Regulation of Angular Impulse During Two Forward Translating Tasks

Size: px
Start display at page:

Download "Regulation of Angular Impulse During Two Forward Translating Tasks"

Transcription

1 Journal of Applied Biomechanics, 2007; 23: Human Kinetics, Inc. Regulation of Angular Impulse During Two Forward Translating Tasks Witaya Mathiyakom, Jill L. McNitt-Gray, and Rand R. Wilcox University of Southern California Angular impulse generation is dependent on the position of the total body center of mass (CoM) relative to the ground reaction force (GRF) vector during contact with the environment. The purpose of this study was to determine how backward angular impulse was regulated during two forward translating tasks. Control of the relative angle between the CoM and the GRF was hypothesized to be mediated by altering trunk leg coordination. Eight highly skilled athletes performed a series of standing reverse somersaults and reverse timers. Sagittal plane kinematics, GRF, and electromyograms of lower extremity muscles were acquired during the take-off phase of both tasks. The magnitude of the backward angular impulse generated during the push interval of both tasks was mediated by redirecting the GRF relative to the CoM. During the reverse timer, backward angular impulse generated during the early part of the take-off phase was negated by limiting backward trunk rotation and redirecting the GRF during the push interval. Biarticular muscles crossing the knee and hip coordinated the control of GRF direction and CoM trajectory via modulation of trunk leg coordination. All are with the University of Southern California, Los Angeles: Mathiyakom is with the Department of Kinesiology and the Andrus Gerontology Center; McNitt-Gray is with the Departments of Kinesiology, Biomedical Engineering, and Biological Sciences; and Wilcox is with the Department of Psychology. Key Words: trunk leg coordination; total body center of mass; backward angular impulse; forward translating tasks; ground reaction force The generation of total body angular momentum required for goal-directed tasks is regulated by the angular impulse generated during contact with the environment. The magnitude and direction of the angular impulse is dependent on the average moment created by the ground reaction force (GRF) about the total body center of mass (CoM) and the duration of the impulse generation phase. The moment is dependent on the magnitude of the GRF and the perpendicular distance between the CoM and the line of action of the GRF. The magnitude of this moment arm is affected by the relative angle (relθ RGRF ) between the GRF and the position vector (θ R ) of the CoM relative to the center of pressure (CoP). By virtue of their large masses, control of the trunk and leg motions plays a significant role in controlling both CoM trajectory and the GRF. Potential conflicts arise when the direction of linear momentum of the trunk during GRF generation conflicts with the linear momentum requirements of the task at the total body level. Trunk motion can contribute to relθ RGRF by affecting the position of the CoM, and thus the value of θ R. In tasks without an angular impulse requirement, trunk motion can assist in aligning the GRF with the CoM (near zero relθ RGRF ). For example, during the weight acceptance phase of a 149

2 150 Mathiyakom, McNitt-Gray, and Wilcox sit-to-stand task, forward rotation of the trunk about the hips aligns the CoM with the GRF (Schenkman et al., 1996; Mathiyakom et al., 2005). In tasks with backward angular and linear impulse requirements, backward rotation of the trunk about the hips increases as the required number of somersault rotations increases from 1½ to 2½ revolutions without an alteration in the magnitude of the GRF (Hamill et al., 1985). This indicates that backward trunk rotation about the hips serves to enlarge the relθ RGRF angle during the take-off phase of tasks requiring backward angular impulse. In contrast, during the take-off phase of a reverse somersault (RS), where the performer must translate forward but rotate backward during the flight phase, the use of backward trunk rotation to enlarge the relθ RGRF angle presents a conflict with the need to translate the CoM forward. These results led us to hypothesize that performers may regulate backward angular impulse generation during the take-off phase by redirecting the GRF to avoid conflict between linear and angular impulse requirements of the task. The magnitude and direction of the GRF during the take-off phase of a jumping task is influenced by leg orientation and neuromuscular control of segment motion. The orientation of the GRF during foot contact is associated with the angle of the leg or the horizontal position of the hip relative to the CoP (Jacob & Van Ingen Schenau, 1992; Ridderikhoff et al., 1999; Roberts & Scales, 2002). For example, positioning the hips posterior to the feet during the joint extension phase of a back somersault facilitates generation of a posteriorly directed horizontal component of the GRF (Miller et al., 1989). Similarly, positioning the hips anterior to the feet during the take-off phase of a RS facilitates generation of an anteriorly directed horizontal component of the GRF (Miller et al., 1990). The direction and magnitude of the GRF relative to the leg and CoM is also dependent on how joint motion is controlled via net joint moments and activation of specific sets of muscles (Wells & Evan, 1987; Van Ingen Schenau et al., 1992; McNitt-Gray et al., 2001). Muscle activation patterns observed during multijoint goal-directed tasks indicate that uni- and biarticular muscles of the lower extremity that are attached to the pelvis work in synergistic teams to regulate trunk motion in relation to the legs (McNitt-Gray et al., 2001). Activation of specific sets of muscles also influences the GRF direction relative to the CoM and the net joint moments required to produce the observed movement (Wells & Evan, 1987; Van Ingen Schenau et al., 1992). These results indicate that regulation of CoM trajectory relative to the GRF during the impulse generation phases of jumping tasks involves taskspecific coordination of trunk and leg motion. In this study, control of the relative angle between the CoM and the GRF during the take-off phase of two forward translating tasks performed with and without backward-directed angular impulse was hypothesized to be mediated by trunk and leg coordination. We tested this hypothesis by comparing the GRF, CoM trajectory, and trunk leg coordination observed during the take-off phase of a RS and of a reverse timer (forward translation without backward rotation, RT). Comparison of task-specific control and dynamics during the takeoff phase of these two well-practiced goal-directed tasks provides a unique opportunity to determine how trunk and leg motion is coordinated when regulating angular impulse generation. During the take-off phase of the RS, we expected that the forward-directed GRF would serve as the primary means for increasing the magnitude of the relθ RGRF angle and the net backward angular impulse generated. In contrast, during the RT, we expected the trunk and leg motion would be coordinated so that the GRF would be nearly aligned with the CoM, thereby minimizing the magnitude of angular impulse generated during the take-off phase. The motion of the trunk was expected to be coordinated with extension of the lower extremity joints so that the magnitude of the GRF was not affected by the need to simultaneously control the position of the CoM relative to the feet. Methods Eight skilled performers (three females and five males, all national-level divers) between the ages of 20 to 25 years participated in this study. Their height (M ± SD) was 1.70 ± 0.06 m, and their mass was 62 ± 6 kg. All subjects provided informed consent in accordance with the institutional review board. Each participant performed a series of RT and RS take-offs from a force plate onto a landing mat (Figure 1). The participants initiated each task by facing away from the take-off surface as performed from the 10-m platform during competition. During the RS task, the participant jumped from the platform

3 Regulation of Angular Impulse 151 and performed a backward somersault during the flight phase (upward and forward translation and backward rotation toward the platform). During the take-off phase of the RS task, the participants were required to generate 1) sufficient net vertical impulse to provide a sufficient flight time, 2) adequate net forward horizontal impulse to horizontally displace the CoM away from the platform, and 3) satisfactory net backward angular impulse to complete the number of rotations (Miller et al., 1990; Miller, 2000). During the RT task, the participants jumped from the platform as if performing a RS, but without the intent of rotating about the somersault axis during flight. During the take-off phase of the RT task, the participants were required to generate both upward and forward linear impulse as in the RS yet generate near zero net angular impulse during the take-off phase. Segment motion during the performance of both tasks occurred predominantly in a sagittal plane. Multiple trials of each task were performed consecutively until three successful trials were collected. The order of tasks performed was randomized for each subject. Before data collection, the participants warmed up and practiced the experimental tasks until they were familiar with the experimental setup. Sagittal plane kinematics (200 fps; NAC Motion Analysis), GRF (0.6 m 0.9 m, 1,200 Hz; Kistler, Amherst, NY), and activation patterns of the lower extremity muscles (1 cm 1 cm, 1,200 Hz; Konigsberg, Pasadena, CA) were simultaneously collected during the take-off phase of each task. These three sets of data were synchronized at the time of plate departure. Thirteen body landmarks (vertex of the head, C7, shoulder, elbow, wrist, finger, iliac crest, greater trochanter, knee, lateral malleolus, heel, fifth metatarsal, and toe) of the side of the body closer to the camera were manually digitized (Peak Performance Inc., Centennial, CO). Sagittal plane coordinates of the body landmarks were individually filtered Figure 1 Body configuration during the take-off phase of the reverse somersault and reverse timer of an exemplar subject.

