Intraseasonal Variability of the Low-Level Jet Stream of the Asian Summer Monsoon

Size: px
Start display at page:

Download "Intraseasonal Variability of the Low-Level Jet Stream of the Asian Summer Monsoon"

Transcription

1 1APRIL 2004 JOSEPH AND SIJIKUMAR 1449 Intraseasonal Variability of the Low-Level Jet Stream of the Asian Summer Monsoon P. V. JOSEPH AND S. SIJIKUMAR Department of Atmospheric Sciences, Cochin University of Science and Technology, Kochi, India (Manuscript received 19 February 2003, in final form 16 August 2003) ABSTRACT The strong cross-equatorial low level jet stream (LLJ) with its core around 850 hpa of the Asian summer monsoon (June September) is found to have large intraseasonal variability. During the monsoon onset over Kerala, India, and during break monsoon periods, when the convective heating of the atmosphere is over the low latitudes of the Indian Ocean, the axis of the LLJ is oriented southeastward over the eastern Arabian Sea and it flows east between Sri Lanka and the equator and there is no LLJ through peninsular India. This affects the transport of moisture produced over the Indian Ocean to peninsular India and the Bay of Bengal. In contrast, during active monsoon periods when there is an east west band of strong convective heating in the latitudes N from about longitude 70 to about 120 E, the LLJ axis passes from the central Arabian Sea eastward through peninsular India and it provides moisture for the increased convection in the Bay of Bengal and for the monsoon depressions forming there. The LLJ does not show splitting into two branches over the Arabian Sea. Splitting of the jet was first suggested by Findlater and has since found wide acceptance as seen from the literature. Findlater s findings were based on analysis of monthly mean winds. Such an analysis is likely to show the LLJ of active and break monsoons as occurring simultaneously, suggesting a split. Strengths of the convective heat source (OLR) over the Bay of Bengal and the strength of the LLJ (zonal component of wind) at 850 hpa over peninsular India and also the Bay of Bengal between latitudes 10 and 20 N have the highest linear correlation coefficient at a lag of 2 3 days, with OLR leading. The LLJ crossing the equator close to the coast of East Africa will pass through India only if there is active monsoon convection in the latitude belt N over south Asia. The position in latitude of the LLJ axis between longitudes 70 and 100 E is decided by the south north movement of the east west convective cloud band of the monsoon in its day oscillation. When there is little convection over south Asia in the latitude belt N, the LLJ crossing the equator curves clockwise over the Arabian Sea under conservation of potential vorticity and bypassing India passes east close to the equator. It is speculated that the cyclonic vorticity associated with this low-latitude LLJ causes convergence in the boundary layer and consequent upward motion in the atmosphere resulting in the formation of a convective cloud band there that later moves into the Bay of Bengal as part of the monsoon s day oscillation. Since LLJ is very important in monsoon dynamics, monsoon modelers should take adequate care to see that LLJ and the associated deep convection and their intraseasonal variability are properly simulated in their models. 1. Introduction A strong cross-equatorial low level jet stream (LLJ) with a core around 850 hpa exists over the Indian Ocean and south Asia during the boreal summer monsoon season June September. Bunker (1965) using aircraft observations of wind over the Arabian Sea during the International Indian Ocean Expedition (IIOE) traced an LLJ with large vertical wind shears off Somalia and across the central parts of the Arabian Sea. He showed that monsoon winds attained a speed of 50 kt in the southwestern parts of the Arabian Sea at the top of a 1000-m layer of air cooled by contact with the upwelled water off the Somali Arabia coasts. Analyzing the wind Corresponding author address: Dr. P. V. Joseph, Department of Atmospheric Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi , India. porathur@md4.vsnl.net.in data of 5 yr collected by the radiosonde/radio wind network of India, Joseph and Raman (1966) established the existence of a westerly low-level jet stream over peninsular India with strong vertical and horizontal wind shears. This LLJ is seen over peninsular India on many days in the typical monsoon month of July with a core at about 1.5 km above mean sea level and core wind speeds of the order of kt. Findlater (1969a,b) found that the Asian summer monsoon LLJ has its origin in the trade wind easterlies of the south Indian Ocean, it crosses the equator in a narrow longitudinal belt close to the East African coast as a southerly current with speeds at times even as high as 100 kt, turns into a westerly current over the Arabian Sea, and passes through India. This jet according to their computations accounts for nearly half the interhemispheric transport of air in the lower troposphere around the globe. Findlater s LLJ is a combination of the LLJs found by Bunker (1965) and Joseph and Raman (1966) 2004 American Meteorological Society

