs- Nemipteridae N= Sparidae -vs- Centracanthidae N= Sparidae -vs- Haemulidae N= Sparidae -vs- Lethrinidae N= Sparidae -vs- Lutjanidae N= Sparidae -vs- Nemipteridae N= Lutjanidae N=1 N/A Haemulidae N=1 N/A Lethrinidae N=1 N/A Nemipteridae N=1 N/A Sparidae N=

88 74 TABLE 7. PAIRWISE VALUES OF MEAN % SEQUENCE DIVERGENCE DERIVED FROM UNCORRECTED P GENETIC DISTANCE WITHIN AND BETWEEN SUBFAMILIES Boopsinae Denticinae Diplodinae Pagellinae Pagrinae Sparinae Boopsinae Mean % Divergence Standard Deviation Pairwise 28 Denticinae Mean % Divergence Standard Deviation Pairwise Diplodinae Mean % Divergence Standard Deviation Pairwise Pagellinae Mean % Divergence Standard Deviation Pairwise Pagrinae Mean % Divergence Standard Deviation Pairwise Sparinae Mean % Divergence Standard Deviation Pairwise

89 75 TABLE 8. FOLLOWING (IRWIN ET AL., 1991) BASE COMPOSITIONAL BIAS, THE UNEQUAL PROPORTIONS OF THE FOUR BASES (A, C, G, AND T), WAS CALCULATED ACROSS ALL, INGROUP, AND OUTGROUP TAXA ALL Codons First Codon Second Codon Third Codon Taxon A C G T A1 C1 G1 T1 A2 C2 G2 T2 A3 C3 G3 T3 Acantho berd Archosarg pro Argyrops spin Argyroz argy Boops boops Boopsoid ino Calamus nod Cheimer nuf Chrysobl cris Crenid crenid Cymatoc nas Dentex dent Dentex tumif Diplodus arg Diplodus berm Diplodus cerv Diplodus holb Evynnis japo Gymno curvid Lagod rhomb Lithogna mor Oblada melan Pachy aenum Pagellus acar Pagellus bell Pagrus aurat Pagrus auriga Pagrus pagru Petrus rupest Polyam germ Polysteg pra Porcost denta Pterogy laniri Rhabdo thorp Sarpa salpa Spariden hast Sparod durb Sparus auratus

90 76 Spondyl can Stenotom chr Spicara alta Spicara smar Cyprinus carp Luxilus zonat Centropo und Dicentra labr Dicentra pun Lateolab jap Lateolab jap Lateolab latus Morone ameri Morone chrys Morone missi Morone saxa Haemul sciur Pomad macu Caesio cunin Lutjanus decu Lethrinus orna Lethrinus rubr Scolops ciliat Nemipt margi MEAN SD All Codons First Codon Second Codon Third Codon ALL BIAS IN BIAS OUT BIAS

91 TABLE 9. MULTIPLE ALIGNMENT OF AMINO ACID RESIDUES TRANSLATED FROM THE NUCLEOTIDE SEQUENCES OF THE CYTOCHROME B GENE FROM THE SPARIDAE AND OUTGROUP SPECIES. TAXONOMIC NAMES WITH A SUFFIX OF GB ARE FROM GENBANK AND ARE INCLUDED WITH ORIGINAL SEQUENCES FOR EASY COMPARISON. 77

92 Acanthopagrus berda MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Archosargus probatocephalus MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Argyrops spinifer MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Argyrozona argyrozona MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Boops boopsgb MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Boopsoidea inornata MA2LRKTHPLLKIVNHAVVDLPAP1NI1VWWNFG1LL2LCLI1QLLTGLF [50] Calamus nodosus MTNLRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Cheimerius nufar MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Chrysoblephus cristiceps MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Crenidens crenidens MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLV1QLLTGLF [50] Cymatoceps nasutus MT2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Dentex dentexgb MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF [50] Dentex tumifrons MA2LRKTQPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Diplodus argenteus MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Diplodus bermudensis MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Diplodus cervinus MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Diplodus holbrooki MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLRLI1QLLTGLF [50] Evynnis japonica MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Gymnocrotaphus curvidens MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCWI1QLLTGLF [50] Lagodon rhomboides MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Lithognathus mormyrus MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Oblada melanura MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Pachymetopon aeneum MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Pagellus bogaraveo MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Pagellus bellottii MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Pagrus auratus MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF [50] Pagrus auriga MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Pagrus pagrus MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Petrus rupestris MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF [50] Polyamblyodon germanum MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWDFG1LLGLCLI1QLLTGLF [50] Polysteganus praeorbitalis MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF [50] Porcostoma dentata MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Pterogymnus laniarius MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Rhabdosargus thorpei MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Sarpa salpa MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Sparidentex hasta MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Sparodon durbanensis MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGRF [50] Sparus auratus MA2LRKTHPLLKIANHAVIDLHAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Spondyliosoma cantharus MA2LRKTHPLLKIANHALVDLPAPANI1VWWNFG1LLGLCLI1QLLTGLF [50] Stenotomus chrysops MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Spicara alta MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Spicara maena MT2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF [50] Cyprinus carpio MA2LRKTHPLIKIANDALVDLPTP1NI1AWWNFG1LLGLCLITQILTGLF [50] Luxilus zonatus MA2LRKTHPLMKIANGALVDLPTP1NI1ALWNFG1LLGLCLITQILTGLF [50] Centropomus undecimalis MA2LRKTHPLLKIANDALIDLPAP1NI1AWWNFG1LLGLCLIAQILTGLF [50] Dicentrarchus labraxgb MAALRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF [50] Dicentrarchus punctatus M2ALRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF [50] Lateolabrax japonicus MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLITQILTGLF [50] Lateolabrax japonicus2 MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLITQILTGLF [50] Lateolabrax latus MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLFTQIITGLF [50] Morone americanus MA1LRK1HPLLKIANNALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF [50] Morone chrysops MAALRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF [50] Morone mississippiensisgb MA1LRK1HPLLKIANNALIDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF [50] Morone saxatilis MAALRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF [50] Haemulon sciurus MANPRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLI1QIVTGLF [50] Pomadasys maculatus MANLRKTHPLLKIANDALIDLPAP1NI1VWWNFG1LLGLCLI1QIVTGLF [50] Caesio cuning MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLIAQLLTGLF [50] Lutjanus decussatus MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLIAQILTGLF [50] Lethrinus ornatus MACLRKTHPLLKIANDAVLDLPAP1NI1VWWNFG1LLGLCLIAQILTGLF [50] Lethrinus rubrioperculatus MA2LRKTHPLLKIANDAVVDLPAP1NI1VWWNFG1LLGLCLIAQILTGLF [50] Nemipterus marginatus MA2LRKTPPLLMIANNALIDLRAP1NI1AWWNFG1LLGLCLAAQILTGLF [50] Scolopsis ciliatus MA2LRKTHPLLKIANDALVDLPAPANI1AWWNFG1LLGLCLIAQLLTGLF [50] 78

93 Acanthopagrus berda LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Archosargus probatocephalus LAMHYT1DIATAF11VAHICRDVNYEWLIRNLHANGA1FFFICIYFHIGR [100] Argyrops spinifer LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Argyrozona argyrozona LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Boops boopsgb LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Boopsoidea inornata LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Calamus nodosus LAMHYTPDIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Cheimerius nufar LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Chrysoblephus cristiceps LAMHYT1DIATAF11VAHICRDVNDGWLIRNLHANGA1FFFICIYLHIGR [100] Crenidens crenidens LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Cymatoceps nasutus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Dentex dentexgb LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Dentex tumifrons LAMHYT1DINTAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Diplodus argenteus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Diplodus bermudensis LAMHYT1DIATAF1PVAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Diplodus cervinus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Diplodus holbrooki LAMHYT1GIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Evynnis japonica LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Gymnocrotaphus curvidens LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Lagodon rhomboides LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Lithognathus mormyrus LAMHYT1DIAMAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Oblada melanura LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Pachymetopon aeneum LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYVHIGR [100] Pagellus bogaraveo LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Pagellus bellottii LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Pagrus auratus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Pagrus auriga LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Pagrus pagrus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Petrus rupestris LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGG [100] Polyamblyodon germanum LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIFLHIGR [100] Polysteganus praeorbitalis LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Porcostoma dentata LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Pterogymnus laniarius LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Rhabdosargus thorpei LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Sarpa salpa LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Sparidentex hasta LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Sparodon durbanensis LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Sparus auratus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Spondyliosoma cantharus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Stenotomus chrysops LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Spicara alta LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Spicara maena LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Cyprinus carpio LAMHYT1DI1TAF11VTHICRDVNYGWLIRNVHANGA1FFFICIYMHIAR [100] Luxilus zonatus LAMHYT1DI1TAF11VTHICRDVNYGWLIRNMHANGA1FFFICIYMHIAR [100] Centropomus undecimalis LAMHYT1DINMAFT1VAHICRDVNYGWLIRNLHANGA1FFFICMYLHIGR [100] Dicentrarchus labraxgb LAMHYT1DIATAF11IAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Dicentrarchus punctatus LAMHYT1DIATAF11IAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Lateolabrax japonicus LAMHYT1DVATAF11VAHICRDVNYGWLIRNVHANGT1FFFICIYMHIGR [100] Lateolabrax japonicus2 LAMHYT1DVATAF11VAHICRDVNYGWLIRNIHANGT1FFFICIYMHIGR [100] Lateolabrax latus LAMHYT1DVATAF11VAHICRDVNYGWLIRNVHANGA1FFFICIYMHIGR [100] Morone americanus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLH1NGA1LFFICIYLHIGR [100] Morone chrysops LAMHYT1DIATAF11VAHICRDVNYGWLICNLHANGA1LFFICIYLHIGR [100] Morone mississippiensisgb LAMHYT1DIATAF11VAHICRDVNYGWLIRNLH1NGA1LFFICIYLHIGR [100] Morone saxatilis LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Haemulon sciurus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Pomadasys maculatus LAMHYT1DIATAF11VAHICRDVNFGWLIRNLHANGA1FFFICIYLHIGR [100] Caesio cuning LAMHYT1DI2MAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Lutjanus decussatus LAMHYT1DITMAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Lethrinus ornatus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Lethrinus rubrioperculatus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Nemipterus marginatus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] Scolopsis ciliatus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] 79

94 Acanthopagrus berda GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Archosargus probatocephalus GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Argyrops spinifer GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGGTVITNLL [150] Argyrozona argyrozona GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Boops boopsgb GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Boopsoidea inornata GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Calamus nodosus GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Cheimerius nufar GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Chrysoblephus cristiceps GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Crenidens crenidens GLYYG1YLYKETWNIGVVLLRLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Cymatoceps nasutus GLYYG1YLYKWTWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Dentex dentexgb GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Dentex tumifrons GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Diplodus argenteus GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Diplodus bermudensis GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Diplodus cervinus GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Diplodus holbrooki GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Evynnis japonica GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Gymnocrotaphus curvidens GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Lagodon rhomboides GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Lithognathus mormyrus GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQMFFWGATVITNLL [150] Oblada melanura GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Pachymetopon aeneum GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITKLL [150] Pagellus bogaraveo GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Pagellus bellottii GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Pagrus auratus GLYYG1YLYKDTWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Pagrus auriga GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Pagrus pagrus GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Petrus rupestris GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1LWGATVITNLV [150] Polyamblyodon germanum GLYYG1YLYKETWDIGVILLLLVMGTAFVGYVLPWGQM1FWGATVIT2LL [150] Polysteganus praeorbitalis GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Porcostoma dentata GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Pterogymnus laniarius GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Rhabdosargus thorpei GLYYG1YLYKETWNIGVVLLLLVMG1AFVGYVLPWGQM1FWGATVITNLL [150] Sarpa salpa GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Sparidentex hasta GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Sparodon durbanensis GLYYG1YPYKVTWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Sparus auratus GLYYG1YLYKDTWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Spondyliosoma cantharus GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITNLL [150] Stenotomus chrysops GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Spicara alta GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Spicara maena GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Cyprinus carpio GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Luxilus zonatus GLYYG1YLYKETWNVGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Centropomus undecimalis GLYYG1YLYKETWNIGVILLLLVMMTA1VGYVLPWGQM1FWGATVITNLL [150] Dicentrarchus labraxgb GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Dicentrarchus punctatus GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Lateolabrax japonicus GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGGTVITNLL [150] Lateolabrax japonicus2 GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGGTVITNLL [150] Lateolabrax latus GLYYG1YLYKETWNVGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Morone americanus GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Morone chrysops GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Morone mississippiensisgb GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Morone saxatilis GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Haemulon sciurus GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Pomadasys maculatus GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Caesio cuning GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Lutjanus decussatus GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL [150] Lethrinus ornatus GLYYG1YLYKETWNIGVVLLLLVMMTAFVGDVLPWGQM1FWGATVITNLL [150] Lethrinus rubrioperculatus GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Nemipterus marginatus GLYYG1YLYMETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] Scolopsis ciliatus GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] 80