4 152 Mathiyakom, McNitt-Gray, and Wilcox with a fourth-order Butterworth filter with cut-off frequencies (5 20 Hz) based on a method described by Jackson (1979). Body segment parameters of an athletic population (de Leva, 1996; Zatsiorsky & Seluyanov, 1983, 1987) were used to calculate the total body and segment centers of mass. The angular position of the CoM and the hip joint relative to the CoP with respective the forward horizontal (θ R and θ Leg, respectively), the angle of trunk segment relative to the forward horizontal (θ Trunk ), and the angles of the lower extremity joints were calculated. The GRF characteristics during the take-off phase of each task at seven events and during three functional intervals (load, tip, and push) were defined (Figure 2). The magnitude and direction of the GRF and angular position of the body segments around the time of each event (±10 ms) were calculated. Linear and angular impulse generated about the mediolateral axis passing through the CoM was computed during the load, tip, and push intervals, and during the total take-off phase (Miller & Nelson, 1973). Activation (EMG) of lower extremity muscles (gluteus maximus, semitendinosus, rectus femoris, vastus lateralis, tibialis anterior, gastrocnemius, and soleus) acquired using surface electromyography were filtered using a fourth-order recursive Butterworth filter at Hz (zero phase lag). The magnitude of muscle activation was quantified using root mean squared (RMS) values (20 ms binned, de Luca, 1997). The RMS values were normalized to maximum values obtained during isometric manual muscle tests (Kendall et al., 1993) and averaged for each interval. Between-task differences in kinematic, kinetic, and muscle activation variables were compared using a within-subject design. Statistical analyses were performed using software written in S-PLUS Figure 2 A series of events and intervals within the take-off phase of the experimental tasks. The load interval is defined as the interval from initial increase of ground reaction force (initial position [IP]) to the time of first peak vertical ground reaction force (1 st PFv). The Tip interval is identified as the time from the peak to the local minimum vertical ground reaction force (LMFv). The Push interval lasts from the local minimum vertical ground reaction force to plate departure (PD). Note that 1 st BW and 2 nd BW indicated the time of vertical ground reaction force equals to the body weight prior to the 1 st PFv and PD, respectively. In addition, 2 nd PFv signified the time of second peak vertical ground reaction force.

5 Regulation of Angular Impulse 153 (Insightful Corporation) and described in special functions written for the software (Wilcox, 2003). Robust statistical methods were used to accommodate the small sample size and the inability to assume normality (e.g., asymmetrical distribution, heavy tails) associated with standard method of paired t test. Within-subject comparisons using bootstrap t method were used to test the null hypothesis of equal trimmed means between tasks. The null hypothesis was rejected at P Results No significant differences in vertical impulse during the take-off phase were observed between tasks (Figure 3). However, between-task differences in horizontal impulse were observed during the tip and push intervals. During the tip interval, the horizontal impulse was significantly greater for the RT as compared to the RS. During the push interval, the horizontal impulse was significantly greater for the RS than the RT. Between-task differences in horizontal impulse were greater during the push interval as compared to the tip interval. As a result, the net horizontal impulse generated during the take-off phase was significantly greater for the RS as compared to the RT (Figure 3). The between-task differences in timing of the horizontal impulse generation across take-off phase intervals suggested that horizontal impulse generation may be sensitive to the CoM trajectory and GRF requirements specific to each task. The net backward angular impulse generated during the take-off phase of the RS was significantly greater than that of the RT (Figure 3). During the load and tip intervals, no significant differences in net backward angular impulse were observed between tasks. During the push interval of the RS, 73 ± 10% of the total angular impulse was generated. In contrast, essentially no net angular impulse was generated during the RT. Between-task differences in net angular impulse were attributed to the significant differences in relθ RGRF during the push interval observed between tasks (Table 1). Larger relθ RGRF observed during the push interval of the RS coincided with significantly larger horizontal impulse generation during the push interval of the RS as compared to the RT (Table 1). Between-task differences in GRF direction during the push interval was the primary factor contributing to between-task differences in relθ RGRF (Table 1, Figure 4). For example, at the time of second peak vertical GRF, θ RGRF was more posterior during the RT (83.9 ± 2.1 ) as compared to that of the RS (78.8 ± 4.4 ). In contrast, θ R was not significantly different between tasks at the time of second peak vertical GRF (θ R = 82.6 ± 2.1 in RT; 85.8 ± 3.3 in RS). As a result, between-task differences in relθ RGRF were observed at the time of second peak vertical GRF (relθ RGRF = 1.4 ± 2.7 in RT; 7.0 ± 3.0 in RS). Similarly, between-task differences in relθ RGRF at the time of second body weight as a result of differences in θ GRF were also observed (Table 1). The relative angles between the GRF and the CoM position vectors were more sensitive to alterations in GRF direction than changes in CoM position vectors during the push interval. These results indicated that during the push interval of the RT, the resultant GRF was nearly aligned with the CoM position vector. In contrast, the resultant GRF passed anteriorly relative to the CoM during push interval of the RS. Consequently, a relatively small net angular impulse was generated during the push interval of the RT. In contrast, a net backward angular impulse was generated during the push interval of the RS (Figure 3). Between-task differences in trunk leg coordination were observed during the take-off phase (Table 1, Figure 5). During the load interval of the RS, the hip was positioned more posterior relative to the CoP than in the RT (θ Leg = 99.0 ± 8.3 in RT; ± 7.3 in RS, at the initial position). In contrast, the trunk angle was more vertical during the RT (61.2 ± 8.8 ) than during the RS (56.0 ± 8.1 ). During the tip interval, the leg segment as indicated by the line joining the CoP and CoM rotated forward, while the trunk rotated backward about the hip. However, when accounting for the mass and position of both segments, the opposition of the trunk and leg segments resulted in no between-task significant differences in CoM orientation. The rotations of the leg and trunk continued through the push interval of both tasks. At the time of plate departure, θ Trunk was more vertical during the RS (88.9 ± 7.7 ) as compared to that of the RT (69.4 ± 6.9 ). Between-task differences in trunk-leg configuration (Table 1, Figure 6) during the take-off phase were achieved by the differences in knee hip coordination (Table 2). During the load and tip intervals, significantly smaller hip angles were observed for

6 154 Mathiyakom, McNitt-Gray, and Wilcox Figure 3 Mean (SD) of normalized vertical (top), horizontal (middle), and angular (bottom) impulse generated during the load, tip, and push interval and the total take-off phase of the RT and RS. Asterisks indicated statistical significance (p < 0.05). the RS as compared to the RT. For example, at the time of first peak vertical GRF, the mean hip angle was significantly larger for the RT (81.4 ± 17.6 ) as compared to that of the RS (72.8 ± 14.4 ). However, the knee angles were not significantly different between tasks during the load and tip intervals (Table 2). There was no significant difference in rate of hip and knee flexion during these two intervals. During the push interval, the hip angles and rates of hip extension were significantly greater for the RS as compared to those of the RT (Table 2). For example, at the time of plate departure, the hip angle of the RT (163.3 ± 7.6 ) was significantly smaller than that of the RS (169.2 ± 11.2 ). Similarly,

7 Table 1 Mean (SD) of the ground reaction force magnitude (GRF) and direction (θ GRF ) and orientation of the total body center of mass and hip relative to the center of pressure (θ R, θ Leg ), trunk relative to the forward horizontal (θ Trunk ) around the time of each event (±10 ms) of the reverse timer (RT) and reverse somersault (RS). Significant between-task differences were noted (*p < 0.05). Interval: Load Tip Push Local Minimum Events: 1 st Peak Vertical Vertical Reaction 2 nd Peak Vertical Initial Position 1 st Body Weight Reaction Force Force Reaction Force 2 nd Body Weight Plate Departure Task: RT RS RT RS RT RS RT RS RT RS RT RS RT RS Time prior to plate departure (s) (0.06) (0.04) (0.05) (0.04) (0.05) (0.03) (0.04) (0.03) (0.03) (0.02) (0.01) (0.00) (0.00) (0.00) GRF (BW) Horizontal * 0.40* 0.12* 0.42* (0.09) (0.09) (0.13) (0.23) (0.10) (0.06) (0.10) (0.10) (0.07) (0.09) Vertical * 3.17* * 2.42* (0.12) (0.03) (0.49) (0.39) (0.41) (0.24) (0.20) (0.11) (0.04) (0.04) Resultant * 3.18* * 2.45* 1.04* 1.06* (0.12) (0.03) (0.49) (0.41) (0.39) (0.24) (0.20) (0.12) (0.04) (0.20) Orientation (degrees) θ GRF * 78.8* 82.8* 66.1* (5.0) (5.2) (2.2) (3.4) (3.8) (2.0) (2.1) (4.4) (4.3) (4.8) θ R * 85.0* (11.2) (14.4) (3.7) (2.7) (3.1) (3.1) (3.8) (2.2) (2.1) (3.3) (2.2) (3.2) (3.3) (5.6) relθ RGRF * 7.0* 0.5* 19.0* (5.4) (5.3) (2.4) (3.8) (4.4) (2.7) (2.7) (3.0) (4.7) (5.4) θ Trunk 61.2* 56.0* 51.9* 47.1* 43.0* 38.5* * 79.9* 69.4* 88.9* (8.8) (8.1) (8.6) (6.8) (9.7) (8.1) (10.2) (7.3) (8.0) (6.7) (7.3) (7.5) (6.9) (7.7) θ Leg 99.0* 105.6* 100.2* 105.1* 102.0* 107.3* 100.9* 106.5* 96.8* 103.4* (8.3) (7.3) (6.3) (5.7) (5.7) (7.1) (4.4) (5.8) (4.0) (6.1) (2.6) (3.4) (2.6) (3.7) 155