2 1450 JOURNAL OF CLIMATE VOLUME 17 FIG. 1. Wind field at 1 km for Aug over the Indian Ocean from Findlater (1971). Thick lines marked are the LLJ axes. Isotachs in m s 1 are shown as broken lines. and the LLJ crossing the equator off the East African coast discovered by him (Findlater 1966, 1967). Using monthly mean winds Findlater (1971) showed that the LLJ splits into two branches over the Arabian Sea, one branch passing southeastward toward Sri Lanka and the other eastward through peninsular India. Please see Fig. 1 taken from their paper, which shows the suggested splitting of the LLJ. We have examined whether the LLJ is really splitting over the Arabian Sea, using the daily National Centers for Environmental Prediction National Center for Atmospheric Research (NCEP NCAR) wind data. Using a one-level primitive equation model with a detailed bottom topography and a 1 latitude grid size, Krishnamurti et al. (1976) showed that many of the observed features of the cross-equatorial LLJ can be numerically simulated by including 1) the East African and Madagascar mountains, 2) the beta effect, and 3) a lateral forcing at 75 E due to land ocean contrast heating in the meridional direction, essentially following Murakami et al. (1970). They simulated an intense LLJ off the Somali coast. The split in the jet over the Arabian Sea was attributed to barotropic instability. The effect of a baroclinic boundary layer on the LLJ was investigated by Krishnamurti and Wong (1979) and Krishnamurti et al. (1983). A time-dependent primitive equation model with specified zonal flow, mountains and diabatic heating was used to study the LLJ by Hoskins and Rodwell (1995) and Rodwell and Hoskins (1995). The East African highlands and a land sea contrast in surface friction are shown to be essential for the concentration of the crossequatorial low-level flow into a LLJ. They found that surface friction and diabatic heating provided mechanisms for material modification of potential vorticity (PV) of the flow and both were found important for the maintenance of the LLJ. The study identified the strong sensitivity of the LLJ to changes in convective heating over the Indian ocean. When there is very little modification of the PV, the LLJ turns anticyclonically over the Arabian Sea and the flow tends to avoid India according to them.

3 1APRIL 2004 JOSEPH AND SIJIKUMAR 1451 During the last decade a number of studies have appeared in the literature regarding the interannual and intraseasonal variability of the lower-tropospheric (e.g., 850 hpa) monsoon circulation (e.g., Webster et al. 1998; Annamalai et al. 1999; Sperber et al. 2000; Krishnamurthy and Shukla 2000; Goswami and Ajaya Mohan 2001). They have discussed the convection and circulation associated with the active break cycle of the monsoon. In our study we have focused on the LLJ and its intraseasonal variability and the relation between LLJ and atmospheric convection. Details regarding the data used for this study are given in section 2. Section 3 describes the 30-yr ( ) climatology of LLJ. The intraseasonal variability of the LLJ is presented in section 4, analyzing 12-yr ( ) composites of the monsoon onset phase and the composites of active and break spells. Composites are made of an 850-hPa wind field and of OLR as a proxy for the convective heating of the atmosphere. The relation between the convective heating of the atmosphere and the strength of the LLJ is discussed in section 5. This is followed in section 6 by a detailed case study of the active break cycle of the First Global Atmospheric Research Programme (GARP) Global Experiment Monsoon Experiment (FGGE MONEX) year 1979 monsoon. Summary and conclusions are given in section Data Recently global datasets on a twice daily time scale were generated as part of the NCEP NCAR reanalysis project (Kalnay et al. 1996). We have used the NCEP NCAR daily wind data at standard pressure levels, on a 2.5 latitude longitude grid, to study the characteristics of the LLJ. The NCEP NCAR data output has been classified into four categories, depending on the relative influence of the observational data and the model used on the gridded variable. Wind data is under category A, which indicates that this variable is strongly influenced by observed data and hence it is in the most reliable class (Kalnay et al. 1996). However substantial difference exists between NCEP and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis products, particularly around the LLJ region (Annamalai et al. 1999). For the strength of the convective heating of the atmosphere we have used National Oceanic and Atmospheric Administration (NOAA) interpolated outgoing longwave radiation (OLR) data. [The data have been taken from the Interpolated OLR Data provided by the NOAA CIRES (Cooperative Institute for Research in Environmental Sciences) Climate Diagnostics Center, Boulder, Colorado, from their Web site at Gruber and Krueger (1984).] Monsoon onset dates are taken from India Meteorological Department. Joseph et al. (1994) has given a critique of the methods for determination of the date of TABLE 1. Date of monsoon onset over Kerala, and duration of active and break monsoon spells during Dates of monsoon onset as given by IMD, also by Ananthakrishnan and Soman/Soman and Krishnakumar (AS/SK). Active spells are during Jun Aug (as defined in text) and break spells during Jul and Aug (De et al. 1998), both of the duration of 3 or more days. Year Monsoon onset over Kerala (IMD) (AS/SK) Active monsoon Break monsoon 13 Jun 30 May 13 Jun 31 May 28 May 4 Jun 2 Jun 26 May 3 Jun 19 May 1 31 May 29 May 12 Jun 24 May 13 Jun 2 Jun 17 May 23 Jun 2 Jul 31 Jul 12 Aug 2 7 Jul 5 8 Aug Aug Aug Jun Jun Jul 6 11 Aug Jul 31 Jul 2 Aug Jul 22 Jun 8 Jul Jul Aug Jul Jul Aug Aug Jul Aug Aug Aug 28 Jul 1 Aug 5 8 Jul Aug Jul Jul 8 10 Jul Jul Total days Monsoon Onset over Kerala (MOK). The long-term mean date of MOK is e with a standard deviation of about 8 days and extreme dates of 11 May (earliest onset) and 18 June (most delayed onset). Dates of MOK for the years are given in Table 1. For comparison dates of monsoon onset over south and north Kerala by an objective method using only daily rainfall data by Ananthakrishnan and Soman (1988) and Soman and Krishnakumar (1993) are also given in Table 1. Breaks in monsoon during July and August have been identified by De et al. (1998) for the period The main criteria used are a Monsoon trough running close to the foot hills of the Himalayas and absence of easterly winds over the northern parts of India up to 1.5 km above sea level. For this study we have taken the break spells in July and August lasting 3 days or more of the 12-yr period We have thus 17 break spells of a total duration of 84 days. These break spells are listed in Table 1. Data on the dates of MOK and break monsoon spells are available in the literature for more than 100 yr (De et al. 1998; Ramamurthy 1969). But similar long period data on active monsoon spells are not available. V. Magna and P. J. Webster (1996, personal communication) and Webster et al. (1998) have used indices based particularly on the strengths of 850-hPa wind flow and convection in the latitude belt N over south Asia to define active monsoon spells. Goswami and Ajaya Mohan (2001) have used a similar wind criteria for defining active monsoon spells. An active monsoon is gen-