95 Acanthopagrus berda 1AVPYIRGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Archosargus probatocephalus 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Argyrops spinifer 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Argyrozona argyrozona 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL [200] Boops boopsgb 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL [200] Boopsoidea inornata 1AVPYIGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL [200] Calamus nodosus 1AVPYVG2TLVQWIWGGF1VDNATLTRFFAFHFLFPFVVAAMTMLHLLFL [200] Cheimerius nufar 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL [200] Chrysoblephus cristiceps 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Crenidens crenidens 1AVPYVGGTFVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLCL [200] Cymatoceps nasutus 1AVPYVGGTLVQWIWGGF1VDNATLTRFFTFHFLLPFIVAAMTMLHLLFL [200] Dentex dentexgb 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL [200] Dentex tumifrons 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Diplodus argenteus 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Diplodus bermudensis 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPLVVAAMTMLHLLFL [200] Diplodus cervinus 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIIAAMTMLHLLFL [200] Diplodus holbrooki 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL [200] Evynnis japonica 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLFLFIVAAMIMLHLLFL [200] Gymnocrotaphus curvidens 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTLLHLLFL [200] Lagodon rhomboides 1AVPYIGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Lithognathus mormyrus 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Oblada melanura 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Pachymetopon aeneum 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL [200] Pagellus bogaraveo 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL [200] Pagellus bellottii 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Pagrus auratus 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Pagrus auriga 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL [200] Pagrus pagrus 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Petrus rupestris 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Polyamblyodon germanum 1AVPYVG2TLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFP [200] Polysteganus praeorbitalis 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Porcostoma dentata 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Pterogymnus laniarius 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Rhabdosargus thorpei 1AVPYIGGTLVQWFWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Sarpa salpa TAVPYVGGTLVQWIWGGL1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL [200] Sparidentex hasta 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Sparodon durbanensis 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Sparus auratus 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVIAAMTMLHLLFL [200] Spondyliosoma cantharus 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Stenotomus chrysops 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Spicara alta 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Spicara maena 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL [200] Cyprinus carpio 1AVPYMGDMLVQWIWGGF1VDNATLTRFFAFHFLLPFVIAAATIIHLLFL [200] Luxilus zonatus 1AVPYMGDTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATVLHLLFL [200] Centropomus undecimalis 1AVPYVGDILVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMMILHLLFL [200] Dicentrarchus labraxgb 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATMLHLLFL [200] Dicentrarchus punctatus 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATLLHLLFL [200] Lateolabrax japonicus 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFIIAGATVIHLLFL [200] Lateolabrax japonicus2 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATLIHLIFL [200] Lateolabrax latus 1AVPYIGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATFIHLLFL [200] Morone americanus 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFIIAAATLLHLLFL [200] Morone chrysops 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAAATVLHLLFL [200] Morone mississippiensisgb 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFIIAAAAILHLLFL [200] Morone saxatilis 1ALPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAAATILHLLFL [200] Haemulon sciurus 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLLPFIIAAATVIHLLFL [200] Pomadasys maculatus 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLLPLIVTAATLIHLLFL [200] Caesio cuning CAIPYVGNTLVQWVWGGF1VDNATLTRFFAFHFLLPFIIAAVTMLHLLFL [200] Lutjanus decussatus 1AIPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLLPFIIAAVTMLHLLFL [200] Lethrinus ornatus 1AVPYVGNTLVQWIWGGF1VDNATLTRFYALHFL1PFVIAAATTPHLRFL [200] Lethrinus rubrioperculatus 1AVPYVGNTLVQWIWGGF1VDHATLTRFFAFHFLFPFVIAAATMLHLLFL [200] Nemipterus marginatus 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAAMTLLHLLFL [200] Scolopsis ciliatus 1AVPYVGNMLVQWIWGGF1VDHATLTRFLTFHFLFPFVIAAATLLHLLFL [200] 81

96 Acanthopagrus berda HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Archosargus probatocephalus HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAP2LL [250] Argyrops spinifer HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Argyrozona argyrozona HETG1NNPLGLN1DADKI1FHPYF1YKDLLGFAGVLILLTCLALF1PNLL [250] Boops boopsgb HETG1NNPIGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Boopsoidea inornata HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAAVIILLTCLALFAPNLL [250] Calamus nodosus HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALF1PNLL [250] Cheimerius nufar HETG1NNPLGLN1DTDKIAFHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Chrysoblephus cristiceps HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Crenidens crenidens HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Cymatoceps nasutus HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Dentex dentexgb HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLGLFAPNLL [250] Dentex tumifrons HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Diplodus argenteus HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Diplodus bermudensis HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Diplodus cervinus HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Diplodus holbrooki HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Evynnis japonica HETG1YNPLGVN1DTDKI1FHPYL1YKDLLGFAGVIILLTCLALFAPNLL [250] Gymnocrotaphus curvidens HETG1NNPLGLN1DTDKI1FHPYF1YKDVLGFAGVIILLTCLAL1APNLL [250] Lagodon rhomboides HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Lithognathus mormyrus HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Oblada melanura HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Pachymetopon aeneum HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Pagellus bogaraveo HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Pagellus bellottii HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Pagrus auratus HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAAVIILLTCLALFTPNLL [250] Pagrus auriga HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVVILLTCLALFAPNIL [250] Pagrus pagrus HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Petrus rupestris HETG1NNPLGLN1DADKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Polyamblyodon germanum HDTG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Polysteganus praeorbitalis HETG1NNPLGLN1DADKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Porcostoma dentata HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Pterogymnus laniarius HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Rhabdosargus thorpei HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIMLLTCLALFAPNLL [250] Sarpa salpa HETG1NNPLGLN1DTDKM1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Sparidentex hasta HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL [250] Sparodon durbanensis HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLAWFAPNLL [250] Sparus auratus HETG1NNPLGLN1DTDKI1FHPY11YKDLLGFAAVIILLTCLALFAPNLL [250] Spondyliosoma cantharus HETG1NNPLGLN1NTDKI1FHPYF1YKDLLGFAGLLILLTCLALFAPNLL [250] Stenotomus chrysops HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVNILLTCLALFAPNLL [250] Spicara alta HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIMLLTCLALFAPNLL [250] Spicara maena HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAAVIILLT1LALFAPNLL [250] Cyprinus carpio HETG1NNPIGLN1DADKV1FHPYF1YKDLLGFVIMLLALTLLALF1PNLL [250] Luxilus zonatus HETG1NNPAGLN1DADKI1FHPYF1YKDLLGFVLLLLALT1LTFF1PTLL [250] Centropomus undecimalis HETG1NNPMGLN1NVDKIPFHPYF1YKDLLGFVVLLFTLT1LALFLPNLL [250] Dicentrarchus labraxgb HQTG1NNPLGLN1DVDKI1FHPYF1YKDLLGFAIVLIGLT2LALF1PNLL [250] Dicentrarchus punctatus HQTG1NNPLGLN1DVDKI1FHPYF1YKDLLGFAIVLIGLA2LALF1PNLL [250] Lateolabrax japonicus HETG1NNPLGLN1DADKIPFHPYF1YKDLLGFAVLLTALA1LALF1PNLL [250] Lateolabrax japonicus2 HETG1NNPLGLN1EADKIPFHPYF1YKDLLGFAVLLTALA1LALF1PNLL [250] Lateolabrax latus HETG1NNPLGLN1DADKIPFHPYF1YKDLLGFAVLLTALAALALF1PNLL [250] Morone americanus HETG1NNPLGLN1DVDKIPFHPYF1YKDLLGATAVLIGLT1LALF1PNLL [250] Morone chrysops HETG1NNPLGLN1DVDKIPFHPYF1YKDILGFAAVLVGLT1LALF1PNIL [250] Morone mississippiensisgb HETG1NNPLGLN1DMDKIPFHPYF1YKDLLGFTAVLI2LT1LALF1PNLL [250] Morone saxatilis HETG1NNPLGLN1DVDKIPFHPYF1YKDLLGFAAVLIGLT1LALF1PNLL [250] Haemulon sciurus HQTG1NNPLGLN1DADKIWFHPYF1YKDLLGFAVLLIALTCLALF1PNLL [250] Pomadasys maculatus HETG1NNPLGLN1DADKI1FHPYL1YKEVLGFVVLLIALACLALL1LNLL [250] Caesio cuning HETG1NNPLGLN1DADKM1FHPYF1YKDLLGFVVVLIALVCLALFAPNLL [250] Lutjanus decussatus HETG1NNPLGLN1DVDKI1FHPYF1YKDLLGFVVVLIALT1LALF1PNLL [250] Lethrinus ornatus HETG1NNPLGLN1D1DKI1FHPYF1YKDLLGFAAVLIALT1LALF1PNLL [250] Lethrinus rubrioperculatus HETG1NNPLGLN1D1DKI1FHPYF1YKDLLGFAAVLIALT1LALF1PNLL [250] Nemipterus marginatus HETG1NNPLGL11DTDKI1FHPYF1YKDLLGFAAVIIFLTCLALF1PNLL [250] Scolopsis ciliatus HETG1NNPLGLN1DTDKI1FHPYF1YKDLIGFAAILITLTCLALF1PNLL [250] 82

97 Acanthopagrus berda GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Archosargus probatocephalus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Argyrops spinifer GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Argyrozona argyrozona GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Boops boopsgb GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Boopsoidea inornata GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLAVLA1ILV [300] Calamus nodosus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Cheimerius nufar GDPDNFTPANPLVTPPHIKPEWYFLFGYAILR1IPNKLGGVLALLA1ILV [300] Chrysoblephus cristiceps GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Crenidens crenidens GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Cymatoceps nasutus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILI [300] Dentex dentexgb GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Dentex tumifrons GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Diplodus argenteus GDPDNFTPANPLVTPPHIKPEWN1LFAYAILR1IPNKLGGVLALLA1MLV [300] Diplodus bermudensis GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Diplodus cervinus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Diplodus holbrooki GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Evynnis japonica GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Gymnocrotaphus curvidens GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPDKLGGVLALLA1ILV [300] Lagodon rhomboides GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Lithognathus mormyrus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Oblada melanura GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Pachymetopon aeneum GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Pagellus bogaraveo GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Pagellus bellottii GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Pagrus auratus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Pagrus auriga GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Pagrus pagrus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Petrus rupestris GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Polyamblyodon germanum GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Polysteganus praeorbitalis GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Porcostoma dentata GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Pterogymnus laniarius GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Rhabdosargus thorpei GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Sarpa salpa GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Sparidentex hasta GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Sparodon durbanensis GDPENFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Sparus auratus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Spondyliosoma cantharus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Stenotomus chrysops GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Spicara alta GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Spicara maena GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Cyprinus carpio GDPENFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV [300] Luxilus zonatus GDPENFTPANPLVTPPHIQPEWYFLFAYAIIR1IPNKLGGVLALLF2ILV [300] Centropomus undecimalis GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALL11ILV [300] Dicentrarchus labraxgb GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Dicentrarchus punctatus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Lateolabrax japonicus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV [300] Lateolabrax japonicus2 GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV [300] Lateolabrax latus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV [300] Morone americanus GDPDNFTPANPLVTPPHIKPEWYFLFAYANLR1IPNKLGGVLALLA1ILV [300] Morone chrysops EHQDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Morone mississippiensisgb GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLDLLA1ILV [300] Morone saxatilis GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Haemulon sciurus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Pomadasys maculatus GDPDNFTPANPLVTPPHIKPEWYVLFAYAILR1MPNKLGGVLALLA12LV [300] Caesio cuning GDPDNFTPANPLVTPPHVKPEWYFLFAYATLR1IPNKLGGVLALLA1ILV [300] Lutjanus decussatus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Lethrinus ornatus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Lethrinus rubrioperculatus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Nemipterus marginatus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] Scolopsis ciliatus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] 83