8 Figure 4 Regulation of the backward angular impulse during the take-off phase of the reverse somersault and reverse timer involves redirecting the ground reaction force relative to the center of mass (top). During the take-off phase of this exemplar subject, trunk segment primarily serves to position the total body center of mass. All subjects demonstrated similar pattern of trunk leg coordination. Figure 5 Ground reaction force (top) and its moment about the total body center of mass (bottom) during the take-off phase of the reverse timer (RT) and reverse somersault (RS) of an exemplar subject. 156

9 Regulation of Angular Impulse 157 Figure 6 Between-task differences in trunk leg coordination and ground reaction force of each event during the take-off phase of the reverse timer (RT) and reverse somersault (RS). The arrows indicated the resultant ground reaction force. the mean hip angular velocity of the RT (560.0 ± /s) was significantly smaller than the RS (625.2 ± 83.4 /s). In contrast, the knee angles and rates of knee extension were significantly greater for the RT as compared to the RS. For example, at the time of plate departure, the mean knee angle of the RT and RS was ± 4.5 and ± 6.1, respectively. Similarly, the knee angular velocity at plate departure was ± /s and ± /s for the RT and RS, respectively. Between-task differences in activation patterns of muscles crossing the hip joint (Figure 7) were consistent with between-task differences in hip and trunk motions (Table 1 and 2). During the push interval of RS, coactivation of the semitendinosus and gluteus maximus corresponded with higher rates and angles of hip extension and more backward trunk orientation. In contrast, coactivation of the rectus femoris and gluteus maximus corresponded with lower rates of hip extension, smaller hip angular positions, and more forward trunk orientations during the push interval of the RT. Between-task differences in activation of biarticular muscles emphasize the role of biarticular muscles in controlling hip and trunk, and CoM during goal-directed movements (Figure 7). Between-task differences in activation patterns of the biarticular muscles also corresponded with the between-task differences in lower extremity joint control. For example, coactivation of the rectus femoris and vastus lateralis corresponded with significantly greater angular position and rate of knee extension during the push interval of the RT. In contrast, coactivation of the semitendinosus and vastus lateralis resulted in significantly smaller angular position rates of knee extension during the push interval of the RS.

10 158 Mathiyakom, McNitt-Gray, and Wilcox Table 2 Mean (SD) of joint angles and joint angular velocities during the take-off phase of the reverse timer (RT) and reverse somersault (RS). Between-task differences were noted (*p < 0.05). Interval: Load Tip Push Events: Initial Position 1 st Body Weight 1 st Peak Vertical Reaction Force Local Minimum Vertical Reaction Force 2 nd Peak Vertical Reaction Force 2 nd Body Weight Plate Departure Task: RT RS RT RS RT RS RT RS RT RS RT RS RT RS Joint angle (deg) Hip 124.7* 115.4* 102.3* 95.3* 81.4* 72.8* * 101.6* * 169.2* (18.4) (16.7) (17.5) (16.5) (17.6) (14.4) (17.7) (12.9) (13.6) (10.6) (9.8) (12.8) (7.6) (11.2) Knee * 128.3* 169.1* 142.2* (16.6) (16.4) (11.7) (14.3) (10.7) (8.0) (12.0) (8.4) (10.5) (6.8) (7.2) (5.5) (4.5) (6.1) Joint angular velocity (deg/s) Hip * 692.4* 560.0* 625.2* (75.3) (58.5) (31.0) (31.0) (78.4) (69.4) (52.0) (63.1) (57.0) (75.9) (91.3) (68.2) (118.9) (83.4) Knee * 139.9* 818.7* 462.9* 753.4* 332.8* (47.2) (34.9) (38.3) (35.8) (54.2) (54.7) (61.4) (59.0) (89.7) (48.1) (109.8) (79.5) (123.1) (109.1) Discussion Multiple degrees of freedom of the musculoskeletal system provide the nervous system with an abundant set of solutions to execute goal-directed tasks (Bernstein, 1967). Constraints placed by the mechanical objectives (e.g., directions of the translation and rotation), environment (e.g., springboard, rigid platform), and individual s physical capabilities (e.g., muscle strength, range of motion) significantly affect the feasibility of solutions. Comparison of motor behaviors observed during well-practiced goal-directed tasks with different mechanical objectives enables us to better understand how the nervous system selectively modifies control to successfully execute goal-directed movements. In this study, the control of the relative orientation between the CoM and the GRF during the take-off phase of two forward translating tasks performed with and without backward-directed angular impulse was hypothesized to be mediated by trunk and leg coordination. We tested this hypothesis by comparing the GRF, CoM trajectory, and trunk leg coordination observed during the take-off phase of the RS and the RT as performed by skilled divers. Comparison of task-specific control and dynamics during the take-off phase of these two well-practiced goal-directed tasks indicates angular impulse generation is regulated by modifying coordination of the trunk and legs. During the take-off phase of the RS, a more forward directed GRF served as the primary means for increasing the magnitude of the backward angular impulse generated during the take-off phase. In contrast, trunk and leg motion was coordinated so that the GRF was nearly aligned with the CoM, thereby minimizing the magnitude of angular impulse generated during the take-off phase of the RT. The backward rotation of the trunk during rapid joint extension was timed so that the GRF required to perform the task was not affected by the need to simultaneously control the trajectory of the CoM. Between-task differences in activation patterns of the biarticular muscles during the push interval indicated that biarticular muscles may play a significant role in trunk leg coordination during goal-directed whole-body movements. Control of foot position relative to the CoM serves as a mechanism to redirect the GRF relative to the CoM as observed in humans, animals, and robots (Hodgins & Raibert, 1990; Hay, 1993; Seyfarth et al., 1999; Ridderikhoff et al., 1999; Roberts & Scales, 2002). For example, in tasks performed with momentum (e.g., running), anterior foot placement

11 Regulation of Angular Impulse 159 Figure 7 Muscle activation patterns of muscles crossing the hip and knee joints (gluteus maximus [Gmax], semimembranosus [SM], rectus femoris [RF], vastus lateris [VL]), horizontal and vertical ground reaction force during the take-off phase of the reverse timer and reverse somersault of an exemplar subject. Between-task differences in activation of the Gmax, SM, and RF were observed during the push interval (*p < 0.05). relative to the CoM is associated with a backward directed or braking GRF (Roberts & Scales, 2002). In tasks initiated without initial momentum, generation of a backward-directed GRF requires the CoM to move posterior to the feet prior to the joint extension phase (Miller et al., 1989). Likewise, generation of a forward-directed GRF as observed in this study requires the performers to position the CoM anterior to the feet prior to the push interval (Miller et al., 1990; Ridderikhoff et al., 1999). Based on the results of this study, modulation of trunk leg coordination during forward translating tasks is used to achieve phase- and task-specific control of the relθ RGRF angle. During the loading interval of both the RS and RT tasks, the trunk and leg motion is coordinated so that the CoM is aligned with the GRF. As the lower extremity joints flex, the forward trunk rotation about the hip is countered by a backward leg rotation about the CoP resulting in a small relθ RGRF (Crenna et al., 1987; Pedotti et al., 1989)