4 1452 JOURNAL OF CLIMATE VOLUME 17 FIG. 2. The 5-day moving avg of daily mean zonal wind at 850 hpa in the lat lon box (10 20 N, E) for the period 31 Aug 1979 in m s 1. erally understood as the period when strong LLJ passes through the N latitude belt accompanied by active convection (rainfall) in the same belt over south Asia, formation of monsoon lows and depressions in the head of the Bay of Bengal, etc. (Rao 1976). We define an active monsoon spell arbitrarily as one in which for each day of the spell the area-averaged zonal wind at 850 hpa in the latitude longitude box N and E in a 5-day period centered on that day is 15ms 1 or more. Figure 2 gives the variation of the daily zonal wind at 850 hpa derived in this manner for the period e 31 August 1979 showing two active spells of monsoon (as given in Table 1). This figure also shows the break spells given in the table for 1979 as the weak wind portion of the wind variation chart. During the June August months of the 12-yr period we could thus get 14 active monsoon spells of a total duration of 113 days as shown in Table Climatology of the LLJ The mean vertical profile of the zonal component (U) of the monsoon flow through the central Arabian Sea and peninsular India and the trade winds of the Southern Hemisphere and the jet streams of the upper troposphere during July and August of are shown in Fig. 3. Averaging is done over the longitudes E for the central Arabian Sea and E for peninsular India from latitudes 30 S 50 N. Monsoon westerlies extend from the surface to about the 400-hPa level between latitudes 5 S 25 N over India. The westerly mean monsoon current is strongest close to 850 hpa. While the LLJ of the monsoon westerlies has only one core at longitude 65 E it has two cores (wind maxima) at longitude 77.5 E, one at about 8 N, and the other at about 17 N in agreement with Findlater (1971). Trade wind (easterly) maximum of the Southern Hemisphere is at about 12 S latitude close to the 925-hPa level. The figure FIG. 3. Vertical profile of the mean zonal component of wind of Jul and Aug, averaged over the lon (a) E representative of lon 65 E and (b) E representative of lon 77.5 E as averages for the 30-yr period The contour interval is 1 m s 1. Data of eight vertical levels from 1000 to 300 hpa as given in NCEP NCAR reanalysis are used. also shows the subtropical westerly jet streams of both hemispheres. The subtropical jet stream is much stronger in the Southern Hemisphere. The easterly wind seen above the monsoon westerlies is the bottom part of the tropical easterly jet stream. 4. Intraseasonal variability of the LLJ Detailed examination of the daily NCEP NCAR reanalysis 850-hPa wind and OLR data over the Indian subcontinent and the adjacent regions of 12 monsoons provided clear insight into the characteristic features of the LLJ on the intraseasonal scale. The monsoon has two main phases, the active and break and the most important intraseasonal variability of the monsoon is the active break cycle described in detail in Rao (1976). In addition it has an onset phase. In the following paragraphs details are given about LLJ and the areas of active monsoon convection during composite onset phases and the composites of spells of active and break monsoons during the period