98 Acanthopagrus berda LMVVPMLHT1KQR2LTFRPFTQFLFWALIANVVILTWIGGMPVEEPYIII [350] Archosargus probatocephalus LMVVPILHT1KQR2LTFRPLTQFLFWALIANVAILTWIGGMPVEEPYIII [350] Argyrops spinifer LMVVPILHT1KQR2LTFRPITQFLFWALIANVAILTWIGFLLVEDPYIII [350] Argyrozona argyrozona LMLVPFLHT1KQR2LTFRPI1QFLFWMLIANVAILTWIGGMPVEDPYIII [350] Boops boopsgb LMVVPLLHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII [350] Boopsoidea inornata LMVVPILHT1KQR2LTFRPATQFLFWTLIANVAILTWIGGMPVEEPYIII [350] Calamus nodosus LMIVPILHT1KQR2LTFRPLTQFLFWALIANVVVLTWIGGMPVEDPYIII [350] Cheimerius nufar LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIII [350] Chrysoblephus cristiceps LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIII [350] Crenidens crenidens LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII [350] Cymatoceps nasutus LMLVPLLHT1KQR2LTFRPVTQFLFWTLTANVAVLTWIGGMPVEDPYIII [350] Dentex dentexgb LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII [350] Dentex tumifrons LMVVPILHT1KQR2LTFRPLTQFLFWLLIANVAILTWIGGMPVEDPYIII [350] Diplodus argenteus LMVVP2PHTPKQR2LT2RPVTQILFWALIANVAILTWIGGMPAEEPYKII [350] Diplodus bermudensis LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII [350] Diplodus cervinus LMVVPILHT1KQR2LTFRPVTQFLFWTLIANVAILTWIGGMPVEDPYIII [350] Diplodus holbrooki LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII [350] Evynnis japonica LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIVI [350] Gymnocrotaphus curvidens LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEGPYIII [350] Lagodon rhomboides LMIVPILHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEDPYIII [350] Lithognathus mormyrus LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII [350] Oblada melanura LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII [350] Pachymetopon aeneum LMVVPILHT1KQR2LTFRPITQFLFWALTANVAILTWIGGMPVEEPYIII [350] Pagellus bogaraveo LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII [350] Pagellus bellottii LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIVI [350] Pagrus auratus LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIII [350] Pagrus auriga LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII [350] Pagrus pagrus LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII [350] Petrus rupestris LMAVPILHM1KQR2LTFRPITQFLFWTLIANVAILTWIGGMPVEDPYIVI [350] Polyamblyodon germanum LMVVPTLHT1KQR2LTFRPITQFLFWALIANVAILTWIGGMPVEEPYIII [350] Polysteganus praeorbitalis LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII [350] Porcostoma dentata LMVVPILHT1KQR2LTFRPMTQFLFWALMANVAILTWIGGMPVEDPYIVI [350] Pterogymnus laniarius LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIVI [350] Rhabdosargus thorpei LMIVPILHT1KQR2LTFRPATQFLFWTLIANVAILTWIGGMPVEEPYIII [350] Sarpa salpa LMVVPLLHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEEPYIII [350] Sparidentex hasta LMVVPMLHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII [350] Sparodon durbanensis LVVVPVLHT1KQR2LTFRPVTQFLFWTLIANVAILTWIGGMPVEEPYIII [350] Sparus auratus LMVVPILHT1KQR2LTFRPVTQFLFWALVANVAILTWIGGMPVEEPYIII [350] Spondyliosoma cantharus FLVVPIFHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEDPYIMI [350] Stenotomus chrysops LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEEPYIII [350] Spicara alta LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIVI [350] Spicara maena LMVVPILHT1KQR2LTFRPVTQFLFWTLVANVAILTWIGGMPVEDPYIMI [350] Cyprinus carpio LMVVPLLHT1KQRGLTFRPITQFLFWTLVADMIILTWIGGMPVEHPFIII [350] Luxilus zonatus LLVVPILHT1KQRGLTFRPITQFLFWTLVADMVILTWIGGMPVEHPYIII [350] Centropomus undecimalis LMLVPLLHT1KQRGLMFRPA1QLLFWVLVADVAILTWIGGMPVEHPYIIV [350] Dicentrarchus labraxgb LMVVPYLHT1KQR2MTFRPVTQFLFWALVADVMILTWIGGMPVEHPFIII [350] Dicentrarchus punctatus LMVVPFLHT1KQR2MTFRPLTQFLFWTLVADVMVLTWIGGMPVEHPFIII [350] Lateolabrax japonicus LMLVPILHT1KQRALTFRPITQFLFWTLIADVAILTWIGGMPVEHPFIII [350] Lateolabrax japonicus2 LMLVPILHT1KQRALTFRPITQFLFWTLIADVAILTWIGGMPVEHPFIII [350] Lateolabrax latus LMLVPILHT1KQRALTFRPITQFLFWTLIADVAILTWIGGMPVEHPFIII [350] Morone americanus LMTVPFLHT1KQR2LTFRPLTQLLFWTLIADVVILTWIGGMPVEHPFIII [350] Morone chrysops LMAVPFLHT1KQR2LTFRPLTQLLFWALIADVAILTWIGGMPVEHPFIII [350] Morone mississippiensisgb LLTVPFLHT1KQR2LTFRPLTQFLFWTLIADVMILTWIGGMPVEHPFIII [350] Morone saxatilis LMVVPFLHT1KQR2LTFRPLTQLLFWTLIADVAILTWIGGMPVEHPFIII [350] Haemulon sciurus LMVVPILHT1KQR2LTFRPVTQFLFWTLIADVAILTWIGGMPVEHPFIII [350] Pomadasys maculatus LMVVPFRHT1KQR2LTFRPL1QLLFWTLVADVA2LTWIGGMPVEHPYIII [350] Caesio cuning LMVVPILHT1KQRGLTFRPVTQFLFWTLIANVAILTWIGGMPVEHPFIII [350] Lutjanus decussatus LMVVPILHT1KQRGLTFRPVTQFLFWTLIANVAILTWIGGMPVEHPFIII [350] Lethrinus ornatus LMVVPILHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEHPFIII [350] Lethrinus rubrioperculatus LMVVPILHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEHPFIII [350] Nemipterus marginatus LMLVPLLHT1KQR2LTFRPI1QFLFWVLIADVAILTWIGGMPVEDPYIII [350] Scolopsis ciliatus LMLVPILHT1KQR2LTFRPI1QFLFWTLIADVAILTWIGGMPVEHPYIII [350] 84

99 Acanthopagrus berda GQIA1LTYF1LFLVIIPAAATVENKVLGWQ [380] Archosargus probatocephalus GQVA1LTYF1LFLIIIPTVAMVENKVLGW3 [380] Argyrops spinifer GQIA1LTYFALFLLIMPATALVENKVLGWQ [380] Argyrozona argyrozona GQIA1LTYFALFLFIIPVAALVENKVLGCN [380] Boops boopsgb GQIA1LTYF1LFLLIIPMAATLENKVLGWQ [380] Boopsoidea inornata GQIA1LTYF1IFLIIIPATAILENKVLNWQ [380] Calamus nodosus GQIA1LTYF1LFLIIIPVTATVENKVLGWQ [380] Cheimerius nufar GQIA1LTYFALFLLIMPVAALAENKVLGWQ [380] Chrysoblephus cristiceps GQIA1LTYFALFLFIIPAAALAENKVLGWQ [380] Crenidens crenidens GQVA1LTYF1LFLIIIPTAAAVENKVLGWQ [380] Cymatoceps nasutus GQIA1LTYFALFLFINTAAALVENKMLGWQ [380] Dentex dentexgb GQIA1LTYFALFLFIFPVTALVENKVLGWQ [380] Dentex tumifrons GQIA1LTYFALFLIIIPTTALAENKML2LQ [380] Diplodus argenteus GQIA1LTNI1LFLVVNPAAAVLENKVLGWQ [380] Diplodus bermudensis GQIA1LTYF1LFLVVIPAAAVLENKVLGWQ [380] Diplodus cervinus GQIA1LTYF1LFLVIIPAAATMENKVLGWQ [380] Diplodus holbrooki GQIA1LTYF1LFLVVIPAAAVLENKVLGWQ [380] Evynnis japonica GQIA1LTYFALFLLIIPATALVENKVLGWQ [380] Gymnocrotaphus curvidens GQIA1LTYF1LFLVIIPAAATMENKVLGWQ [380] Lagodon rhomboides GQIA1LTYF1LFLIIIPMAATVENKML2WQ [380] Lithognathus mormyrus GQIA1LTYF1LFLVVMPAAAAIENKVLGWQ [380] Oblada melanura GQIA1LTYF1LFLVIIPAAAVMENKVLGWQ [380] Pachymetopon aeneum GQIA1LTYF1LFLIIIPATATIENKMLGWQ [380] Pagellus bogaraveo GQVA1LTYF1LFLVIIPAAATMENKVLGWQ [380] Pagellus bellottii GQIA1LTYFALFLLIIPATALAENKVLGWQ [380] Pagrus auratus GQIA1LTYFALFLLIMPTAALVENKVLGWQ [380] Pagrus auriga GQIA1LTYFALFLFIIPVTAMAENKVLGWR [380] Pagrus pagrus GQIA1LTYFALFLLIIPATALVENKVLGWQ [380] Petrus rupestris GQIA1LTYFALFLFIIPTAALAENKMLGLQ [380] Polyamblyodon germanum GQIA1LTYF1LFLIIIPATATIENKMLGWQ [380] Polysteganus praeorbitalis GQIA1LTYFALFLFIMPAAALVENKVLGWQ [380] Porcostoma dentata GQVA1LTYFALFLFIIPAAALAENKVLGWQ [380] Pterogymnus laniarius GQIA1LTYFALFLFIIPAAALAENKVLGWQ [380] Rhabdosargus thorpei GQVA1L1YF1LFLIIMPAAATLENKVLGWR [380] Sarpa salpa GQVA1LTYF1LFLVIIPAAATLENKVLGWQ [380] Sparidentex hasta GQIA1LTYF1LFLVIIPTAATMENKVLGWQ [380] Sparodon durbanensis GQVA1LTYF1LFLIIMPAAATLENKALGWQ [380] Sparus auratus GQVA1LTYF1LFLVIIPAAATMENKVLGWQ [380] Spondyliosoma cantharus GQIA1VTYL1LFLIIIPTAATLENKVLGWQ [380] Stenotomus chrysops GQIA1LTYFALFLIIIPATATVENKVLGWQ [380] Spicara alta GQVA1LTYFALFLLIIPTAALAENKVLGWK [380] Spicara maena GQVA1LTYF1LFLIIIPTAATLENKVLGWR [380] Cyprinus carpio GQIA1VLYFALFLIFMPLAGWLENKALKWA [380] Luxilus zonatus GQVA1VLYFALFLLLAPLAGWAENKALKWA [380] Centropomus undecimalis GQIA1LLYFLLFLVLMPLAGWWENKLLNWQ [380] Dicentrarchus labraxgb GQVA1LLYFLLFLVFIPVVGELENKALEWL [380] Dicentrarchus punctatus GQVA1LLYFLLFLVLIPVVGELENKALEWL [380] Lateolabrax japonicus GQIA1LLYFLIFLVLFPLAGWLENKALGWT [380] Lateolabrax japonicus2 GQIA1LLYFLIFLVLFPVAGWLENKALGWT [380] Lateolabrax latus GQLAFLFYFFIFLVLFPLAGWLENKALGWT [380] Morone americanus GQIA1LLYFLLFLVLMPMAGELENKALGWL [380] Morone chrysops GQIA1LLYFLLFLVFMPIAGELENKALEWL [380] Morone mississippiensisgb GQIA1LLYFLLFLVFMPIAGELENKALGW1 [380] Morone saxatilis GQVA1LLYFLLFLVFMPIVGELENKALEWL [380] Haemulon sciurus GQVA1FLYFFLFLVFTPLA2WLENKALGWA [380] Pomadasys maculatus GQIA1FLYF1LFLVLFPLAGWLENKVMGW1 [380] Caesio cuning GQIA1VLYFLLFLVLTPLAGWLENKALGWV [380] Lutjanus decussatus GQIA1VLYFLLFLVFAPLAGWLENKALGWL [380] Lethrinus ornatus GQIA1LLYF1LFLIITPAAGWFENK1LGWR [380] Lethrinus rubrioperculatus GQIA1LLYF1LFLIITPAAGWFENK1LGWR [380] Nemipterus marginatus GQVA1VLYF1IFLVFMPLVGAVENKVMGWT [380] Scolopsis ciliatus GQIA1VLYF1IFLLLMPLQDEQGMK1FAEH [380] 85