12 160 Mathiyakom, McNitt-Gray, and Wilcox and minimal angular impulse generation. During the tip interval of both tasks, the trunk and leg motion is coordinated so that the CoM moves anterior to the CoP, as observed in other jumping tasks requiring forward translation (Miller et al., 1990; Ridderikhoff et al., 1999). During the push interval of both the RS and RT, backward trunk rotation counteracts forward rotation of the leg and results in minimal changes in CoM position relative to the CoP (θ R ). In order to generate backward angular impulse during the RS, the direction of the resultant GRF is in a more forward direction than during the RT, resulting in a significantly larger relθ RGRF during the RS. In contrast to backward-translating backwardsomersaulting tasks (Hamill et al. 1985), backward angular impulse during forward-translating backward-somersaulting tasks is regulated by modifying GRF direction rather than CoM position relative the CoP. This is achieved by delaying horizontal impulse generation until the final push interval. Backward trunk rotation, associated with rapid hip extension, contributes to the forward directed component of the GRF thereby reorienting the GRF more anterior to the CoM. The results of this study also indicate that control of angular impulse generation using GRF redirection complements the flight phase safety requirements of the task. After plate departure of the RS, the body needs to translate anterior relative to the platform so that no body parts are at risk of making contact with the platform during flight phase (Miller et al., 1990). This performance objective is achieved by requiring that the forward-directed GRF be coordinated with trunk and leg motion so that sufficient CoM horizontal velocity is achieved at take-off and adequate horizontal translation of the body occurs during flight phase descent. Between-task differences in trunk leg coordination during the push interval are achieved by activating different sets of muscles attached to the pelvis and shank. During the push interval of the RS, control of the relθ RGRF angle is achieved by activating the hamstrings, gluteus maximus, and vasti with minimal activation of rectus femoris. Coactivation of the hamstrings and gluteus contributes to the hip extensor moment acting on the pelvis and thigh and results in a relatively larger rate of hip extension and trunk backward rotation during the push interval of the RS as compared to the RT. Simultaneously, coactivation of the hamstrings with the vasti slows down the rate of knee joint extension, which in turn enables the trunk to rapidly rotate about the hip. In contrast, during the push interval of the RT, control of the relθ RGRF angle is achieved by activating the rectus femoris, vasti, and gluteus maximus with minimum activation of the hamstrings. Coactivation of the rectus femoris and gluteus maximus limits backward trunk rotation and hip extension as observed in previous studies (Horak & Nasher, 1986; Runge et al., 1999, Bobbert & Van Ingen Schenau, 1988, Ridderikhoff et al., 1999; Jacob & Van Ingen Schenau, 1992). In addition, activation of the rectus femoris with the vasti contributes to the increase in the rate of knee extension (Van Ingen Schenau, 1992). Selective activation of the biarticular muscles has also been shown to control the direction of the GRF during both static and dynamics tasks with limited trunk motion (Wells & Evans, 1987; Van Ingen Schenau et al., 1992; Jacobs et al., 1996). Our results provide further evidence that biarticular muscles play a role in coordinating GRF direction in relation to the CoM. Acknowledgments The authors would like to thank U.S. divers and their coaches for their participation in this project; Doris Miller, for providing a significant body of work related to the biomechanics of diving; Janet Gabriel, Ron O Brien, Barry Munkasy, James Eagle, Kathleen E. Costa, and Laurie Held for their assistance with data collection; and Melissa McDonough and USC undergraduate students their assistance in data reduction. This project was supported in part by U.S. Diving, USOC, Intel, and NIA training Grant 5 T32 AG References Bernstein, N.A. (1967). The coodination and regulation of movements. Oxford: Pergamon Press. Bobbert, M.F., & Van Ingen Schenau, G. J. (1988). Coordination in vertical jumping. Journal of Biomechanics, 21, Crenna, P., Frigo, C., Massion, J., & Pedotti, A. (1987). Forward and backward axial synergies in man. Experimental Brain Research, 65, De Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov s segment inertia parameters. Journal of Biomechanics, 29, De Luca, C. (1997). The use of Surface Electromyography in Biomechanics. Journal of Applied Biomechanics, 13,

13 Regulation of Angular Impulse 161 Hamill, J., Golden, D., Ricard, M., & Williams, M. (1985). Dynamics of selected tower dive take-offs. In J. Terauds & E. Barham (Eds.), Biomechanics in sports II (pp ). Del Mar, CA: Academic Publishers. Hay, J.G. (1993). Citius, altius, longius (faster, higher, longer): The biomechanics of jumping for distance. Journal of Biomechanics, 26(Suppl. 1), Hodgins, J., & Raibert, M. (1990). Biped Gymnastics. The International Journal of Robotics Research, 9, Horak, F., & Nashner, L. (1986). Central programming of postural movements: adaptation to altered support-surface configurations. Journal of Neurophysiology, 55, Jackson, K.M. (1979). Fitting of mathematical functions to biomechanical data. IEEE Transactions in Biomedical Engineering, 26, Jacobs, R., & Van Ingen Schenau, G.J. (1992). Intermuscular coordination in a sprint push-off. Journal of Biomechanics, 25, Kendall, F.P., McCreary, E.K., & Porvance, P.G. (1993). Muscles Testing and Function. (4th ed.). Baltimore: Williams & Wilkins. Mathiyakom, W., McNitt-Gray, J.L., Requejo, P., & Costa, K. (2005). Modifying center of mass trajectory during sit-to-stand tasks redistributes the mechanical demand across the lower extremity joints. Clinical Biomechanics, 20, McNitt-Gray, J.L., Hester, D.M., Mathiyakom, W., & Munkasy, B.A. (2001). Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force. Journal of Biomechanics, 34, Miller, D., & Nelson, R. (1973). Biomechanics of sport. A research approach. Philadelphia: Lea & Febiger. Miller, D., Hennig, E, Pizzimenti, M., Jones, I., & Nelson, R. (1989). Kinetic and kinematic characteristics of 10-m platform performance of elite divers: I. Back takeoffs. International Journal of Sport Biomechanics, 5, Miller, D., Jones, I., Pizzimenti, M., Hennig, E., & Nelson, R. (1990). Kinetic and kinematic characteristics of 10-m platform performances of elite dives: II. Reverse takeoffs. International Journal of Sport Biomechanics, 6, Miller, D.I. (2000). Springboard and Platform Diving. In V.M. Zatsiorsky (Ed.), Biomechanics in sport: Performance enhancement and injury prevention (pp ). Osney Mead: Blackwell Science. Pedotti, A., Crenna, P., Deat, A., Frigo, C., & Massion, J. (1989). Postural synergies in axial movements: short and long-term adaptation. Experimental Brain Research, 74, Ridderikhoff, A., Batelaan, J.H., & Bobbert, M.F. (1999). Jumping for distance: control of the external force in squat jumps. Medicine and Science in Sports and Exercise, 31, Roberts, T.J., & Scales, J.A. (2002). Mechanical power output during running accelerations in wild turkeys. Journal of Experimental Biology, 205, Runge, C., Shupert, C., Horak, F., & Zajac, F. (1999). Ankle and hip postural strategies defined by joint torque. Gait Posture, 10, Schenkman, M., Riley, P.O., & Pieper, C. (1996). Sit to stand from progressively lower seat heights: Alterations in angular velocity. Clinical Biomechanics, 11, Seyfarth, A., Friedrich, A., Wank V., & Blickhan, R. (1999). Dynamics of the long jump. Journal of Biomechanics, 32, Van Ingen Schenau, G.J., Boots, P.J., de Groot, G., Snackers, R.J., & Van Woensel, W.W. (1992). The constrained control of force and position in multi-joint movements. Neuroscience, 46, Wells, R., & Evans, N. (1987). Functions and recruitment patterns of one- and two-joint muscles under isometric and walking conditions. Human Movement Science, 6, Wilcox, R.R. (2003). Applying Contemporary Statistical Methods. San Diego: Academic Press. Zatsiorsky, V.M., & Seluyanov, V. (1983). The mass and inertia characteristics of the main segments of the human body. In H. Matsui & K. Kobayashi (Eds.), Biomechanics VIII-B (pp ). Champaign, IL: Human Kinetics. Zatsiorsky, V., & Seluyanov, V. (1987). Estimation of the mass and inertia characteristics of human body by means of the best predictive regression equations. In D. Winter, R. Norman, R. Wells, K. Hayes, & A. Patla (Eds.), Biomechanics IX-B (pp ). Champaign, IL: Human Kinetics.

Supplementary Figure S1

Supplementary Figure S1 Supplementary Figure S1: Anterior and posterior views of the marker set used in the running gait trials. Forty-six markers were attached to the subject (15 markers on each leg, 4 markers on each arm, and

More information

+ t1 t2 moment-time curves

+ t1 t2 moment-time curves Part 6 - Angular Kinematics / Angular Impulse 1. While jumping over a hurdle, an athlete s hip angle was measured to be 2.41 radians. Within 0.15 seconds, the hurdler s hip angle changed to be 3.29 radians.

More information

GROUND REACTION FORCE DOMINANT VERSUS NON-DOMINANT SINGLE LEG STEP OFF

GROUND REACTION FORCE DOMINANT VERSUS NON-DOMINANT SINGLE LEG STEP OFF GROUND REACTION FORCE DOMINANT VERSUS NON-DOMINANT SINGLE LEG STEP OFF Sara Gharabaghli, Rebecca Krogstad, Sara Lynch, Sofia Saavedra, and Tamara Wright California State University, San Marcos, San Marcos,

More information

Mono- and Biarticular Muscle Activity During Jumping in Different Directions

Mono- and Biarticular Muscle Activity During Jumping in Different Directions Muscle Activity During Jumping 205 JOURNAL OF APPLIED BIOMECHANICS, 2003, 19, 205-222 2003 by Human Kinetics Publishers, Inc. Mono- and Biarticular Muscle Activity During Jumping in Different Directions

More information

INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING

INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING Joseph P. Hunter 1, Robert N. Marshall 1,, and Peter J. McNair 3 1 Department of Sport and Exercise Science, The University of Auckland, Auckland,

More information

An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system

An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system K. OBERG and H. LANSHAMMAR* Amputee Training and Research Unit, University Hospital, Fack,

More information

Kinematic Differences between Set- and Jump-Shot Motions in Basketball

Kinematic Differences between Set- and Jump-Shot Motions in Basketball Proceedings Kinematic Differences between Set- and Jump-Shot Motions in Basketball Hiroki Okubo 1, * and Mont Hubbard 2 1 Department of Advanced Robotics, Chiba Institute of Technology, 2-17-1 Tsudanuma,