5 1APRIL 2004 JOSEPH AND SIJIKUMAR 1453 FIG. 4. Composites for the onset pentad ( 2 to 2 days around the day of monsoon onset over Kerala) of 12 yr in (a) OLR (isolines in W m 2 : 220 and lower at intervals of 10 W m 2 ), (b) 850-hPa wind vectors and isolines of the magnitude of wind in m s 1 : 6 and more at 2 m s 1 interval. FIG. 5. Composites for active monsoon days in Jun Aug of (a) OLR (isolines in W m 2 : 220 and lower at intervals of 10 W m 2 ), (b) 850-hPa wind vectors. Isolines of magnitude of the wind inms 1 : 6 and more at 2 m s 1 interval. The date of MOK is taken as 0 and the days before and after onset are taken as negative ( ) and positive ( ), respectively. The 12-yr composite of the onset pentad corresponding to 2 to 2 days of MOK of OLR (Fig. 4a) shows a large area of low OLR or high convection in the low latitudes of the north Indian Ocean. The 850-hPa wind composite of the corresponding pentads shows a strong LLJ beginning from the south Indian Ocean, crossing the equator passing close to the East African coast, and turning east off the Somalia coast and moving farther east (Fig. 4b). A well-marked LLJ maximum is present over the Indian longitudes between the equator and latitude 10 N. The onset phase is characterized by a single LLJ core with maximum wind speeds over south Asia and the Indian Ocean between the equator and latitude 10 N. Monsoon westerlies through India are weak. Figures 5a,b give the composite mean of the OLR and the 850-hPa zonal wind in the study area for active monsoon spells of June August as defined in section 2. The dates on which active monsoon conditions prevailed are given in Table 1. The areas of maximum wind (LLJ) and the maximum convection (lowest OLR) are in the latitude belt N. The composite LLJ has only one axis and LLJ shows no splitting. A convection maximum is seen in the Bay of Bengal. Composite analysis of OLR and wind at 850 hpa for break monsoon spells during July and August are presented in Figs. 6a,b. Details of the break monsoon spells of July and August of are given in section 2 and in Table 1. The OLR minimum area of low latitudes at the time of MOK has moved northward to the central Bay of Bengal during active spells and in break spells it lies over northeast India and its neighborhood. A fresh area of OLR minimum has formed over the equatorial Indian Ocean. [Please see Sikka and Gadgil (1980) for the northward movement and regeneration of maximum cloud zones.] The composite anomaly chart of break monsoon spells prepared by Ramamurthy (1969) using rain gauge data from the Indian land area also show positive rainfall anomalies over the extreme south of peninsular India and also over northeast India supporting the OLR anomalies in the break composite in this paper [see Fig. 4 of Ramamurthy (1969)]. The LLJ axis of break monsoon passes south of the Indian peninsula between the equator and latitude 10 N to the convectively active area there. In the break composite a weak LLJ axis can also be seen passing through north India toward the convectively active region over northeast

6 1454 JOURNAL OF CLIMATE VOLUME 17 FIG. 6. Composites for break monsoon days in Jul and Aug of (a) OLR (isolines in W m 2 : 220 and lower at intervals of 10Wm 2 ), (b) 850-hPa wind vectors. Isolines of magnitude of the wind in m s 1 : 6 and more at 2 m s 1 interval. India. A composite vertical cross section through longitude 77.5 E made using the data of break monsoon days listed in Table 1 (Fig. 7a) shows the two LLJ axes clearly, one around 5 and the other around 25 N. The composite for the active monsoon spells (Fig. 7b) shows only one strong LLJ axis at latitude 16 N. The present study based on daily NCEP NCAR reanalysis data did not support the splitting of LLJ over the Arabian Sea as suggested by Findlater (1971). Study of the 12-yr composites of the monsoon onset and active and break spells and the examination of individual days confirmed that there is no splitting of LLJ over the Arabian Sea as described in Findlater (1971) and frequently referred to in the literature. The jet shows a single axis except during the break monsoon when the northern LLJ branch passes through the latitude of about 25 and not 17 N as shown in Findlater (1971). Findlater s observation of the splitting of the LLJ is based on monthly mean wind data. Monthly mean data can show two branches of LLJ, one corresponding to the break monsoon and the other associated with the active monsoon. The two branch structure (split) of the LLJ as suggested by Findlater (1971) was not observed in the analysis of 1995 and 1997 monsoons by Halpern et al. (1998) and Halpern and Woiceshyn (1999). FIG. 7. Vertical profile of the mean zonal component of wind of (a) break composite and (b) active composite, averaged over the lon E representative of lon 77.5 E for the 12-yr period The contour interval is 1 m s 1. Data of eight vertical levels from 1000 to 300 hpa as given in NCEP NCAR reanalysis are used. 5. Relationship between convective heating and the LLJ We have examined the relationship between the convective heating of the atmosphere over south Asia and the LLJ. As a measure of the strength of the LLJ we used the daily U index, which is the area-averaged zonal component of the wind at 850 hpa in (i) the peninsular box bounded by latitudes N and longitudes E and (ii) the Bay of Bengal box bounded by latitudes N and longitudes E as averages of 0000 and 1200 UTC observations. For the strength of the convective heating we have used the daily OLR index, which is the area-averaged OLR in the latitude longitude box N and E (the Bay of Bengal box). The OLR index chosen is representative of the large-scale convection in the monsoon. According to Sikka and Gadgil (1980) a maximum cloud zone (MCZ) of deep convective clouds form in the low-latitude regions south of India and moves north to the Himalayas and this process is repeated with a periodicity of days during the monsoon season June Sep-