100 TABLE 10. FAO AREA ASSIGNMENTS FOR THE SPARIDAE USED IN THIS STUDY. FAO AREAS WERE ESTABLISHED BY FAO (1995) 86 TAXON FAO Area Acanthopagrus berda 8, 7, 10, 12 Archosargus probatocephalus 3, 6, 5 Argyrops spinifer 4, 8, 7, 10, 12 Argyrozona argyrozona 4, 8 Boops boops 2, 1, 9, 4 Boopsoidea inornata 4, 8 Calamus nodosus 3, 6 Cheimerius nufar 4, 8 Chrysoblephus cristiceps 4, 8 Crenidens crenidens 4, 8 Cymatoceps nasutus 4, 8 Dentex dentex 2, 1, 9 Dentex tumifrons 7, 10, 12 Diplodus argenteum 6, 5 Diplodus bermudensis 6 Diplodus cervinus 2, 1, 9, 4 Diplodus holbrooki 3, 6 Evynnis japonica 10 Gymnocrotaphus curvidens 4, 8 Lagodon rhomboides 3, 6 Lithognathus mormyrus 2, 1, 9, 4, 8 Oblada melanura 2, 1, 9, 4 Pachymetopon aeneum 4, 8 Pagellus bogaraveo 2, 1, 9 Pagellus bellottii 1, 9, 4 Pagrus auratus 7, 10, 12, 11 Pagrus auriga 2, 1, 9, 4 Pagrus pagrus 3, 2, 6, 1, 9, 5 Petrus rupestris 4,8 Polyamblyodon germanum 4,8 Polysteganus praeorbitalis 4, 8 Porcostoma dentata 4, 8 Pterogymnus laniarius 4, 8 Rhabdosargus thorpei 4, 8 Sarpa salpa 2, 1, 9, 4, 8 Sparodon durbanensis 4, 8 Sparidentex hasta 8, 7 Sparus auratus 2, 1, 9 Spicara maena 2, 1, 9 Spicara alta 1, 4 Spondyliosoma cantharus 2, 1, 9, 4 Stenotomus chrysops 3, 6 1-Atlantic, Eastern Central; 2-Atlantic, Northeast; 3-Atlantic, Northwest; 4-Atlantic, Southeast; 5-Atlantic, Southwest; 6-Atlantic, Western Central; 7-Indian Ocean, Eastern; 8-Indian Ocean, Western; 9-Mediterranean and Black Sea; 10-Pacific, Northwest; 11-Pacific, Southwest; 12-Pacific, Western Central

101 87 TABLE 11. MATRIX OF FAO AREAS AND CHARACTERS. FAO AREAS WERE TREATED AS INDEPENDENT DATA AND TAXA PLUS ANCESTRAL NODES WERE TREATED AS DEPENDENT DATA DURING PARSIMONY ANALYSIS. CHARACTERS ARE DEFINED BELOW (AN=ANCESTRAL NODE). CHARACTERS AREAS Atlantic, Eastern Central Atlantic, Northeast Atlantic, Northwest Atlantic, Southeast Atlantic, Southwest Atlantic, Western Central Indian, Ocean Eastern Indian, Ocean Western Mediterranean/Black Sea Pacific, Northwest Pacific, Southwest Pacific, Western Central Acanthopagrus berda; 2 Archosargus probatocephalus; 3 Argyrops spinifer; 4 Argyrozona argyrozona; 5 Boops boops; 6 Boopsoidea inornata; 7 Calamus nodosus; 8 Cheimerius nufar; 9 Chrysoblephus cristiceps; 10 Crenidens crenidens; 11 Cymatoceps nasutus; 12 Dentex dentex; 13 Dentex tumifrons; 14 Diplodus argenteus; 15 Diplodus bermudensis; 16 Diplodus cervinus; 17 Diplodus holbrooki; 18 Evynnis japonica; 19 Gymnocrotaphus curvidens; 20 Lagodon rhomboides; 21 Lithognathus mormyrus; 22 Oblada melanura; 23 Pachymetopon aeneum; 24 Pagellus bogaraveo; 25 Pagellus bellottii; 26 Pagrus auratus; 27 Pagrus auriga; 28 Pagrus pagrus; 29 Petrus rupestris; 30 Polyamblyodon germanum; 31 Polysteganus praeorbitalis; 32 Porcostoma dentata; 33 Pterogymnus laniarius; 34 Rhabdosargus thorpei; 35 Sarpa salpa; 36 Sparodon durbanensis; 37 Sparidentex hasta; 38 Sparus auratus; 39 Spicara maena; 40 Spicara alta; 41 Spondyliosoma cantharus; 42 Stenotomus chrysops; 43 AN1; 44 AN2; 45 AN3; 46 AN4; 47 AN5; 48 AN6; 49 AN7; 50 AN8; 51 AN9; 52 AN10; 53 AN11; 54 AN12; 55 AN13; 56 AN14; 57 AN15; 58 AN16; 59 AN17; 60 AN18; 61 AN19; 62 AN20; 63 AN21; 64 AN22; 65 AN23; 66 AN24; 67 AN25; 68 AN26; 69 AN27; 70 AN28; 71 AN29; 72 AN30; 73 AN31; 74 AN32; 75 AN33; 76 AN34; 77 AN35; 78 AN36; 79 AN37; 80 AN38; 81 AN39; 82 AN40

102 88 FIGURE 3. PCR primers and their relative sequence map alignment relative to the mitochondrial genome of Cyprinus carpio (GenBank Accession X61010) are given. The graphic represents the location of these primers on the heavy and light strand of trna Glu and trna Thr that flank Cytochrome b gene in perciform fishes. The following primer pairs were used for PCR: CYTbUnvL (L15242)/CYTbUnvH (H16458); CYTbGludgL (L15249)/CYTBThrdgH (H16465); and CYTB4xdgL (L14249)/CYTb4xdgH (H16435).

103 CYTbGludgL-TGACTTGAARAACCAYCGTTG-L15249 CYTb4XdgL-TGAYWTGAARAACCAYCGTTG-L15249 CYTbUnvL-CGAACGTTGATATGAAAAACCATCGTTG-L 'AATTCTTGCTCAGACTTTAACCGAGACCAATGACTTGAAGAACCACCGTTGTTATTCAACTACAAGAACCAC3' L15219 (TRNA -GLU Cyprinuis carpio ) CYTbGludgL CYTb4xdgL CYTbUnvL trna-glu Cytochrome b trna-thr CYTB4XdgR CYTbUnvH CYTbThrdg-H H16434(TRNA -THR Cyprinus carpio ) 3'GCGCTAGGGAGGAATTTAACCTCCGATCTTCGGATTACAAGACCGATGCTTTTAGGCTAAGCTACTAGGGCA5' CYTB4xdgH-TGRVNCTGAGCTACTASTGC-H16435 CYTBUnvH-ATCTTCGGTTTACAAGACCGGTG-H16458 CYTBThrdgH-CTCCAGTCTTCGRCTTACAAG-H16565

104 90 FIGURE 4. Total substitutions at all codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = x x , R 2 = and Tv: y = x x , R 2 = ). Key: Ts-All =Transitions all codon positions Tv-All =Transversions all codon positions Poly. (Ts-All) = polynomial line fitted to transitions from all codon positions Poly. (Tv-All) = polynomial line fitted to transversions from all codon positions

105 Total Substitutions %Sequence Divergence (Uncorrected) Ts-All Tv-All Poly. (Ts-All) Poly. (Tv-All)

106 92 FIGURE 5. Total substitutions at the first codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = x x , R 2 = and Tv: y = x x , R 2 = ). Key: Ts-1st = Transitions 1 st codon position Tv-1st = Transversions 1 st codon position Poly. (Ts-1st) = polynomial line fitted to transitions from 1 st codon position Poly. (Tv-1st) = polynomial line fitted to transversions from 1 st codon position

107 Total Substitutions % Sequence Divergence (Uncorrected) Ts-1st Tv-1st Poly. (Ts-1st) Poly. (Tv-1st)

108 94 FIGURE 6. Total substitutions at the second codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = x x , R 2 = and Tv: y = x , R 2 = ). Key: Ts-2nd = Transitions 2 nd codon position Tv-2nd = Transversions 2 nd codon position Poly. (Ts-2nd) = polynomial line fitted to transitions from 2 nd codon position Poly. (Tv-2nd) = polynomial line fitted to transversions from 2 nd codon position

109 9 8 7 Total Susbtitutions % Sequence Divergence (Uncorrected) Ts-2nd Tv-2nd Poly. (Ts-2nd) Linear (Tv-2nd)

110 96 FIGURE 7. Total substitutions at the third codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = x x , R 2 = and Tv: y = x x , R 2 = ). Key: Ts-3rd = Transitions 3 rd codon position Tv-3rd = Transversions 3 rd codon position Poly. (Ts-3rd) = polynomial line fitted to transitions from 3 rd codon position Poly. (Tv-3rd) = polynomial line fitted to transversions from 3 rd codon position

111 Total Substitutions % Sequence Divegence (Uncorrected) Ts-3rd Tv-3rd Poly. (Ts-3rd) Poly. (Tv-3rd)

112 98 FIGURE 8. Total substitutions at the third codon position and pooled first and second codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts-Tv3rd: y = -0.11x x , R 2 = and Ts-Tv1st+2nd: y = x x , R 2 = ). Key: Ts-Tv1st+2nd = All substitutions 1 st and 2 nd codon positions Ts-Tv3rd = All substitutions 3 rd codon position, Poly. (Ts-Tv1st+2nd) = polynomial line fitted to all substitutions from the 1 st and 2 nd codon positions Poly. (Ts-Tv3rd) = polynomial line fitted to all substitutions from the 3rd codon position

113 Substitutions % Sequence Divergence (Uncorrected) Ts+Tv 1st+2nd Ts+Tv3rd Poly. (Ts+Tv3rd) Poly. (Ts+Tv 1st+2nd)

114 100 FIGURE 9. A ratio of transitions/total substitutions and transversions/total substitutions from third codon plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Key: Ts/Ts+Tv = Ratio of transitions to total substitutions from the 3 rd codon position Tv/Ts+Tv = Ratio of transversions to total substitutions from the 3 rd codon position Poly. (Ts/Ts+Tv) =Polynomial line fitted to the ratio of transitions to total substitutions from the 3 rd codon position Poly. (Tv/Ts+Tv) =Polynomial line fitted to the ratio of transitions to total substitutions from the 3 rd codon position

115 % of Total Substitutions % Sequence Divergence (Uncorrected) Ts/Ts+Tv Tv/Ts+Tv Poly. (Ts/Ts+Tv) Poly. (Tv/Ts+Tv)

116 102 FIGURE 10. Transitional substitutions, separated into nitrogenous base type, purines (AłG) and pyrimidines (CłT) plotted as a functions of pairwise percent sequence divergence of ingroup taxa only. All data derived from cytochrome b nucleotide sequences.

117 Transitions % Sequence Divergence (Uncorrected) AG CT

118 104 FIGURE 11. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at all codon positions. The relative frequency of each base was not equal and a chi-squared test of heterogeneity among taxa from all codon positions was slightly significant (X 2 = df==183 P=0.798).

119 Taxon Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN A C G T 0% 20% 40% 60% 80% 100% Cumulative Frequency

120 106 FIGURE 12. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the first codon position. The relative frequency of each base was not equal, but a chisquared test did not demonstrate heterogeneity among taxa in the first codon position base frequencies X 2 =34.22, df=183, P > 0.995).

121 Taxon Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN A1 C1 G1 T1 0% 20% 40% 60% 80% 100% Cumulative Frequency

122 108 Figure 13. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the second codon position. The relative frequency of each base was not equal (anti-guanine, pro-thymine), but a chi-squared test did not demonstrate heterogeneity among taxa in the second codon position base frequencies X 2 =9.68, df=183, P >0.995).