More information

Positive running posture sums up the right technique for top speed

Positive running posture sums up the right technique for top speed Positive running, a model for high speed running Frans Bosch positive running posture sums up the right technique for top speed building blocks in running: Pelvic rotation for- and backward and hamstring

More information

Sample Solution for Problem 1.a

Sample Solution for Problem 1.a Sample Solution for Problem 1.a 1 Inverted Pendulum Model (IPM) 1.1 Equations of Motion and Ground Reaction Forces Figure 1: Scheme of the Inverted Pendulum Model (IPM). The equations of motion of this

More information

Gait. Kinesiology RHS 341 Lecture 12 Dr. Einas Al-Eisa

Gait. Kinesiology RHS 341 Lecture 12 Dr. Einas Al-Eisa Gait Kinesiology RHS 341 Lecture 12 Dr. Einas Al-Eisa Definitions Locomotion = the act of moving from one place to the other Gait = the manner of walking Definitions Walking = a smooth, highly coordinated,

More information

Does Ski Width Influence Muscle Action in an Elite Skier? A Case Study. Montana State University Movement Science Laboratory Bozeman, MT 59717

Does Ski Width Influence Muscle Action in an Elite Skier? A Case Study. Montana State University Movement Science Laboratory Bozeman, MT 59717 Does Ski Width Influence Muscle Action in an Elite Skier? A Case Study John G. Seifert 1, Heidi Nunnikhoven 1, Cory Snyder 1, Ronald Kipp 2 1 Montana State University Movement Science Laboratory Bozeman,

More information

Biomechanical Analysis of Body Movement During Skiing Over Bumps

Biomechanical Analysis of Body Movement During Skiing Over Bumps Biomechanical Analysis of Body Movement During Skiing Over Bumps Y. Ikegami, S. Sakurai, A. Okamoto l, H. Ikegami 2, Y. Andou J, H. Sodeyama 4 1) Nagoya University, Nagoya, Japan. 2) Nagoya Holy Spirit

More information

A Biomechanical Approach to Javelin. Blake Vajgrt. Concordia University. December 5 th, 2012

A Biomechanical Approach to Javelin. Blake Vajgrt. Concordia University. December 5 th, 2012 A Biomechanical Approach to Javelin Blake Vajgrt Concordia University December 5 th, 2012 The Biomechanical Approach to Javelin 2 The Biomechanical Approach to Javelin Javelin is one of the four throwing

More information

Biomechanics Sample Problems

Biomechanics Sample Problems Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

More information

Artifacts Due to Filtering Mismatch in Drop Landing Moment Data

Artifacts Due to Filtering Mismatch in Drop Landing Moment Data Camenga et al. UW-L Journal of Undergraduate Research XVI (213) Artifacts Due to Filtering Mismatch in Drop Landing Moment Data Elizabeth T. Camenga, Casey J. Rutten, Brendan D. Gould, Jillian T. Asmus,

More information

The Influence of Load Carrying Modes on Gait variables of Healthy Indian Women

The Influence of Load Carrying Modes on Gait variables of Healthy Indian Women The Influence of Load Carrying Modes on Gait variables of Healthy Indian Women *Guha Thakurta A, Iqbal R and De A National Institute of Industrial Engineering, Powai, Vihar Lake, Mumbai-400087, India,

More information

Twisting techniques used in freestyle aerial skiing

Twisting techniques used in freestyle aerial skiing Loughborough University Institutional Repository Twisting techniques used in freestyle aerial skiing This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation:

More information

Available online at Prediction of energy efficient pedal forces in cycling using musculoskeletal simulation models

Available online at  Prediction of energy efficient pedal forces in cycling using musculoskeletal simulation models Available online at www.sciencedirect.com Engineering 2 00 (2010) (2009) 3211 3215 000 000 Engineering www.elsevier.com/locate/procedia 8 th Conference of the International Sports Engineering Association

More information

A Pilot Study on Electromyographic Analysis of Single and Double Revolution Jumps in Figure Skating

A Pilot Study on Electromyographic Analysis of Single and Double Revolution Jumps in Figure Skating Journal of Exercise Science and Physiotherapy, Vol. 5, No. 1: 14-19, 2009 A Pilot Study on Electromyographic Analysis of Single and Double Revolution Jumps in Figure Skating Taylor¹, C. L. and Psycharakis²,

More information

A QUALITATIVE ANALYSIS OF THE HIGH RACQUET POSITION BACKHAND DRIVE OF AN ELITE RACQUETBALL PLAYER

A QUALITATIVE ANALYSIS OF THE HIGH RACQUET POSITION BACKHAND DRIVE OF AN ELITE RACQUETBALL PLAYER A QUALITATIVE ANALYSIS OF THE HIGH RACQUET POSITION BACKHAND DRIVE OF AN ELITE RACQUETBALL PLAYER John R. Stevenson Wayne P. Hollander Since 1950, when Joe Sobek put strings on his paddleball paddle, the

More information

COMPARISON STUDY BETWEEN THE EFFICIENY OF THE START TECHNIQUES IN THE ROMANIAN COMPETITIVE SWIMMING

COMPARISON STUDY BETWEEN THE EFFICIENY OF THE START TECHNIQUES IN THE ROMANIAN COMPETITIVE SWIMMING Bulletin of the Transilvania University of Braşov Series IX: Sciences of Human Kinetics Vol. 6 (55) No. 1 2013 COMPARISON STUDY BETWEEN THE EFFICIENY OF THE START TECHNIQUES IN THE ROMANIAN COMPETITIVE

More information

DIFFERENCE BETWEEN TAEKWONDO ROUNDHOUSE KICK EXECUTED BY THE FRONT AND BACK LEG - A BIOMECHANICAL STUDY

DIFFERENCE BETWEEN TAEKWONDO ROUNDHOUSE KICK EXECUTED BY THE FRONT AND BACK LEG - A BIOMECHANICAL STUDY 268 Isas 2000! Hong Kong DIFFERENCE BETWEEN TAEKWONDO ROUNDHOUSE KICK EXECUTED BY THE FRONT AND BACK LEG - A BIOMECHANICAL STUDY Pui-Wah Kong, Tze-Chung Luk and Youlian Hong The Chinese University of Hong

More information

Serve the only stroke in which the player has full control over its outcome. Bahamonde (2000) The higher the velocity, the smaller the margin of

Serve the only stroke in which the player has full control over its outcome. Bahamonde (2000) The higher the velocity, the smaller the margin of Lower Extremity Performance of Tennis Serve Reporter: Chin-Fu Hsu Adviser: Lin-Hwa Wang OUTLINE Introduction Kinetic Chain Serve Types Lower Extremity Movement Summary Future Work INTRODUCTION Serve the

More information

USA Track & Field Heptathlon Summit- November

USA Track & Field Heptathlon Summit- November USA Track & Field Heptathlon Summit- November 1994 1 I. Technical considerations in the sprint hurdles Practical Biomechanics For the 100m Hurdles By Gary Winckler University of Illinois A. General flow

More information

A COMPARISON OF SELECTED BIOMECHANICAL PARAMETERS OF FRONT ROW SPIKE BETWEEN SHORT SET AND HIGH SET BALL

A COMPARISON OF SELECTED BIOMECHANICAL PARAMETERS OF FRONT ROW SPIKE BETWEEN SHORT SET AND HIGH SET BALL A COMPARISON OF SELECTED BIOMECHANICAL PARAMETERS OF FRONT ROW SPIKE BETWEEN SHORT SET AND HIGH SET BALL PAPAN MONDAL a AND SUDARSAN BHOWMICK b,* a Assistant Professor, Department of Physical Education,

More information

The Kinematics of Forearm Passing in Low Skilled and High Skilled Volleyball Players

The Kinematics of Forearm Passing in Low Skilled and High Skilled Volleyball Players The Kinematics of Forearm Passing in Low Skilled and High Skilled Volleyball Players M. E. Ridgway' and N. Hamilton 2 I) Physical Education Department. Univc"ily of Tcxa,-Arlington. Arlington. Tcxa, USA

More information

Muscle force redistributes segmental power for body progression during walking

Muscle force redistributes segmental power for body progression during walking Gait and Posture 19 (2004) 194 205 Muscle force redistributes segmental power for body progression during walking R.R. Neptune a,b,, F.E. Zajac b,c,d, S.A. Kautz b,e,f,g a Department of Mechanical Engineering,

More information

TECHNICAL CONSIDERATIONS FOR THE 100M HURDLES

TECHNICAL CONSIDERATIONS FOR THE 100M HURDLES TECHNICAL CONSIDERATIONS FOR THE 100M HURDLES Thanks & Appreciation Vince Anderson, Texas A&M Andreas Behm, ALTIS Andy Eggerth, Kennesaw State University Erik Jenkins, University of Western Kentucky Glenn

More information

Effect of landing stiffness on joint kinetics and energetics in the lower extremity