7 1APRIL 2004 JOSEPH AND SIJIKUMAR 1455 FIG. 8. LCC between the daily OLR index for the Bay of Bengal box (area N, E) and the daily U index (a) for Bay of Bengal (box area same as for OLR) and (b) for peninsular India box (area N, E) for lags of 5 to 5 days. Max negative LCC is for lags of 2 3 days, OLR leading. Line (a) is with triangles and line (b) is with dots. tember. It is observed that LLJ is strong through peninsular India when the MCZ passes through the Bay of Bengal (active monsoon). The linear correlation coefficient (LCC) between the daily OLR index and the daily U index for lags of 5 to 5 days is given in Fig. 8. LCC increases with lag for both boxes of wind and reaches a maximum (magnitude) and then decreases. Maximum LCC is 0.51 between the daily OLR index and the daily U index of the peninsular box (for 744 pairs of the indices during July and August of ) for OLR index leading U index by 2 and 3 days. The LCC for significance at levels 99% and 99.9% for 744 pairs of data are 0.08 and 0.115, respectively, according to the Student s t test. For the U index of the Bay of Bengal box the maximum LCC is 0.41 at lags of 1 and 2 days. Thus, atmospheric heating by convection is able to accelerate the LLJ flow through peninsular India in about 2 3 days. When this heating between 10 and 20 N is weak the cross-equatorial LLJ moves to the central Arabian Sea and then moves southeastward to areas south of India as shown in the modeling studies by Hoskins and Rodwell (1995) and Rodwell and Hoskins (1995). It was seen in section 4 that in break monsoon spells when the active monsoon convection has moved to northeast India from the Bay of Bengal there is a branch of LLJ through north India (latitude about 25 N) that can carry moisture to this area from the Indian Ocean. We may infer that the MCZ of Sikka and Gadgil (1980) is closely associated with the cross-equatorial LLJ over south Asia. Thus, while the LLJ crosses the equator in a geographically fixed and narrow longitude band, the latitude of the core of the LLJ over peninsular India longitudes, moves from low latitudes FIG. 9. Hovmöller diagram showing evolution of (a) convection (OLR) and (b) 850-hPa zonal wind speed from to 31 Aug Averaging is done for the lon band E and a 5-day moving avg is applied as a smoother. OLR contours at 220 and lower at intervals of 10 W m 2 and wind speed contours at 6 and more at intervals of 2ms 1. to almost 25 N along with the northward movement of the MCZ in its day cycle. 6. Case study of ISO of the LLJ in the monsoon of 1979 The monsoon of FGGE MONEX year 1979 had strong intraseasonal oscillation and pronounced active break cycles (Krishnamurti 1985). Figure 9a shows the Hovmüller diagram of the mean OLR between longitudes E and latitudes 10 S 30 N of the period e 31 August 1979 smoothed by a 5-day moving average. After an active monsoon spell in the second half of June, convection in the N belt weakens. By mid-july two zones of convection are found over the E zone, one around latitude 25 N and the other around the equator. A second active monsoon spell is observed during the first half of August when convection is again active in the N latitude belt. This is followed by a long break monsoon spell (please see Table 1) when the main area of convection is around the equator. Figure 9b shows the Hovmöller diagram of the 850-hPa zonal wind (U) averaged over the longitudes E from latitudes 10 S to30 N of the period e 31 August, smoothed as in the case of the OLR by a 5-day moving average. The two active