123 Taxon Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN A2 C2 G2 T2 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Cumulative Frequency

124 110 FIGURE 14. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the third codon position. The relative frequency of each base was not equal (anti-guanine, pro-cytosine) and a chi-squared test demonstrated significant heterogeneity among taxa in the third codon position base frequencies (X 2 =477.59, df=183, P< 0.001

125 Taxon Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN A3 C3 G3 T3 0% 20% 40% 60% 80% 100% Cumulative Frequency

126 FIGURE 15. Four equally parsimonious trees, unweighted data 112

127 Tree One Cyprinus carpio Luxilus zonatus Centropomus undecimalis Caesio cuning Lutjanus decussatus Haemulon sciurus Pomadasys maculatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki Tree Two Cyprinus carpio Luxilus zonatus Centropomus undecimalis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki Tree Three Cyprinus carpio Luxilus zonatus Centropomus undecimalis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki Tree Four Cyprinus carpio Luxilus zonatus Centropomus undecimalis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone americanus Morone mississippiensis Morone chrysops Morone saxatilis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki

128 114 FIGURE 16. Strict consensus of four equally parsimonious trees from the unweighted data. A heuristic search of 1000 random addition replicates on the cytochrome b nucleotide data set resulted in four equally parsimonious trees. (tree length=6416, CI=0.1900, RI=0.4258). Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae,PA=Pagrinae,PE=Pagellinae, and SP=Sparinae). Figure key is as follows: N = Node D = Total Decay Value at N 1 st = Partitioned Decay at 1 st Codon at N 2 nd = Partitioned Decay at 2 nd Codon at N 3 rd = Partitioned Decay at 3 rd Codon at N B = Bootstrap Support Value at N

129 Group I Group II ( 3.7) ( 1.5) ( -0.4) ( 1.7 ) ( 0.5) ( 0.0 ) ( 0.0) < ( 0.0) ( 1.0) ( 1.0 ) ( 0.0 ) ( -1.0) ( 0.0 ) ( -0.8) ( 2.4) ( -1.0) 3.0 < ( 0.0) ( ) ( 0.0 ) ( -2.0) 3.5 < 3( -1.0) ( 0.0) < ( 0.0) ( 0.0 ) ( 0.4 ) ( 4.5 ) < ( 0.0) ( ) < 4.8 9( 0.0) 4.5 9( 0.5) ( 3.9) ( 4.0 ) ( 3.0 ) ( ) ( 4.0) ( 2.0) 10.5 < ( 0.0) ( 1.0) ( 0.0 ) ( 1.2 ) ( 0.0) -2.5 < ( ) ( ) ( -1.0) ( ) < Cyprinus carpio Luxilus zonatus Centropomus undecimalis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Lethrinus ornatus Lethrinus rubrioperculatus SP DE DE DE SP SP Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons SP DE Spicara alta PA Argyrops spinifer PA Evynnis japonica PA Pagrus auratus PE Pagellus bellottii PA Pagrus pagrus PA Pagrus auriga DE Cheimerius nufar DE Dentex dentex DI Archosargus probatocephalus DI Lagodon rhomboides SP Calamus nodosus SP Stenotomus chrysops BO Sarpa salpa BO Spondyliosoma cantharus Spicara maena PE Boopsoidea inornata BO Gymnocrotaphus curvidens BO Pachymetopon aeneum BO Polyamblyodon germanum BO Boops boops BO Crenidens crenidens SP Acanthopagrus berda DE Sparidentex hasta SP Sparus auratus SP Rhabdosargus thorpei SP Sparodon durbanensis PE Lithognathus mormyrus PE Pagellus bogaraveo BO Oblada melanura DI Diplodus cervinus DI Diplodus argenteus DI Diplodus bermudensis DI Diplodus holbrooki

130 FIGURE 17. Two equally parsimonious trees - weighted data 116

131 Tree One Cyprinus carpio Luxilus zonatus Centropomus undecimalis Lateolabrax japonicus2 Lateolabrax japonicus Lateolabrax latus Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lethrinus ornatus Lethrinus rubrioperculatus Calamus nodosus Stenotomus chrysops Archosargus probatocephalus Lagodon rhomboides Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Dentex tumifrons Spicara alta Pterogymnus laniarius Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Boops boops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Crenidens crenidens Lithognathus mormyrus Pagellus bogaraveo Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Acanthopagrus berda Sparidentex hasta Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki Tree Two Cyprinus carpio Luxilus zonatus Centropomus undecimalis Lateolabrax japonicus2 Lateolabrax japonicus Lateolabrax latus Dicentrarchus labrax icentrarchus punctatus Morone americanus Morone mississippiensis Morone chrysops Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lethrinus ornatus Lethrinus rubrioperculatus Calamus nodosus Stenotomus chrysops Archosargus probatocephalus Lagodon rhomboides Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Dentex tumifrons Spicara alta Pterogymnus laniarius Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Boops boops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Crenidens crenidens Lithognathus mormyrus Pagellus bogaraveo Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Acanthopagrus berda Sparidentex hasta Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki

132 118 FIGURE 18. A strict consensus of two equally parsimonious trees from the weighted data (transversions only third codon). A heuristic search of 1000 random addition replicates resulted in two equally parsimonious trees. (Tree length = 2536, CI = , RI = ). Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae, PA=Pagrinae, PE=Pagellinae, and SP=Sparinae). Figure key is as follows: N = Node D = Total Decay Value at N 1 st = Partitioned Decay at 1 st Codon at N 2 nd = Partitioned Decay at 2 nd Codon at N 3 rd = Partitioned Decay at 3 rd Codon at N B = Bootstrap Support Value at N

133 Group I Group II ( 1.0) ( ) ( -2.5 ) 3.4 < 4.0 3( -1.0 ) 0.0 < ( 2.6) ( 1.0 ) -6.2 < 3.8 2( 0.4) ( ) < ( -0.1 ) 5.1 < 0.0 3( 0.7 ) ( 0.0) ( 0.0 ) ( 0.0 ) ( ) ( 5.0 ) ( ) ( 0.0 ) ( 3.5) ( 2.8) ( ) ( ) ( 0.0 ) ( 0.7) < ( ) ( ) ( 0.0 ) ( ) ( ) ( -1.0 ) ( 10.2) ( 1.6) ( 0.0 ) ( 0.0 ) ( 0.8) ( 0.0 ) ( 0.0 ) ( 0.0 ) ( 1.1) < 4( 1.0 ) 0.4 < 5.5 2( ) Cyprinus carpio Luxilus zonatus Centropomus undecimalis Lateolabrax japonicus2 Lateolabrax japonicus Lateolabrax latus Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lethrinus ornatus Lethrinus rubrioperculatus SP Calamus nodosus SP Stenotomus chrysops DI Archosargus probatocephalus DI Lagodon rhomboides PA Argyrops spinifer PA Evynnis japonica PA Pagrus auratus PE Pagellus bellottii PA Pagrus pagrus PA Pagrus auriga DE Cheimerius nufar DE Dentex dentex DE Dentex tumifrons Spicara alta SP SP SP SP DE DE DE BO BO BO Spicara maena PE BO BO BO BO PE PE SP SP SP SP DE BO DI DI DI DI Pterogymnus laniarius Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Boops boops Sarpa salpa Spondyliosoma cantharus Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Crenidens crenidens Lithognathus mormyrus Pagellus bogaraveo Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Acanthopagrus berda Sparidentex hasta Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki

134 120 FIGURE 19. A strict consensus of 699 equally parsimonious trees from the amino acid translations. A heuristic search of 100 random addition replicates on the cytochrome b amino acid residue translated from the nucleotide data set resulted 699 equally parsimonious trees (tree length = 637, CI = ; RI = ). Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae, PA=Pagrinae, PE=Pagellinae, and SP=Sparinae). Figure key is as follows: N = Node D = Total Decay Value at N N D B B = Bootstrap Support Value at N

135 Group I Group II Cyprinus carpio Luxilus zonatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Dicentrarchus labrax Dicentrarchus punctatus Morone saxatilis Morone chrysops Morone americanus Morone mississippiensis Scolopsis ciliatus Centropomus undecimalis Nemipterus marginatus Lethrinus ornatus Lethrinus rubrioperculatus SP Calamus nodosus SP Stenotomus chrysops PE Pagellus bellottii PA Argyrops spinifer PA Evynnis japonica PA Pagrus pagrus Spicara alta DE Polysteganus praeorbitalis PA Pagrus auratus SP Porcostoma dentata SP Pterogymnus laniarius SP Chrysoblephus cristiceps SP Cymatoceps nasutus DE Dentex tumifrons DE Petrus rupestris DE Argyrozona argyrozona DE Cheimerius nufar DE Dentex dentex PA Pagrus auriga DI Lagodon rhomboides BOSpondyliosoma cantharus Spicara smaris DI Archosargus probatocephalus BOCrenidens crenidens SP Rhabdosargus thorpei SP Sparodon durbanensis BOGymnocrotaphus curvidens BOOblada melanura PE Pagellus acarne DI Diplodus cervinus SP Sparus auratus BOBoops boops BOSarpa salpa SP Acanthopagrus berda DE Sparidentex hasta PE Boopsoidea inornata BOPachymetopon aeneum BOPolyamblyodon germanum PE Lithognathus mormyrus DI Diplodus argenteus DI Diplodus bermudensis DI Diplodus holbrooki

136 122 FIGURE 20. The clade containing Sparidae was copied from the weighted cytochrome b tree (Figure 18.) and ancestral nodes were numbered so that they could be assigned FAO areas during analysis of vicariance biogeography.

137 SP SP DI DI PA PA PA PE PA PA DE DE DE SP Spicara alta SP SP SP DE DE DE BO BO BO Spicara maena PE BO BO BO BO PE PE SP SP SP SP DE BO DI DI DI DI Calamus nodosus Stenotomus chrysops Archosargus probatocephalus Lagodon rhomboides Argyrops spinifer Pagrus auratus Evynnis japonica Pagellus bellottii Pagrus auriga Pagrus pagrus Dentex dentex Cheimerius nufar Dentex tumifrons Pterogymnus laniarius Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Boops boops Sarpa salpa Spondyliosoma cantharus Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Crenidens crenidens Lithognathus mormyrus Pagellus bogaraveo Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Acanthopagrus berda Sparidentex hasta Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki

138 124 FIGURE 21. Clade of biogeographic relationships overlaid on map of the world. A consensus of two MPTs overlaid on a map of the world. No distances are implied by branch lengths or by inter-nodal spaces.

139 Atlantic Southwest Atlantic Southeast Indian Ocean Western Indian Ocean Eastern Pacific Southwest Atlantic Northwest Atlantic Western Central Atlantic Northeast Atlantic Eastern Central Mediterranean Black Sea Pacific Western Central Pacific Northwest

Lecture 2 Phylogenetics of Fishes. 1. Phylogenetic systematics. 2. General fish evolution. 3. Molecular systematics & Genetic approaches

Lecture 2 Phylogenetics of Fishes. 1. Phylogenetic systematics. 2. General fish evolution. 3. Molecular systematics & Genetic approaches Lecture 2 Phylogenetics of Fishes 1. Phylogenetic systematics 2. General fish evolution 3. Molecular systematics & Genetic approaches Charles Darwin & Alfred Russel Wallace All species are related through

More information

wi Astuti, Hidayat Ashari, and Siti N. Prijono

wi Astuti, Hidayat Ashari, and Siti N. Prijono Phylogenetic position of Psittacula parakeet bird from Enggano Island, Indonesia based on analyses of cytochrome b gene sequences. wi Astuti, Hidayat Ashari, and Siti N. Prijono Research Centre for Biology,

More information

MOLECULAR PHYLOGENETIC RELATIOSHIPS IN ROMANIAN CYPRINIDS BASED ON cox1 AND cox2 SEQUENCES

MOLECULAR PHYLOGENETIC RELATIOSHIPS IN ROMANIAN CYPRINIDS BASED ON cox1 AND cox2 SEQUENCES PROCEEDINGS OF THE BALKAN SCIENTIFIC CONFERENCE OF BIOLOGY IN PLOVDIV (BULGARIA) FROM 19 TH TILL 21 ST OF MAY 2005 (EDS B. GRUEV, M. NIKOLOVA AND A. DONEV), 2005 (P. 162 167) MOLECULAR PHYLOGENETIC RELATIOSHIPS

More information

BRIEF COMMUNICATION Phylogenetic relationships within the genus Pimephales as inferred from ND4 and ND4L nucleotide sequences

BRIEF COMMUNICATION Phylogenetic relationships within the genus Pimephales as inferred from ND4 and ND4L nucleotide sequences Journal of Fish Biology (2002) 61, 293 297 doi:10.1006/jfbi.2002.2002, available online at http://www.idealibrary.com on BRIEF COMMUNICATION Phylogenetic relationships within the genus Pimephales as inferred

More information

The Sustainability of Atlantic Salmon (Salmo salar L.) in South West England

The Sustainability of Atlantic Salmon (Salmo salar L.) in South West England The Sustainability of Atlantic Salmon (Salmo salar L.) in South West England Submitted by Sarah-Louise Counter to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological

More information

Systematics and Biodiversity of the Order Cypriniformes (Actinopterygii, Ostariophysi) A Tree of Life Initiative. NSF AToL Workshop 19 November 2004