Effect of landing stiffness on joint kinetics and energetics in the lower extremity 0195-9131/92/2401-0108$3.00/0 MEDICINE AND SCIENCE IN SPORTS AND EXERCISE Copyr~ght 0 1992 by the American College of Sports Medicine Vol. 24, No. 1 Printed In US A. Effect of landing stiffness on joint

More information

THE BACKSPIN BACKHAND DRIVE IN TENNIS TO BALLS OF VARYING HEIGHT. B. Elliott and M. Christmass

THE BACKSPIN BACKHAND DRIVE IN TENNIS TO BALLS OF VARYING HEIGHT. B. Elliott and M. Christmass THE BACKSPIN BACKHAND DRIVE IN TENNIS TO BALLS OF VARYING HEIGHT B. Elliott and M. Christmass The Department of Human Movement The University of Western Australia Nedlands, Australia INTRODUCfION Modem

More information

The EMG activity and mechanics of the running jump as a function of takeoff angle

The EMG activity and mechanics of the running jump as a function of takeoff angle Journal of Electromyography and Kinesiology 11 (2001) 365 372 www.elsevier.com/locate/jelekin The EMG activity and mechanics of the running jump as a function of takeoff angle W. Kakihana *, S. Suzuki

More information

Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF

Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF George Chen May 17, 2002 Stanford Neuromuscular Biomechanics Lab Group Muscle contribution

More information

ITF Coaches Education Programme Coaching High Performance Players Course Power and the Tennis Serve.

ITF Coaches Education Programme Coaching High Performance Players Course Power and the Tennis Serve. ITF Coaches Education Programme Coaching High Performance Players Course Power and the Tennis Serve. By Machar Reid & Miguel Crespo A Powerful Serve A Key Ingredient of Successful Tennis Performance Preparation

More information

BIOMECHANICAL MOVEMENT

BIOMECHANICAL MOVEMENT SECTION PART 5 5 CHAPTER 12 13 CHAPTER 12: Biomechanical movement Practice questions - text book pages 169-172 1) For which of the following is the athlete s centre of mass most likely to lie outside of

More information

by Michael Young Human Performance Consulting

by Michael Young Human Performance Consulting by Michael Young Human Performance Consulting The high performance division of USATF commissioned research to determine what variables were most critical to success in the shot put The objective of the

More information

Twisting techniques used by competitive divers

Twisting techniques used by competitive divers Loughborough University Institutional Repository Twisting techniques used by competitive divers This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation:

More information

Problem 5: Platform Diving

Problem 5: Platform Diving Problem 5: Platform Diving In the 22 World Cup Trials, Kyle Prandi set up a diving record with a back 3 ½ somersault pike from the 1 m board. He pushed off from the board at an angle of θ = 46 with an

More information

Biomechanics and Models of Locomotion

Biomechanics and Models of Locomotion Physics-Based Models for People Tracking: Biomechanics and Models of Locomotion Marcus Brubaker 1 Leonid Sigal 1,2 David J Fleet 1 1 University of Toronto 2 Disney Research, Pittsburgh Biomechanics Biomechanics

More information

Body conguration in multiple somersault high bar dismounts

Body conguration in multiple somersault high bar dismounts Loughborough University Institutional Repository Body conguration in multiple somersault high bar dismounts This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Transformation of nonfunctional spinal circuits into functional states after the loss of brain input

Transformation of nonfunctional spinal circuits into functional states after the loss of brain input Transformation of nonfunctional spinal circuits into functional states after the loss of brain input G. Courtine, Y. P. Gerasimenko, R. van den Brand, A. Yew, P. Musienko, H. Zhong, B. Song, Y. Ao, R.

More information

Inertial compensation for belt acceleration in an instrumented treadmill

Inertial compensation for belt acceleration in an instrumented treadmill Inertial compensation for belt acceleration in an instrumented treadmill Sandra K. Hnat, Antonie J. van den Bogert Department of Mechanical Engineering, Cleveland State University Cleveland, OH 44115,

More information

Comparison of Kinematics and Kinetics During Drop and Drop Jump Performance

Comparison of Kinematics and Kinetics During Drop and Drop Jump Performance schouweiler, hess UW-L Journal of Undergraduate Research XIII (21) Comparison of Kinematics and Kinetics During Drop and Drop Jump Performance Ryan Schouweiler, Karina Hess Faculty Sponsor: Thomas Kernozek,

More information

Modelling the stance leg in 2D analyses of sprinting: inclusion of the MTP joint affects joint

Modelling the stance leg in 2D analyses of sprinting: inclusion of the MTP joint affects joint 1 Technical Note 2 3 4 5 Title: Modelling the stance leg in 2D analyses of sprinting: inclusion of the MTP joint affects joint kinetics (corrected version) 6 7 8 9 10 11 Authors: Neil E. Bezodis a,b, Aki

More information

Biomechanics and the Rules of Race Walking. Brian Hanley

Biomechanics and the Rules of Race Walking. Brian Hanley Biomechanics and the Rules of Race Walking Brian Hanley Biomechanics and the Rules of Race Walking Brian Hanley b.hanley@leedsmet.ac.uk www.evaa.ch The rules and judging Judging is probably the most contentious

More information

Investigation of Bio-Kinematic Elements of Three Point Shoot in Basketball

Investigation of Bio-Kinematic Elements of Three Point Shoot in Basketball International Journal of Sports Science 2017, 7(4): 163-169 DOI: 10.5923/j.sports.20170704.02 Investigation of Bio-Kinematic Elements of Three Point Shoot in Basketball Ikram Hussain, Fuzail Ahmad *, Nidhi

More information

Rules of Hurdling. Distance Between Hurdles

Rules of Hurdling. Distance Between Hurdles The Hurdle Events Introduction Brief discussion of rules, safety practices, and talent demands for the hurdles. Examine technical and training considerations for the hurdle events. 100 Meter Hurdles for

More information

Coaching the Hurdles

Coaching the Hurdles Coaching the Hurdles Monica Gary, Sprints & Hurdles Coach Purdue University Important components to consider in hurdle training: a. Rhythm for the hurdler is the primary concern for the coach -short rhythm

More information

Mutual and asynchronous anticipation and action in sports as globally competitive

Mutual and asynchronous anticipation and action in sports as globally competitive 1 Supplementary Materials Mutual and asynchronous anticipation and action in sports as globally competitive and locally coordinative dynamics Keisuke Fujii, Tadao Isaka, Motoki Kouzaki and Yuji Yamamoto.

More information

Biomechanical Analysis of a Sprint Start. Anna Reponen JD Welch

Biomechanical Analysis of a Sprint Start. Anna Reponen JD Welch Biomechanical Analysis of a Sprint Start Anna Reponen JD Welch Introduction Our presentation will cover the Key Elements of our project. They will be presented along with the methods, results and discussion

More information

This article has been downloaded from JPES Journal of Physical Education an Sport Vol 24, no 3, September, 2009 e ISSN: p ISSN:

This article has been downloaded from JPES Journal of Physical Education an Sport Vol 24, no 3, September, 2009 e ISSN: p ISSN: C I T I U S A L T I U S F O R T I U S - J O U R N A L O F P H Y S I C A L E D U C A T I O N A N D S P O R T This article has been downloaded from JPES ORIGINAL RESEARCH INTRODUCTION Shooting is the principal

More information

Humanoid Robots and biped locomotion. Contact: Egidio Falotico

Humanoid Robots and biped locomotion. Contact: Egidio Falotico Humanoid Robots and biped locomotion Contact: Egidio Falotico e.falotico@sssup.it Outline What is a Humanoid? Why Develop Humanoids? Challenges in Humanoid robotics Active vs Passive Locomotion Active

More information

MOVEMENT QUALITY OF MARTIAL ART OUTSIDE KICKS. Manfred Vieten and Hartmut Riehle University of Konstanz, Konstanz, Germany

MOVEMENT QUALITY OF MARTIAL ART OUTSIDE KICKS. Manfred Vieten and Hartmut Riehle University of Konstanz, Konstanz, Germany 856 ISBS 2005 / Beijing, China MOVEMENT QUALITY OF MARTIAL ART OUTSIDE KICKS Manfred Vieten and Hartmut Riehle University of Konstanz, Konstanz, Germany KEY WORDS: martial arts, simulation, muscle energy,

More information

Ball impact dynamics of knuckling shot in soccer

Ball impact dynamics of knuckling shot in soccer Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 200 205 9 th Conference of the International Sports Engineering Association (ISEA) Ball impact dynamics of knuckling shot in soccer

More information

THE DEVELOPMENT OF SPEED:

THE DEVELOPMENT OF SPEED: THE DEVELOPMENT OF SPEED: BEFORE YOU HOP ON THAT TREADMILL.. By Jason Shea, M.S., C.S.C.S, PES Doing a quick internet search for treadmill manufacturers, one can see what a lucrative business it is to

More information

Kinematic, Kinetic & Electromyographic Characteristics of the Sprinting Stride of Top Female Sprinters