8 1456 JOURNAL OF CLIMATE VOLUME 17 FIG. 10. Hovmöller diagram showing evolution of 850-hPa zonal wind speed from to 31 Aug Averaging is done (a) for the lon band E and (b) for the lon band E and a 5-day moving avg is applied as a smoother. Wind speed contours at 6 and more at intervals of 2 m s 1. spells are seen as maxima of zonal wind in the N region. These wind maxima are found to lag in time behind the OLR maxima by a few days in agreement with the findings of section 5. The zone of maximum convection is on the cyclonic U-shear vorticity zone of the LLJ where the frictional convergence in the boundary layer produces upward motion to generate cumulonimbus cloud heating in the conditionally unstable tropical atmosphere. It is speculated that the dynamics (cyclonic vorticity and the consequent frictional convergence producing Ekman pumping of the moist boundary layer air) and the thermodynamics (the convective heating of the atmosphere and the consequent lowering of atmospheric pressure below) cooperate to increase convection and strengthen the LLJ, increment by increment. Because for continuity the whole LLJ has to strengthen, intensification of LLJ has to lag behind the convection by a few days. This is a kind of instability in which a planetary-scale system (the LLJ) cooperates with the convection in a synoptic-scale cloud cluster over the Bay of Bengal and both intensify. This phenomenon is similar to the conditional instability of the second kind (CISK) in the case of a synoptic-scale system like the tropical cyclone. Figure 10a shows the Hovmöller diagram of zonal wind (U) of 850 hpa averaged over the longitude band E and smoothed by a 5-day moving average for the period e 31 August Active monsoon spells are characterized by strong cores of U, but whether it is active or break monsoon, the strongest U is at one latitude only, about 15 N. The intraseasonal oscillation at this longitude (65 E) is the weakening and strengthening of the LLJ core without north south movement. In contrast is a similar section through longitude 77.5 (75 80 E) shown in Fig. 10b. After the active monsoon spell of the second half of June, LLJ appears as two axes, one moving to latitude 25 N and the other toward the equator. The movement to 25 N is in response to the northward movement of the area of active convection. The movement of the other axis equatorward is likely to be by the mechanism suggested by Rodwell and Hoskins (1995) that in the absence of heat sources in the N latitude belt, LLJ moves southeastward from the central Arabian Sea conserving its potential vorticity. It is speculated that when the axis of LLJ reaches near the equator, a zone of strong U shear with cyclonic vorticity forms around the equator, which leads to frictional convergence in the boundary layer and the generation of an east west band of convection there. It may be noted that Ekman pumping is very effective in low latitudes, more so in equatorial latitudes [e.g., Eq. (5.38) in Holton (1992)]. This convective band will then strengthen the LLJ and a zone of strong cyclonic shear vorticity appears close to the equator, which generates an east west band of convection that then moves north. Wind and OLR data of this period support this speculation regarding the genesis of the equatorial east west convective band. Figures 11a 11d give the mean OLR and 850-hPa wind fields corresponding to the first active and break spells of the monsoon in In this year the active and break spells are very long as can be seen in Table 1. As mentioned earlier it was a year of very pronounced intraseasonal oscillation in the monsoon and a year in which we have the best datasets thanks to the FGGE MONEX experiment. In the active spell the LLJ through India is very strong and it has only one axis at about 15 N latitude. In the break monsoon spell there are two active areas of convection, one from 10 S to10 N and the other around northeast India. There is very little convection in the latitude belt N over south Asia. Monsoon models should at least be able to simulate the broad features of the active break cycle described in this paper, particularly of the LLJ and the associated convection. 7. Summary and conclusions Using the wind data from NCEP NCAR reanalysis and the NOAA OLR data, a detailed study has been made of the LLJ of the Asian summer monsoon. Vertical structure of the LLJ, the intraseasonal variability of the LLJ, particularly its relation to the active break cycle of the monsoon and the relation between convective

9 1APRIL 2004 JOSEPH AND SIJIKUMAR 1457 heating of the atmosphere over the Bay of Bengal and the LLJ over south Asia have been investigated. The following are the important conclusions. 1) The core of the cross equatorial LLJ crosses the equator in a geographically fixed narrow longitudinal belt close to the East African coast as a southerly current and it crosses India as a westerly current at latitudes varying from the equator to 25 N. In active monsoon conditions, the core of the LLJ passes through peninsular India around latitude 15 N. In break monsoon conditions the LLJ from the central Arabian Sea moves southeastward and passes eastward close to Sri Lanka in the latitude belt from the equator to 10 N. There is often seen at this time a weaker LLJ axis through north India around latitude 25 N. 2) LLJ does not show splitting into two branches over the Arabian sea as suggested by Findlater (1971). His suggestion, which is widely accepted since then, is based on the analysis of monthly mean winds. Such an analysis is likely to show the LLJ of active and break monsoons as occurring at the same time, suggesting a split of the LLJ over the Arabian Sea. Two branches of LLJ through India are however seen during break monsoon spells, but the northern branch is at around latitude 25 and not at about 17 N as found by Findlater. 3) Convective heating of the atmosphere over the Bay of Bengal has a high and significant linear correlation coefficient with the zonal component of the wind at 850 hpa over peninsular India (70 80 E) and the Bay of Bengal ( E) all between latitudes 10 and 20 N. The correlation is maximum for a lag of 2 3 days, convection leading. It is speculated that active convection occurring over the Bay of Bengal between latitudes 10 and 20 N accelerates the whole interhemispheric LLJ and takes the monsoon to an active spell. LLJ should thus have a prominent place in numerical modeling studies of the monsoon. We should be able to simulate the LLJ correctly in each phase of the monsoon in order that models simulate realistic monsoon rainfall and its intraseasonal variability. Acknowledgments. The authors thank the Department of Atmospheric Sciences, Cochin University of Science and Technology for providing them data, computer facilities, and other support to do this research. They also thank the two anonymous referees and the editor for their valuable comments and suggestions. FIG. 11. Avg of (a) OLR and (b) 850-hPa zonal wind averaged for the first active monsoon spell of 1979 (23 Jun 2 Jul). Isolines of OLR at 220 and less at intervals of 10 W m 2 and of zonal wind at 6 and more at intervals of 2 m s 1. Avg of (c) OLR and (d) 850- hpa zonal wind averaged for the first break monsoon spell of 1979 (17 23 Jul). Isolines of OLR at 220 and less at intervals of 10 W m 2 and of zonal wind at 6 and more at intervals of 2 m s 1. REFERENCES Ananthakrishnan, R., and M. K. Soman, 1988: The onset of the southwest monsoon over Kerala J. Climatol., 8, Annamalai, H., J. M. Slingo, K. R. Sperber, and K. Hodges, 1999: The mean evolution and variability of the Asian summer mon-