Systematics and Biodiversity of the Order Cypriniformes (Actinopterygii, Ostariophysi) A Tree of Life Initiative. NSF AToL Workshop 19 November 2004 Systematics and Biodiversity of the Order Cypriniformes (Actinopterygii, Ostariophysi) A Tree of Life Initiative NSF AToL Workshop 19 November 2004 Gloria Arratia Nevin Aspinwall Hank Bart Miles Coburn

More information

Characterization of two microsatellite PCR multiplexes for high throughput. genotyping of the Caribbean spiny lobster, Panulirus argus

Characterization of two microsatellite PCR multiplexes for high throughput. genotyping of the Caribbean spiny lobster, Panulirus argus Characterization of two microsatellite PCR multiplexes for high throughput genotyping of the Caribbean spiny lobster, Panulirus argus Nathan K. Truelove 1, Richard F. Preziosi 1, Donald Behringer Jr 2,

More information

Genetic analysis of radio-tagged westslope cutthroat trout from St. Mary s River and Elk River. April 9, 2002

Genetic analysis of radio-tagged westslope cutthroat trout from St. Mary s River and Elk River. April 9, 2002 Genetic analysis of radio-tagged westslope cutthroat trout from St. Mary s River and Elk River April 9, 2002 Report prepared for: Angela Prince, M.Sc., R.P. Bio Westslope Fisheries 517 13 th Avenue South

More information

Barcoding the Fishes of North America. Philip A. Hastings Scripps Institution of Oceanography University of California San Diego

Barcoding the Fishes of North America. Philip A. Hastings Scripps Institution of Oceanography University of California San Diego Barcoding the Fishes of North America Philip A. Hastings Scripps Institution of Oceanography University of California San Diego With the possible exception of Europe and selected regional faunas such as

More information

Molecular insights into the phylogenetics of spiny lobsters of Gulf of Mannar marine biosphere reserve based on 28S rdna

Molecular insights into the phylogenetics of spiny lobsters of Gulf of Mannar marine biosphere reserve based on 28S rdna Indian Journal of Biotechnology Vol 11, April 2012, pp 182-186 Molecular insights into the phylogenetics of spiny lobsters of Gulf of Mannar marine biosphere reserve based on 28S rdna P Suresh*, G Sasireka

More information

Legendre et al Appendices and Supplements, p. 1

Legendre et al Appendices and Supplements, p. 1 Legendre et al. 2010 Appendices and Supplements, p. 1 Appendices and Supplement to: Legendre, P., M. De Cáceres, and D. Borcard. 2010. Community surveys through space and time: testing the space-time interaction

More information

EXPLORING MOTIVATION AND TOURIST TYPOLOGY: THE CASE OF KOREAN GOLF TOURISTS TRAVELLING IN THE ASIA PACIFIC. Jae Hak Kim

EXPLORING MOTIVATION AND TOURIST TYPOLOGY: THE CASE OF KOREAN GOLF TOURISTS TRAVELLING IN THE ASIA PACIFIC. Jae Hak Kim EXPLORING MOTIVATION AND TOURIST TYPOLOGY: THE CASE OF KOREAN GOLF TOURISTS TRAVELLING IN THE ASIA PACIFIC Jae Hak Kim Thesis submitted for the degree of Doctor of Philosophy at the University of Canberra

More information

georgii (TELEOSTEI: ISTIOPHORIDAE):

georgii (TELEOSTEI: ISTIOPHORIDAE): BULLETIN OF MARINE SCIENCE, 79(3): 483 491, 2006 Validity, Identification, and Distribution of the Roundscale Spearfish, Tetrapturus georgii (TELEOSTEI: ISTIOPHORIDAE): Morphological and Molecular evidence

More information

Genome-scale approach proves that the lungfish-coelacanth sister group is the closest living

Genome-scale approach proves that the lungfish-coelacanth sister group is the closest living LETTERS Genome-scale approach proves that the lungfish-coelacanth sister group is the closest living relative of tetrapods with the BEST program Yunfeng Shan & Robin Gras, The origin of tetrapods has not

More information

Continued Genetic Monitoring of the Kootenai Tribe of Idaho White Sturgeon Conservation Aquaculture Program

Continued Genetic Monitoring of the Kootenai Tribe of Idaho White Sturgeon Conservation Aquaculture Program Continued Genetic Monitoring of the Kootenai Tribe of Idaho White Sturgeon Conservation Aquaculture Program Deliverable 1): Monitoring of Kootenai River white sturgeon genetic diversity Deliverable 2):

More information

aV. Code(s) assigned:

aV. Code(s) assigned: This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). Code(s) assigned: 2009.016aV (to be completed by ICTV

More information

Cover photograph: From the archives of the Virginia Institute of Marine Science, Gloucester Point, Virginia, United States of America

Cover photograph: From the archives of the Virginia Institute of Marine Science, Gloucester Point, Virginia, United States of America Cover photograph: From the archives of the Virginia Institute of Marine Science, Gloucester Point, Virginia, United States of America Management techniques for elasmobranch fisheries FAO FISHERIES TECHNICAL

More information

Appendix 3: Example Thesis Proposal

Appendix 3: Example Thesis Proposal Appendix 3: Example Thesis Proposal Progress Report PHYLOGENETIC AND BIOGEOGRAPHIC ANALYSES OF THE GREATER ANTILLEAN AND MIDDLE AMERICAN CICHLIDAE Prosanta Chakrabarty Department of Ecology and Evolutionary

More information

Anguilla marmorata (Giant Mottled Eel) Discovered in a New Location: Natural Range Expansion or Recent Human Introduction? 1

Anguilla marmorata (Giant Mottled Eel) Discovered in a New Location: Natural Range Expansion or Recent Human Introduction? 1 Anguilla marmorata (Giant Mottled Eel) Discovered in a New Location: Natural Range Expansion or Recent Human Introduction? 1 Alex Handler 2 and Shelley A. James 3 Abstract: Freshwater eels in the family

More information

Molecular phylogeny of the Romanian cyprinids from the Danube River

Molecular phylogeny of the Romanian cyprinids from the Danube River Roumanian Biotechnological Letters Vol. 13, No. 5, 2008, pp. 3970 3975 Copyright 2008 Bucharest University Printed in Romania. All rights reserved Roumanian Society of Biological Sciences ORIGINAL PAPER

More information

biosensis Human Lipocalin-2/NGAL ELISA Kit Protocol

biosensis Human Lipocalin-2/NGAL ELISA Kit Protocol biosensis Human Lipocalin-2/NGAL ELISA Kit Protocol Catalog No: BEK-2141-2P For quantitative detection of human Lipocalin-2 in cell culture supernatants, serum, and heparin treated plasma, saliva, and

More information

Hybridization versus Randomly-Sorting Ancestral Alleles: Genetic Variation in Lake Malawi Cichlids

Hybridization versus Randomly-Sorting Ancestral Alleles: Genetic Variation in Lake Malawi Cichlids Hybridization versus Randomly-Sorting Ancestral Alleles: Genetic Variation in Lake Malawi Cichlids Meryl Mims Faculty Advisor: Professor Todd Streelman Undergraduate Honors Thesis, Spring 2007 Georgia

More information

Molecular Phylogenetics and Ecological Diversification of the Transisthmian Fish Genus Centropomus (Perciformes: Centropomidae)

Molecular Phylogenetics and Ecological Diversification of the Transisthmian Fish Genus Centropomus (Perciformes: Centropomidae) Molecular Phylogenetics and Evolution Vol. 13, No. 1, October, pp. 193 207, 1999 Article ID mpev.1999.0624, available online at http://www.idealibrary.com on Molecular Phylogenetics and Ecological Diversification

More information

biosensis Rat Fibronectin ELISA Kit Protocol

biosensis Rat Fibronectin ELISA Kit Protocol biosensis Rat Fibronectin ELISA Kit Protocol Catalog No: BEK-2017-2P For quantitative detection of rat Fibronectin in cell culture supernatants, serum, and citrate, heparin, or EDTA plasma samples only

More information

MOLECULAR CHARACTERISATION AND PHYLOGENETICS OF MALAYSIAN GREEN AROWANA (Scleropages formosus) IN PENINSULAR MALAYSIA

MOLECULAR CHARACTERISATION AND PHYLOGENETICS OF MALAYSIAN GREEN AROWANA (Scleropages formosus) IN PENINSULAR MALAYSIA First ASIAHORCs Joint Symposium 18-20 July 2009 Nagoya, Japan MOLECULAR CHARACTERISATION AND PHYLOGENETICS OF MALAYSIAN GREEN AROWANA (Scleropages formosus) IN PENINSULAR MALAYSIA M. Rizman-Idid 1, S.

More information

Cichlids of East Africa A Model of Vertebrate Radiation. ww.waveformenergetics.com

Cichlids of East Africa A Model of Vertebrate Radiation. ww.waveformenergetics.com Cichlids of East Africa A Model of Vertebrate Radiation ww.waveformenergetics.com www.wikipedia.com Lake Malawi 2-2020 million years old Fifth largest lake in the world by volume Bordered by Tanzania,

More information

1.1 The size of the search space Modeling the problem Change over time Constraints... 21

1.1 The size of the search space Modeling the problem Change over time Constraints... 21 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 I What Are the Ages of My Three Sons? : : : : : : : : : : : : : : : : : 9 1 Why Are Some Problems Dicult to Solve? : : :

More information

Using Markov Chains to Analyze a Volleyball Rally

Using Markov Chains to Analyze a Volleyball Rally 1 Introduction Using Markov Chains to Analyze a Volleyball Rally Spencer Best Carthage College sbest@carthage.edu November 3, 212 Abstract We examine a volleyball rally between two volleyball teams. Using

More information

THE subgenus Notropis is an ecologically diverse

THE subgenus Notropis is an ecologically diverse Copeia, 2(3), pp. 656 667 Phylogenetic Relationships of Cyprinid Fishes in Subgenus Notropis Inferred from Nucleotide Sequences of the Mitochondrially Encoded Cytochrome b Gene JOSEPH P. BIELAWSKI AND

More information

TITLE: DNA minitube - Red

TITLE: DNA minitube - Red TITLE: DNA minitube - Red Summary of Operating Conditions: Target Base Pair (Peak) 5 kb (nominal) Please see specific recommendation chapter regarding optimization of operating conditions Temperature (bath)

More information

CHAPTER III RESULTS. sampled from 22 streams, representing 4 major river drainages in New Jersey, and 1 trout

CHAPTER III RESULTS. sampled from 22 streams, representing 4 major river drainages in New Jersey, and 1 trout CHAPTER III RESULTS Genetic Diversity Genotypes at 13 microsatellite DNA loci were determined for 238 brook trout sampled from 22 streams, representing 4 major river drainages in New Jersey, and 1 trout

More information

Species Identification of small juvenile tunas caught in surface fisheries in the Phili... 1/13 ページ

Species Identification of small juvenile tunas caught in surface fisheries in the Phili... 1/13 ページ Species Identification of small juvenile tunas caught in surface fisheries in the Phili... 1/13 ページ Originated by: Fisheries and Aquaculture Department Title: Status of Interactions of Pacific Tuna Fisheries

More information

What DNA tells us about Walleye (& other fish) in the Great Lakes

What DNA tells us about Walleye (& other fish) in the Great Lakes What DNA tells us about Walleye (& other fish) in the Great Lakes Carol Stepien, Douglas Murphy, Rachel Lohner, & Jo Ann Banda Great Lakes Genetics Lab Lake Erie Center University of Toledo What do we

More information

In memory of Dr. Kevin P. Granata, my graduate advisor, who was killed protecting others on the morning of April 16, 2007.

In memory of Dr. Kevin P. Granata, my graduate advisor, who was killed protecting others on the morning of April 16, 2007. Acknowledgement In memory of Dr. Kevin P. Granata, my graduate advisor, who was killed protecting others on the morning of April 16, 2007. There are many others without whom I could not have completed

More information

Stock structure of the world s istiophorid billfishes: a genetic perspective

Stock structure of the world s istiophorid billfishes: a genetic perspective CSIRO UBLISHING www.publish.csiro.au/journals/mfr Marine and Freshwater Research, 2003, 54, 287 298 Review Stock structure of the world s istiophorid billfishes: a genetic perspective John E. Graves,B

More information

Application of DNA Barcoding Techniques For Speciation

Application of DNA Barcoding Techniques For Speciation Application of DNA Barcoding Techniques For Speciation Bruno J. Giri US Department of Agriculture Office of Public Health Science 1 Objectives Background of catfish speciation Background of DNA barcoding

More information

Status and Distribution of the Bobcat (Lynx rufus) in Illinois

Status and Distribution of the Bobcat (Lynx rufus) in Illinois Transactions of the Illinois State Academy of Science received 9/14/99 (2000), Volume 93, #2, pp. 165-173 accepted 1/16/00 Status and Distribution of the Bobcat (Lynx rufus) in Illinois Alan Woolf 1, Clayton

More information

biosensis Mouse Interleukin-1 beta (IL-1β) ELISA Kit Protocol

biosensis Mouse Interleukin-1 beta (IL-1β) ELISA Kit Protocol biosensis Mouse Interleukin-1 beta (IL-1β) ELISA Kit Protocol Catalog Number: BEK-2151-1P For quantitative detection of mouse IL-1β in cell culture supernatant, cell lysates, and serum and hepain or EDTA

More information

Supplemental figure 1. Collection sites and numbers of strains sequenced.