Kinematic, Kinetic & Electromyographic Characteristics of the Sprinting Stride of Top Female Sprinters Kinematic, Kinetic & Electromyographic Characteristics of the Sprinting Stride of Top Female Sprinters Milan Coh, Ales Dolenec & Bojan Jost University of Ljubljana, Slovenia The main purpose of this study

More information

University of Kassel Swim Start Research

University of Kassel Swim Start Research University of Kassel Swim Start Research Sebastian Fischer & Armin Kibele Institute for Sports and Sport Science, University of Kassel, Germany Research Fields: Swim Start research I. Materials and Equipment

More information

Analysis of Skip Motion as a Recovery Strategy after an Induced Trip

Analysis of Skip Motion as a Recovery Strategy after an Induced Trip 2015 IEEE International Conference on Systems, Man, and Cybernetics Analysis of Skip Motion as a Recovery Strategy after an Induced Trip Kento Mitsuoka, Yasuhiro Akiyama, Yoji Yamada, and Shogo Okamoto

More information

Dynamics of the In-Run in Ski Jumping: A Simulation Study

Dynamics of the In-Run in Ski Jumping: A Simulation Study JOURNAL OF APPLIED BIOMECHANICS, 2005, 21, 247-259 2005 Human Kinetics, Inc. Dynamics of the In-Run in Ski Jumping: A Simulation Study Gertjan J.C. Ettema 1, Steinar Bråten 1, and Maarten F. Bobbert 2

More information

Biomechanical Analysis of Race Walking Compared to Normal Walking and Running Gait

Biomechanical Analysis of Race Walking Compared to Normal Walking and Running Gait University of Kentucky UKnowledge Theses and Dissertations--Kinesiology and Health Promotion Kinesiology and Health Promotion 2015 Biomechanical Analysis of Race Walking Compared to Normal Walking and

More information

COMPARISON OF BIOMECHANICAL DATA OF A SPRINT CYCLIST IN THE VELODROME AND IN THE LABORATORY

COMPARISON OF BIOMECHANICAL DATA OF A SPRINT CYCLIST IN THE VELODROME AND IN THE LABORATORY COMPARISON OF BIOMECHANICAL DATA OF A SPRINT CYCLIST IN THE VELODROME AND IN THE LABORATORY Louise Burnie 1,2, Paul Barratt 3, Keith Davids 1, Paul Worsfold 2,4, Jon Wheat 1 Centre for Sports Engineering

More information

Characteristics of Triple and Quadruple Toe-Loops Performed during The Salt Lake City 2002 Winter Olympics

Characteristics of Triple and Quadruple Toe-Loops Performed during The Salt Lake City 2002 Winter Olympics Characteristics of Triple and Quadruple Toe-Loops Performed during The Salt Lake City 2002 Winter Olympics DEBORAH KING, 1 SARAH SMITH, 2 BRIAN HIGGINSON, 3 BARRY MUNCASY 4 and GARY SCHEIRMAN 5 ABSTRACT

More information

TEMPORAL ANALYSIS OF THE JAVELIN THROW

TEMPORAL ANALYSIS OF THE JAVELIN THROW TEMPORAL ANALYSIS OF THE JAVELIN THROW Derek M. Helenbergerl, Michael T. Sanders 2, and Lawrence D. Abraha~n',~ Biomedical Engineering, Intercollegiate Athletics for Men, Kinesiology & Health Education

More information

Define terms and compute basic physics problems related to sprinting

Define terms and compute basic physics problems related to sprinting LINEAR SPEED AN INTRODUCTION TO ACCELERATION LEARNING OBJECTIVES Define terms and compute basic physics problems related to sprinting Identify and explain how specific kinematic and kinetic elements relate

More information

THE INITIAL STAGE THE FINAL STAGE

THE INITIAL STAGE THE FINAL STAGE THE JAVELIN RUN-UP By Hans Torim A detailed description of the author s views on the javelin run-up from the initial stages to the impulse stride and the pre-delivery position. The article is a slightly

More information

Human hoppers compensate for simultaneous changes in surface compression and damping

Human hoppers compensate for simultaneous changes in surface compression and damping Journal of Biomechanics 39 (2006) 1030 1038 www.elsevier.com/locate/jbiomech www.jbiomech.com Human hoppers compensate for simultaneous changes in surface compression and damping Chet T. Moritz a,b,, Claire

More information

AEROBIC GYMNASTICS Code of Points APPENDIX II Guide to Judging Execution and Difficulty

AEROBIC GYMNASTICS Code of Points APPENDIX II Guide to Judging Execution and Difficulty FÉDÉRATION INTERNATIONALE DE GYMNASTIQUE FONDÉE EN 1881 AEROBIC GYMNASTICS Code of Points 2009 2012 DRAFT OCTOBER 2008 APPENDIX II Guide to Judging Execution and Difficulty Page 1 of 80 INTRODUCTION This

More information

Characteristics of ball impact on curve shot in soccer

Characteristics of ball impact on curve shot in soccer Available online at www.sciencedirect.com Procedia Engineering 60 (2013 ) 249 254 6 th Asia-Pacific Congress on Sports Technology (APCST) Characteristics of ball impact on curve shot in soccer Sungchan

More information

RUNNING SHOE STIFFNESS: THE EFFECT ON WALKING GAIT

RUNNING SHOE STIFFNESS: THE EFFECT ON WALKING GAIT RUNNING SHOE STIFFNESS: THE EFFECT ON WALKING GAIT Stephen N Stanley, Peter J M c Nair, Angela G Walker, & Robert N Marshall Auckland Institute of Technology, Auckland, New Zealand University of Auckland,

More information

Gait analysis for the development of the biped robot foot structure

Gait analysis for the development of the biped robot foot structure Preprints of the 9th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 4-9, 4 Gait analysis for the development of the biped robot foot structure Yusuke OGAWA

More information

Athlete Profiling. Injury Prevention

Athlete Profiling. Injury Prevention Athlete Profiling Injury Prevention Fraser McKinney Physiotherapist Special interest in: Basketball Athletics Race Walking Research Performance markers (screening / HR assessments / biomechanics) Athlete

More information

Coaching the Triple Jump Boo Schexnayder

Coaching the Triple Jump Boo Schexnayder I. Understanding the Event A. The Run and Its Purpose B. Hip Undulation and the Phases C. Making the Connection II. III. IV. The Approach Run A. Phases B. Technical Features 1. Posture 2. Progressive Body

More information

Development of an end-effector to simulate the foot to ball interaction of an instep kick in soccer

Development of an end-effector to simulate the foot to ball interaction of an instep kick in soccer Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 284 289 9 th Conference of the International Sports Engineering Association (ISEA) Development of an end-effector to simulate the

More information

Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees

Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees Supplementary Materials Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees Roberto E. Quesada, Joshua M. Caputo,, and Steven H.

More information

Mathematical model to crouch start in athletics

Mathematical model to crouch start in athletics Mathematical model to crouch start in athletics 1 Amr Soliman Mohamed, 1 Lecture in Department of kinesiology faculty of physical education - Minia University, Egypt 1. Introduction Science is the cause

More information

Dynamic Warm up. the age of the athlete current physical condition and prior exercise experience

Dynamic Warm up. the age of the athlete current physical condition and prior exercise experience Dynamic Warm up 10-20 minutes May be dependent on: the age of the athlete current physical condition and prior exercise experience Prepares the body for the demands of a work out or practice Increases

More information

THREE DIMENSIONAL KINEMATICS OF THE DIRECT FREE KICK IN SOCCER WHEN OPPOSED BY A DEFENSIVE WALL

THREE DIMENSIONAL KINEMATICS OF THE DIRECT FREE KICK IN SOCCER WHEN OPPOSED BY A DEFENSIVE WALL THREE DMENSONAL KNEMATCS OF THE DRECT FREE KCK N SOCCER WHEN OPPOSED BY A DEFENSVE WALL E. W. Brown l, D. J. Wilson l, B. R. Mason l, J. Baker lyouth Sports nstitute Michigan State University East Lansing,

More information

The Mechanics of Modern BREASTSTROKE Swimming Dr Ralph Richards

The Mechanics of Modern BREASTSTROKE Swimming Dr Ralph Richards The Mechanics of Modern BREASTSTROKE Swimming Dr Ralph Richards Breaststroke is the least efficient of the four competition strokes because a large amount of water resistance is created due to body position

More information

video Purpose Pathological Gait Objectives: Primary, Secondary and Compensatory Gait Deviations in CP AACPDM IC #3 1

video Purpose Pathological Gait Objectives: Primary, Secondary and Compensatory Gait Deviations in CP AACPDM IC #3 1 s in CP Disclosure Information AACPDM 71st Annual Meeting September 13-16, 2017 Speaker Names: Sylvia Ounpuu, MSc and Kristan Pierz, MD Differentiating Between, Secondary and Compensatory Mechanisms in