Supplemental figure 1. Collection sites and numbers of strains sequenced. Supplemental figure 1. Collection sites and numbers of strains sequenced. Supplemental figure 2. Neighbor joining 16S rrna gene phylogeny (636 bp). Minimum bootstrap values >50% generated using NJ and

More information

biosensis Mouse Vascular endothelial growth factor A/VEGF-A/VEGF-164/VEGF-1/VEGF- 120/VEGF-2 ELISA Kit Protocol

biosensis Mouse Vascular endothelial growth factor A/VEGF-A/VEGF-164/VEGF-1/VEGF- 120/VEGF-2 ELISA Kit Protocol biosensis Mouse Vascular endothelial growth factor A/VEGF-A/VEGF-164/VEGF-1/VEGF- 120/VEGF-2 ELISA Kit Protocol Catalog No: BEK-2110-1P For quantitative detection of mouse VEGF-A (VEGF164&VEGF120) in mouse

More information

NBA TEAM SYNERGY RESEARCH REPORT 1

NBA TEAM SYNERGY RESEARCH REPORT 1 NBA TEAM SYNERGY RESEARCH REPORT 1 NBA Team Synergy and Style of Play Analysis Karrie Lopshire, Michael Avendano, Amy Lee Wang University of California Los Angeles June 3, 2016 NBA TEAM SYNERGY RESEARCH

More information

GCMSD-Headspace Analysis SOP

GCMSD-Headspace Analysis SOP Before you start GCMSD-Headspace Analysis SOP Method and Sequences names are restricted to 50 characters (MSD program will crash otherwise) The GC oven and Injection Ports need to be cooled to 50 oc to

More information

biosensis Human TNFα/Cachectin/TNFSF2 ELISA Kit Protocol

biosensis Human TNFα/Cachectin/TNFSF2 ELISA Kit Protocol biosensis Human TNFα/Cachectin/TNFSF2 ELISA Kit Protocol Catalog No: BEK-2100-1P For quantitative detection of human TNFα in cell culture supernatants, serum, and heparin, EDTA or citrate treated plasma

More information

biosensis Mouse CXCL10/IP-10 ELISA Kit Protocol

biosensis Mouse CXCL10/IP-10 ELISA Kit Protocol biosensis Mouse CXCL10/IP-10 ELISA Kit Protocol Catalogue No: BEK-2124-2P TABLE OF CONTENTS I Materials provided...2 II Equipment required but not supplied...2 III Technical hints....2 IV Storage of kit

More information

Fig. 3.1 shows the distribution of roe deer in the UK in 1972 and It also shows the location of the sites that were studied in 2007.

Fig. 3.1 shows the distribution of roe deer in the UK in 1972 and It also shows the location of the sites that were studied in 2007. 1 Roe deer, Capreolus capreolus, is the most common species of native deer in the UK. Fig. 3.1 shows the distribution of roe deer in the UK in 1972 and 2007. It also shows the location of the sites that

More information

Mitochondrial DNA analysis as a tool for family and species identification of fish larvae: Emphasis on Snappers.

Mitochondrial DNA analysis as a tool for family and species identification of fish larvae: Emphasis on Snappers. Mitochondrial DNA analysis as a tool for family and species identification of fish larvae: Emphasis on Snappers. Áurea E. Rodríguez, Juan C. Martínez-Cruzado, Ernesto Otero, Jorge R. García-Sais and Jennie

More information

Gerald D. Anderson. Education Technical Specialist

Gerald D. Anderson. Education Technical Specialist Gerald D. Anderson Education Technical Specialist The factors which influence selection of equipment for a liquid level control loop interact significantly. Analyses of these factors and their interactions

More information

Taxonomic status of the black porgy, Acanthopagrus schlegelii (Perciformes: Sparidae) inferred from mitochondrial genes

Taxonomic status of the black porgy, Acanthopagrus schlegelii (Perciformes: Sparidae) inferred from mitochondrial genes African Journal of Biotechnology Vol. 11(25), pp. 6641-66446, 27 March, 2012 Available online at http://www.academicjournals.org/ajb DOI: 10.5897/AJB10.2521 ISSN 1684 5315 2012 Academic Journals Full Length

More information

biosensis Human IGF-II, Insulin-like growth factor II, Somatomedin-A ELISA Kit Protocol

biosensis Human IGF-II, Insulin-like growth factor II, Somatomedin-A ELISA Kit Protocol biosensis Human IGF-II, Insulin-like growth factor II, Somatomedin-A ELISA Kit Protocol Catalog No: BEK-2029-1P For quantitative detection of human IGF-II in cell culture supernatants, cell lysates, tissue

More information

biosensis Human Soluble Tumor Necrosis Factor receptor type II (stnfrii) ELISA Kit Protocol

biosensis Human Soluble Tumor Necrosis Factor receptor type II (stnfrii) ELISA Kit Protocol biosensis Human Soluble Tumor Necrosis Factor receptor type II (stnfrii) ELISA Kit Protocol Catalog No: BEK-2103-2P For quantitative detection of human soluble TNFRII (stnfrii) in human cell culture supernatants,

More information

AmpFlSTR Identifiler PCR Amplification Kit

AmpFlSTR Identifiler PCR Amplification Kit Application Note Human Identification AmpFlSTR Identifiler PCR Amplification Kit In Applied Biosystems continual efforts to improve the quality of our products, we have made some modifications to the manufacturing

More information

biosensis Rat Interleukin-1 beta, IL-1β ELISA Kit Protocol

biosensis Rat Interleukin-1 beta, IL-1β ELISA Kit Protocol biosensis Rat Interleukin-1 beta, IL-1β ELISA Kit Protocol For the quantitative detection of rat IL-1β in cell culture supernatants, serum, heparin or EDTA treated plasma samples, and cell homogenates

More information

DNA approaches to marine wildlife fishery monitoring and law enforcement. Mahmood S. Shivji

DNA approaches to marine wildlife fishery monitoring and law enforcement. Mahmood S. Shivji DNA approaches to marine wildlife fishery monitoring and law enforcement Mahmood S. Shivji Presentation given at FIU Forensics Workshop - July 26, 2010 Major forensics questions for marine wildlife 1.

More information

Crash Analysis of I-64 Closure in St. Louis County

Crash Analysis of I-64 Closure in St. Louis County Report # MATC-MST: 341 Final Report 25-1121-0001-341 Crash Analysis of I-64 Closure in St. Louis County Ghulam H. Bham, Ph.D. Professor Department of Civil, Architectural, and Environmental Engineering

More information

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary ADH 1/7/014 LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the

More information

Article. Abstract. Introduction

Article. Abstract. Introduction Zootaxa 2008: 1 22 (2009) www.mapress.com/zootaxa/ Copyright 2009 Magnolia Press Article ISSN 1175-5326 (print edition) ZOOTAXA ISSN 1175-5334 (online edition) Genetic identification and color descriptions

More information

International Journal of Research in Zoology. Original Article

International Journal of Research in Zoology. Original Article Available online at http://www.urpjournals.com International Journal of Research in Zoology Universal Research Publications. All rights reserved Original Article ISSN 2278 1358 Phylogeny and genetic divergence

More information

THE DIVERSITY OF FISHES

THE DIVERSITY OF FISHES Gene S. Helfman Bruce B. Collette Douglas E. Facey Brian W. Bowen Second Edition THE DIVERSITY OF FISHES Biology, Evolution, and WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication Brief contents Full

More information

biosensis Mouse Brain-derived neurotrophic factor (BDNF) ELISA Kit Protocol

biosensis Mouse Brain-derived neurotrophic factor (BDNF) ELISA Kit Protocol biosensis Mouse Brain-derived neurotrophic factor (BDNF) ELISA Kit Protocol Catalog No: BEK-2003-2P For quantitative detection of mouse BDNF in cell culture supernatants, cell lysates, serum, and citrate,

More information

Initial microsatellite analysis of wild Kootenai River white sturgeon and subset brood stock groups used in a conservation aquaculture program.

Initial microsatellite analysis of wild Kootenai River white sturgeon and subset brood stock groups used in a conservation aquaculture program. Initial microsatellite analysis of wild Kootenai River white sturgeon and subset brood stock groups used in a conservation aquaculture program. Prepared for: U.S. Department of Energy, Bonneville Power

More information

PHYLOGENY OF RECENT BILLFISHES (XIPHIOIDEI)

PHYLOGENY OF RECENT BILLFISHES (XIPHIOIDEI) BULLETIN OF MARINE SCIENCE, 79(3): 455 468, 2006 4 TH INT. BILLFISH SYMP. KEYNOTE ADDRESS PHYLOGENY OF RECENT BILLFISHES (XIPHIOIDEI) Bruce B. Collette, Jan R. McDowell, and John E. Graves ABSTRACT Billfishes

More information

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12 LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

More information

Schaft Creek Project: Fisheries Baseline 2008 Addendum

Schaft Creek Project: Fisheries Baseline 2008 Addendum Copper Fox Metals Inc. Schaft Creek Project: Fisheries Baseline 2008 Addendum Rescan Tahltan Environmental Consultants Sixth Floor - 1111 West Hastings Street Vancouver, BC Canada V6E 2J3 Tel: (604) 689-9460

More information

Weedy Seadragon Ecology Project. Annual Report Underwater Research Group of NSW Fish Ecology Lab, UTS

Weedy Seadragon Ecology Project. Annual Report Underwater Research Group of NSW Fish Ecology Lab, UTS Weedy Seadragon Ecology Project Annual Report 2015 Underwater Research Group of NSW Fish Ecology Lab, UTS 1. Summary UTS and URG forged an informal partnership in 2015, to further the seadragon research

More information

The Northern Snakehead Channa argus (Anabantomorpha: Channidae), a nonindigenous fish species in the Potomac River, U.S.A

The Northern Snakehead Channa argus (Anabantomorpha: Channidae), a nonindigenous fish species in the Potomac River, U.S.A The Northern Snakehead Channa argus (Anabantomorpha: Channidae), a nonindigenous fish species in the Potomac River, U.S.A Author(s): Thomas M. Orrell and Lee Weigt Source: Proceedings of the Biological

More information

Turn Lane Warrants: Concepts, Standards, Application in Review

Turn Lane Warrants: Concepts, Standards, Application in Review Turn Lane Warrants: Concepts, Standards, Application in Review David J. DeBaie P.E., P.T.O.E. 2004 ITE, District 1 Annual Meeting Burlington, Vermont Introduction Turning lanes at intersections reduce

More information

Molecular comparison of Clarias batrachus (Linnaeus, 1758) found in India with the species reported from Bangladesh

Molecular comparison of Clarias batrachus (Linnaeus, 1758) found in India with the species reported from Bangladesh Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 6, No. 5, p. 253-257, 2015 http://www.innspub.net RESEARCH PAPER OPEN ACCESS Molecular comparison

More information

LINEAR TRANSFORMATION APPLIED TO THE CALIBRATION OF ANALYTES IN VARIOUS MATRICES USING A TOTAL HYDROCARBON (THC) ANALYZER

LINEAR TRANSFORMATION APPLIED TO THE CALIBRATION OF ANALYTES IN VARIOUS MATRICES USING A TOTAL HYDROCARBON (THC) ANALYZER LINEAR TRANSFORMATION APPLIED TO THE CALIBRATION OF ANALYTES IN VARIOUS MATRICES USING A TOTAL HYDROCARBON (THC) ANALYZER Michael T Tang, Ph.D. Grace Feng Greg Merideth Rui Huang Matheson Gas Applied Lab

More information

Competitive Performance of Elite Olympic-Distance Triathletes: Reliability and Smallest Worthwhile Enhancement