More information

Joint Torque Evaluation of Lower Limbs in Bicycle Pedaling

Joint Torque Evaluation of Lower Limbs in Bicycle Pedaling 11th conference of the International Sports Engineering Association, ISEA 216 Delft University of Technology; July 12 th Joint Torque Evaluation of Lower Limbs in Bicycle Pedaling Hiroki Yamazaki Akihiro

More information

APPLICATION OF THREE DIMENSIONAL ACCELEROMETRY TO HUMAN MOTION ANALYSIS

APPLICATION OF THREE DIMENSIONAL ACCELEROMETRY TO HUMAN MOTION ANALYSIS APPLICATION OF THREE DIMENSIONAL ACCELEROMETRY TO HUMAN MOTION ANALYSIS INTRODUCTION Ken'ichi Egawa, T. Tsuboi, T. Satoh, and M. Miyazaki Graduate School of Human Sciences, Waseda University Three dimensional

More information

KINEMATIC PARAMETERS OF BASKETBALL JUMP SHOTS PROJECTED FROM VARYING DISTANCES. M. N. Satern. Kansas State University Manhattan, Kansas, USA

KINEMATIC PARAMETERS OF BASKETBALL JUMP SHOTS PROJECTED FROM VARYING DISTANCES. M. N. Satern. Kansas State University Manhattan, Kansas, USA 313 KINEMATIC PARAMETERS OF BASKETBALL JUMP SHOTS PROJECTED FROM VARYING DISTANCES M. N. Satern Kansas State University Manhattan, Kansas, USA INTRODUCTION The ability to score points is critical to a

More information

Toward a Human-like Biped Robot with Compliant Legs

Toward a Human-like Biped Robot with Compliant Legs Book Title Book Editors IOS Press, 2003 1 Toward a Human-like Biped Robot with Compliant Legs Fumiya Iida a,b,1, Yohei Minekawa a Juergen Rummel a and Andre Seyfarth a a Locomotion Laboratory, University

More information

Outline. Newton's laws of motion What is speed? The technical and physical demands of speed Speed training parameters Rugby specific speed training

Outline. Newton's laws of motion What is speed? The technical and physical demands of speed Speed training parameters Rugby specific speed training Linear speed Outline Newton's laws of motion What is speed? The technical and physical demands of speed Speed training parameters Rugby specific speed training Outline Session structure Teaching guidelines

More information

The Starting Point. Prosthetic Alignment in the Transtibial Amputee. Outline. COM Motion in the Coronal Plane

The Starting Point. Prosthetic Alignment in the Transtibial Amputee. Outline. COM Motion in the Coronal Plane Prosthetic Alignment in the Transtibial Amputee The Starting Point David C. Morgenroth, MD, Department of Rehabilitation Medicine University of Washington VAPSHCS Outline COM Motion in the Coronal Plane

More information

Motion Analysis on Backward Walking: Kinetics, Kinematics, and Electromyography

Motion Analysis on Backward Walking: Kinetics, Kinematics, and Electromyography Motion Analysis on Backward Walking: Kinetics, Kinematics, and Electromyography Min Hyeon Lee The Graduate School Yonsei University Department of Biomedical Engineering Motion Analysis on Backward Walking:

More information

Potential for non-contact ACL injury between step-close-jump and hop-jump tasks

Potential for non-contact ACL injury between step-close-jump and hop-jump tasks Journal of Sports Science and Medicine (2010) 9, 134-139 http://www.jssm.org Research article Potential for non-contact ACL injury between step-close-jump and hop-jump tasks Li-I Wang 1, Chin-Yi Gu 1,

More information

AN EXPERIMENTAL INVESTIGATION ON GOLF SHOE DESIGN USING FOOT- PRESSURE DISTRIBUTION DURING THE GOLF SWING

AN EXPERIMENTAL INVESTIGATION ON GOLF SHOE DESIGN USING FOOT- PRESSURE DISTRIBUTION DURING THE GOLF SWING Proceedings of the 4 th BSME-ASME International Conference on Thermal Engineering 27-29 December, 2008, Dhaka, Bangladesh AN EXPERIMENTAL INVESTIGATION ON GOLF SHOE DESIGN USING FOOT- PRESSURE DISTRIBUTION

More information

Body Stabilization of PDW toward Humanoid Walking

Body Stabilization of PDW toward Humanoid Walking Body Stabilization of PDW toward Humanoid Walking Masaki Haruna, Masaki Ogino, Koh Hosoda, Minoru Asada Dept. of Adaptive Machine Systems, Osaka University, Suita, Osaka, 565-0871, Japan ABSTRACT Passive

More information

Qualitative Analysis of Jumping Standing Long Jump Goals Note: Standing Long Jump

Qualitative Analysis of Jumping Standing Long Jump Goals Note: Standing Long Jump Qualitative Analysis of Jumping Standing Long Jump *Any time a person or object is launched into the air Ex- jumping, diving, gymnastics, throwing, or striking Goals: 1. Distance Ex: standing long jump,

More information

*Author for Correspondence

*Author for Correspondence COMPARISON OF SELECTED KINEMATIC PARAMETERS OF THE BALL MOVEMENT AT FREE THROW AND JUMP SHOT OF BASKETBALL ADULT PLAYERS *Mahdi Arab Khazaeli 1, Heydar Sadeghi 1, Alireza Rahimi 2 And Masoud Mirmoezzi

More information

Ground Reaction Forces and Lower Extremity Kinematics When Running With Suppressed Arm Swing

Ground Reaction Forces and Lower Extremity Kinematics When Running With Suppressed Arm Swing Ground Reaction Forces and Lower Extremity Kinematics When Running With Suppressed Arm Swing Ross H. Miller 1 e-mail: rhmiller@kin.umass.edu Graham E. Caldwell Richard E. A. Van Emmerik Brian R. Umberger

More information

Effects of Ankle Stiffness on Gait Selection of Dynamic Bipedal Walking with Flat Feet

Effects of Ankle Stiffness on Gait Selection of Dynamic Bipedal Walking with Flat Feet 2 IEEE International Conference on Rehabilitation Robotics Rehab Week Zurich, ETH Zurich Science City, Switzerland, June 29 - July, 2 Effects of Ankle Stiffness on Gait Selection of Dynamic Bipedal Walking

More information

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

Available online at  ScienceDirect. Procedia Engineering 112 (2015 ) Available online at www.sciencedirect.com ciencedirect Procedia ngineering 112 (2015 ) 443 448 7th Asia-Pacific Congress on ports Technology, APCT 2015 Kinematics of arm joint motions in basketball shooting

More information

ITF Coaches Education Programme Biomechanics of the forehand stroke

ITF Coaches Education Programme Biomechanics of the forehand stroke ITF Coaches Education Programme Biomechanics of the forehand stroke Original article: Bahamonde, R. (2001). ITF CSSR, 24, 6-8 Introduction The tennis forehand stroke has changed drastically over the last

More information

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion Problems: 1. Once you have recorded the calibration frame for a data collection, why is it important to make sure the camera does not shut off? hat happens if the camera automatically shuts off after being

More information

Evaluation of Standing Stability and Reaching Postures on a Stepladder for Occupational Fall Prevention

Evaluation of Standing Stability and Reaching Postures on a Stepladder for Occupational Fall Prevention Evaluation of Standing Stability and Reaching Postures on a Stepladder for Occupational Fall Prevention Atsushi Sugama National Institute of Occupational Safety and Health, Japan (JNIOSH), Tokyo, Japan

More information

La Gait Analysis grandezze dinamiche e casi clinici. Manuela Galli, DEIB, POLITECNICO DI MILANO

La Gait Analysis grandezze dinamiche e casi clinici. Manuela Galli, DEIB, POLITECNICO DI MILANO La Gait Analysis grandezze dinamiche e casi clinici. Manuela Galli, DEIB, POLITECNICO DI MILANO Programma 3. La valutazione del cammino Gait analysis 3.1. Obiettivi della valutazione quantitativa del cammino

More information

Posture influences ground reaction force: implications for crouch gait

Posture influences ground reaction force: implications for crouch gait University of Tennessee, Knoxville From the SelectedWorks of Jeffrey A. Reinbolt July 14, 2010 Posture influences ground reaction force: implications for crouch gait H. X. Hoang Jeffrey A. Reinbolt, University

More information

110m Hurdle Theory and Technique

110m Hurdle Theory and Technique 110m Hurdle Theory and Technique Ralph Lindeman Head Track Coach, U.S. Air Force Academy Men's Hurdle Development Chairman, USATF WANTED: Highly motivated sprinters to attempt one of track & field's most

More information

The Effect of Military Load Carriage on Ground Reaction Forces. Technical Note. Stewart A Birrell 1 Robin H Hooper 1 Roger A Haslam 1

The Effect of Military Load Carriage on Ground Reaction Forces. Technical Note. Stewart A Birrell 1 Robin H Hooper 1 Roger A Haslam 1 The Effect of Military Load Carriage on Ground Reaction Forces Technical Note Stewart A Birrell 1 Robin H Hooper 1 Roger A Haslam 1 1 Department of Human Sciences, Loughborough University, Leicestershire,

More information