Competitive Performance of Elite Olympic-Distance Triathletes: Reliability and Smallest Worthwhile Enhancement SPORTSCIENCE sportsci.org Original Research / Performance Competitive Performance of Elite Olympic-Distance Triathletes: Reliability and Smallest Worthwhile Enhancement Carl D Paton, Will G Hopkins Sportscience

More information

biosensis Rat IGF-1/Somatomedin/Insulin-like growth factor ELISA Kit Protocol

biosensis Rat IGF-1/Somatomedin/Insulin-like growth factor ELISA Kit Protocol biosensis Rat IGF-1/Somatomedin/Insulin-like growth factor ELISA Kit Protocol Catalog No: BEK-2150-1P For quantitative detection of rat IGF-1 in cell culture supernatants, cell and tissue homogenates,

More information

biosensis Rat Glial cell line-derived neurotrophic factor/gdnf total /ATF ELISA Kit Protocol

biosensis Rat Glial cell line-derived neurotrophic factor/gdnf total /ATF ELISA Kit Protocol biosensis Rat Glial cell line-derived neurotrophic factor/gdnf total /ATF ELISA Kit Protocol Catalog No: BEK-2020-1P For quantitative detection of rat GDNF in cell culture supernatants, cell lysates, tissue

More information

Total Evidence: Molecules, Morphology, and the Phylogenetics of Cichlid Fishes

Total Evidence: Molecules, Morphology, and the Phylogenetics of Cichlid Fishes 76 JOURNAL OF I.P. EXPERIMENTAL FARIAS ET AL. ZOOLOGY (MOL DEV EVOL) 288:76 92 (2000) Total Evidence: Molecules, Morphology, and the Phylogenetics of Cichlid Fishes IZENI P. FARIAS, 1,2 GUILLERMO ORTÍ,

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher Mini-project 3 Tennis ball launcher Mini-Project 3 requires you to use MATLAB to model the trajectory of a tennis ball being shot from a tennis ball launcher to a player. The tennis ball trajectory model

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Optimal number of pair extractions. The plots show the relationships between average number of checkerboard units in sets of 1000 randomizations of the Vanuatu

More information

Diversity of Thermophilic Bacteria Isolated from Hot Springs

Diversity of Thermophilic Bacteria Isolated from Hot Springs ... 40(2) 524-533 (2555) KKU Sci. J. 40(2) 524-533 (2012) Diversity of Thermophilic Bacteria Isolated from Hot Springs ( 30, 3.65 x 10 5 1. x 10 3 CFU/ml (a, b, c, d, e f 16S rrna 1. kb Polymerase Chain

More information

Phylogenetic relationships of twenty Gymnothorax species based on cytochrome b sequence data

Phylogenetic relationships of twenty Gymnothorax species based on cytochrome b sequence data Phylogenetic relationships of twenty Gymnothorax species based on cytochrome b sequence data M. Du 1, S.W. Yin 2 and B.Z. Niu 1 1 Key Lab for Quality, Efficient cultivation and Security Control of Crops

More information

MEASURING PASSENGER CAR EQUIVALENTS (PCE) FOR LARGE VEHICLES AT SIGNALIZED INTERSECTIONS

MEASURING PASSENGER CAR EQUIVALENTS (PCE) FOR LARGE VEHICLES AT SIGNALIZED INTERSECTIONS MEASURING PASSENGER CAR EQUIVALENTS (PCE) FOR LARGE VEHICLES AT SIGNALIZED INTERSECTIONS Md. Mizanur RAHMAN Doctoral Student Graduate School of Engineering Department of Civil Engineering Yokohama National

More information

Analysis of hazard to operator during design process of safe ship power plant

Analysis of hazard to operator during design process of safe ship power plant POLISH MARITIME RESEARCH 4(67) 2010 Vol 17; pp. 26-30 10.2478/v10012-010-0032-1 Analysis of hazard to operator during design process of safe ship power plant T. Kowalewski, M. Sc. A. Podsiadło, Ph. D.

More information

Phylogenetic analysis among Cyprinidae family using 16SrRNA

Phylogenetic analysis among Cyprinidae family using 16SrRNA 2014; 1(6): 66-71 ISSN: 2347-5129 IJFAS 2014; 1(6): 66-71 2013 IJFAS www.fisheriesjournal.com Received: 20-05-2014 Accepted: 02-06-2014 Utpala Sharma Varsha singhal Dayal P. Gupta Partha Sarathi Mohanty

More information

Spatial/Seasonal overlap between the midwater trawl herring fishery and predator focused user groups

Spatial/Seasonal overlap between the midwater trawl herring fishery and predator focused user groups Spatial/Seasonal overlap between the midwater trawl herring fishery and predator focused user groups A working paper submitted to the Herring PDT Micah Dean July 26, 2017 Introduction A goal of Amendment

More information

Biogeographical Distribution and Phylogenetic Analysis of Simulium (Wallacellum) (Diptera: Simuliidae) Based on the Mitochondrial Sequences

Biogeographical Distribution and Phylogenetic Analysis of Simulium (Wallacellum) (Diptera: Simuliidae) Based on the Mitochondrial Sequences South Pacific Studies Vol.35, No.2, 2015 Biogeographical Distribution and Phylogenetic Analysis of Simulium (Wallacellum) (Diptera: Simuliidae) Based on the Mitochondrial Sequences OTSUKA Yasushi 1 * and

More information

Neglected Taxonomy of Rare Desert Fishes: Congruent Evidence for Two Species of Leatherside Chub

Neglected Taxonomy of Rare Desert Fishes: Congruent Evidence for Two Species of Leatherside Chub Syst. Biol. 53(6):841 855, 2004 Copyright c Society of Systematic Biologists ISSN: 1063-5157 print / 1076-836X online DOI: 10.1080/10635150490522557 Neglected Taxonomy of Rare Desert Fishes: Congruent

More information

Version: 1.0 Last amendment: 16/01/2012. Contact Officer: Animal Welfare Officer

Version: 1.0 Last amendment: 16/01/2012. Contact Officer: Animal Welfare Officer CDU AEC Policy on the Collection of Voucher Specimens : 1.0 Last amendment: 16/01/2012 Contact Officer: Animal Welfare Officer Approved By: CDU AEC Date: January 2012 Next Review: January 2014 INTRODUCTION

More information

Employer Name: NOAA Fisheries, Northwest Fisheries Science Center

Employer Name: NOAA Fisheries, Northwest Fisheries Science Center Internship Description Employer Name: NOAA Fisheries, Northwest Fisheries Science Center Employer Description: Manchester Research Station functions as a satellite facility to the NOAA Fisheries Northwest

More information

Seismic Survey Designs for Converted Waves

Seismic Survey Designs for Converted Waves Seismic Survey Designs for Converted Waves James A. Musser* GMG/AXIS Inc., Denver, CO 1720 Red Cloud Road, Longmont, CO, 80501, USA jmusser@gmg.com ABSTRACT Designing converted wave 3D surveys is considerably

More information

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE. University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE. University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. I L L IN 0 I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. ci h oo /9 Illinois Natural History

More information

oxfitates AMiiiui?can JMllselIm Threadfin from New Guinea BY J. T. NICHOLS A New Blenny from Bali and a New

oxfitates AMiiiui?can JMllselIm Threadfin from New Guinea BY J. T. NICHOLS A New Blenny from Bali and a New AMiiiui?can JMllselIm oxfitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER i68o JUNE 30, 1954 A New Blenny from Bali and a New Threadfin

More information

Catlow Valley Redband Trout

Catlow Valley Redband Trout Catlow Valley Redband Trout Existing Populations The Catlow Valley Redband Trout SMU is comprised of five populations (Table 1). Three exist in Home, Threemile, and Skull creeks, located on the east side

More information

Advanced Animal Science TEKS/LINKS Student Objectives One Credit

Advanced Animal Science TEKS/LINKS Student Objectives One Credit First Six Weeks Career/Safety/Work Habits AAS 1(A) The student will identify career development and entrepreneurship opportunities in the field of animal systems. AAS 1(B) The student will apply competencies

More information

AMERICAN ACADEMY OF ACTUARIES MEDICARE SUPPLEMENT WORK GROUP SUBTEAM REPORT ON LOSS RATIO CURVES FOR REDETERMINATION OF REFUND BENCHMARKS

AMERICAN ACADEMY OF ACTUARIES MEDICARE SUPPLEMENT WORK GROUP SUBTEAM REPORT ON LOSS RATIO CURVES FOR REDETERMINATION OF REFUND BENCHMARKS AMERICAN ACADEMY OF ACTUARIES MEDICARE SUPPLEMENT WORK GROUP SUBTEAM REPORT ON LOSS RATIO CURVES FOR REDETERMINATION OF REFUND BENCHMARKS March 10, 2004 The American Academy of Actuaries is the public

More information

Gas Exchange ACTIVITY OVERVIEW SUMMARY KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY. Teacher s Guide B-75 L A B O R ATO R Y

Gas Exchange ACTIVITY OVERVIEW SUMMARY KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY. Teacher s Guide B-75 L A B O R ATO R Y Gas Exchange 17 40- to 2 50-minute sessions ACTIVITY OVERVIEW L A B O R ATO R Y SUMMARY This activity explores the role of the respiratory system in the regulation of gases in the blood. Students investigate

More information

REVISION OF THE WPTT PROGRAM OF WORK

REVISION OF THE WPTT PROGRAM OF WORK REVISION OF THE WPTT PROGRAM OF WORK IOTC 2016 WPTT18 08 Rev 1 PREPARED BY: IOTC SECRETARIAT 1, 3 OCTOBER 2016 PURPOSE To ensure that the participants at the 18 th Working Party on Tropical Tunas (WPTT18)

More information

MOLECULAR SYSTEMATICS OF THE AFRICAN ELECTRIC FISHES (MORMYROIDEA: TELEOSTEI) AND A MODEL FOR THE EVOLUTION OF THEIR ELECTRIC ORGANS

MOLECULAR SYSTEMATICS OF THE AFRICAN ELECTRIC FISHES (MORMYROIDEA: TELEOSTEI) AND A MODEL FOR THE EVOLUTION OF THEIR ELECTRIC ORGANS The Journal of Experimental Biology 203, 665 683 (2000) Printed in Great Britain The Company of Biologists Limited 2000 JEB2437 665 MOLECULAR SYSTEMATICS OF THE AFRICAN ELECTRIC FISHES (MORMYROIDEA: TELEOSTEI)

More information

submitted: fall 2009

submitted: fall 2009 Cat Project of the Month April 2010 The IUCN/SSC Cat Specialist Group's website (www.catsg.org) presents each month a different cat conservation project. Members of the Cat Specialist Group are encouraged

More information

This file is part of the following reference:

This file is part of the following reference: This file is part of the following reference: Hancock, Timothy Peter (2006) Multivariate consensus trees: tree-based clustering and profiling for mixed data types. PhD thesis, James Cook University. Access

More information

Dissolved Oxygen Guide

Dissolved Oxygen Guide Educat i onser i es Di ssol vedoxygengui de Dissolved Oxygen Guide Introduction Dissolved oxygen probes provide a convenient approach to essentially direct measurement of molecular oxygen. The membrane

More information

Chapter 6. Analysis of the framework with FARS Dataset

Chapter 6. Analysis of the framework with FARS Dataset Chapter 6 Analysis of the framework with FARS Dataset. Having represented each phase of the structure with the aid of different data sets at each stage, to support the efficacy of the proposed framework

More information

Using edna to Understand Changes in Aquatic Biodiversity Above and Below a Barrier

Using edna to Understand Changes in Aquatic Biodiversity Above and Below a Barrier University of Massachusetts Amherst ScholarWorks@UMass Amherst International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish

More information

Outline. Evolution: Human Evolution. Primates reflect a treedwelling. Key Concepts:

Outline. Evolution: Human Evolution. Primates reflect a treedwelling. Key Concepts: Evolution: Human Evolution Primates reflect a treedwelling heritage Outline 1. Key concepts 2. Characteristics of primates 3. Prosimians and anthropoids 4. The first hominids: Ardipithecus 5. The first

More information

Naval Postgraduate School, Operational Oceanography and Meteorology. Since inputs from UDAS are continuously used in projects at the Naval

Naval Postgraduate School, Operational Oceanography and Meteorology. Since inputs from UDAS are continuously used in projects at the Naval How Accurate are UDAS True Winds? Charles L Williams, LT USN September 5, 2006 Naval Postgraduate School, Operational Oceanography and Meteorology Abstract Since inputs from UDAS are continuously used

More information