10 1458 JOURNAL OF CLIMATE VOLUME 17 soon: Comparison of ECMWF and NCEP/NCAR reanalyses. Mon. Wea. Rev., 127, Bunker, A. F., 1965: Interaction of the summer monsoon air with the Arabian Sea (preliminary analysis). Proc. Symp. Meteorological Results, Bombay, India, International Indian Ocean Expedition, De, U. S., R. R. Lele, and J. C. Natu, 1998: Breaks in south west monsoon. Prepublished Scientific Rep. 1998/3, India Meteorological Department, Pune, India, 24 pp. Findlater, J., 1966: Cross-equatorail jet streams at low levels over Kenya. Meteor. Mag., 95, , 1967: Some further evidence of cross-equatorial jet streams at low levels over Kenya. Meteor. Mag., 96, , 1969a: Inter-hemispheric transport of air in the lower troposphere over the western Indian Ocean. Quart. J. Roy. Meteor. Soc., 95, , 1969b: A major low level current near the Indian Ocean during northern summer. Quart. J. Roy. Meteor. Soc., 95, , 1971: Mean monthly airflow at low levels over the western Indian Ocean. Geophys. Memo., 16, Goswami, B. N., and R. S. Ajaya Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, Gruber, A., and A. F. Krueger, 1984: The status of the NOAA outgoing longwave radiation data set. Bull. Amer. Meteor. Soc., 65, Halpern, D., and P. M. Woiceshyn, 1999: Onset of the Somali jet in the Arabian Sea during June J. Geophys. Res., 104, , M. H. Freeilich, and R. A. Weller, 1998: Arabian Sea surface winds and ocean transports determined from ERS-1 scatterometer. J. Geophys. Res., 103, Holton, J. R., 1992: An Introduction to Dynamic Meterology. Academic Press, 391 pp. Hoskins, B. J., and M. J. Rodwell, 1995: A model of the Asian summer monsoon. Part I: The global scale. J. Climate, 8, Joseph, P. V., and P. L. Raman, 1966: Existence of low level westerly jet-stream over peninsular India during July. India J. Meteor. Geophys., 17, , J. K. Eischeid, and R. J. Pyle, 1994: Interannual variability of the onset of Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J. Climate, 7, Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, Krishnamurti, T. N., 1985: Summer monsoon experiment A review. Mon. Wea. Rev., 113, , and V. Wong, 1979: A simulation of cross equatorial flow over the Arabian Sea. J. Atmos. Sci., 36, , and J. Shukla, 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13, , J. Molinari, and H. L. Pan, 1976: Numerical simulation of the Somali jet. J. Atmos. Sci., 33, , V. Wong, H. L. Pan, R. Pasch, J. Molinari, and P. Ardanuy, 1983: A three-dimensional planetary boundary layer model for the Somali jet. J. Atmos. Sci., 40, Murakami, T., R. Godbole, and R. R. Kelkar, 1970: Numerical simulation of the monsoon along 80 E. Proc. Conf. on the Summer Monsoon of South East Asia, Norfolk, VA, Navy Weather Research Facility, Ramamurthy, K., 1969: Monsoon of India: Some aspects of break in the Indian south west monsoon during July and August. Forecasting Manual, Part IV. 18.3, India Meteorological Department, New Delhi, India, 13 pp. Rao, Y. P., 1976: Southwest Monsoon. Meteor. Monogr. Synoptic Meteor., No. 1/1976, India Meteorological Department, 376 pp. Rodwell, M. J., and B. J. Hoskins, 1995: A model of the Asian Summer Monsoon. Part II: Cross-equatorial flow and PV behavior. J. Atmos. Sci., 52, Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, Soman, M. K., and K. Krishnakumar, 1993: Space time evolution of meteorological features associated with onset of Indian summer monsoon. Mon. Wea. Rev., 121, Sperber, K. R., J. M. Slingo, and H. Annamalai, 2000: Predictability and the relationship between subseasonal and interannual variability during the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 126, Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. T. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects of prediction. J. Geophys. Res., 103 (C7),

Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon

Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon Chinese Science Bulletin 2009 SCIENCE IN CHINA PRESS Springer Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon QI YanJun 1,2,3, ZHANG RenHe 2, LI

More information

Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation

Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation 5. Introduction The Asian summer monsoon is one of the most vigorous and energetic

More information

Lecture 20. Active-weak spells and breaks in the monsoon: Part 1

Lecture 20. Active-weak spells and breaks in the monsoon: Part 1 Lecture 20 Active-weak spells and breaks in the monsoon: Part 1 Although the summer monsoon season is the rainy season over most of the Indian region, it does not rain every day, at any place, during the

More information

Lecture 14. Heat lows and the TCZ

Lecture 14. Heat lows and the TCZ Lecture 14 Heat lows and the TCZ ITCZ/TCZ and heat lows While the ITCZ/TCZ is associated with a trough at low levels, it must be noted that a low pressure at the surface and cyclonic vorticity at 850 hpa

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 1.138/nature877 Background The main sis of this paper is that topography produces a strong South Asian summer monsoon primarily by insulating warm and moist air over India from cold and dry extratropics.

More information

The Origin of the Subtropical Anticyclones

The Origin of the Subtropical Anticyclones 1JULY 001 CHEN ET AL. 187 The Origin of the Subtropical Anticyclones PING CHEN, MARTIN P. HOERLING, AND RANDALL M. DOLE NOAA CIRES Climate Diagnostics Center, Boulder, Colorado (Manuscript received 6 April

More information

Interannual variation of northeast monsoon rainfall over southern peninsular India

Interannual variation of northeast monsoon rainfall over southern peninsular India Indian Journal of Geo-Marine Science Vol. 40(1), February 2011, pp 98-104 Interannual variation of northeast monsoon rainfall over southern peninsular India * Gibies George 1, Charlotte B. V 2 & Ruchith

More information

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon 2.1 Introduction The Indian summer monsoon displays substantial interannual variability, which can have profound

More information

Understanding El Nino-Monsoon teleconnections

Understanding El Nino-Monsoon teleconnections Understanding El Nino-Monsoon teleconnections Dr Neena Joseph Mani Earth & Climate Science INSA Anniversary General meeting, Session: Science in IISER Pune 27 th December 2017 Mean State of the equatorial

More information

Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon

Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon 4.1 Introduction The main contributors to the interannual variability of Indian summer

More information

Rossby waves in May and the Indian summer monsoon rainfall

Rossby waves in May and the Indian summer monsoon rainfall T ellus (1999), 51A, 854 864 Copyright Munksgaard, 1999 Printed in UK. All rights reserved TELLUS ISSN 0280 6495 Rossby waves in May and the Indian summer monsoon rainfall By P. V. JOSEPH1 and J. SRINIVASAN2*,

More information

Analysis of 2012 Indian Ocean Dipole Behavior

Analysis of 2012 Indian Ocean Dipole Behavior Analysis of 2012 Indian Ocean Dipole Behavior Mo Lan National University of Singapore Supervisor: Tomoki TOZUKA Department of Earth and Planetary Science, University of Tokyo Abstract The Indian Ocean

More information

Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events

Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events Vijay Pottapinjara 1*, Roxy Mathew Koll2, Raghu Murtugudde3, Girish Kumar M

More information

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter 5th Session of the East Asia winter Climate Outlook Forum (EASCOF-5), 8-10 November 2017, Tokyo, Japan Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high

More information

Onset of Indian summer monsoon over Gadanki (13.5 N, 79.2 E): Study using lower atmospheric wind profiler

Onset of Indian summer monsoon over Gadanki (13.5 N, 79.2 E): Study using lower atmospheric wind profiler GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L22803, doi:10.1029/2007gl031592, 2007 Onset of Indian summer monsoon over Gadanki (13.5 N, 79.2 E): Study using lower atmospheric wind profiler V. V. M. Jagannadha

More information

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE By William S. Kessler and Richard Kleeman Journal of Climate Vol.13, 1999 SWAP, May 2009, Split, Croatia Maristella Berta What does give

More information

3. Climatic Variability. El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves

3. Climatic Variability. El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves Georges (1998) 3. Climatic Variability El Niño and the Southern Oscillation Madden-Julian Oscillation Equatorial waves ENVIRONMENTAL CONDITIONS FOR TROPICAL CYCLONES TO FORM AND GROW Ocean surface waters

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 8 March 2010 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

Changes of The Hadley Circulation Since 1950

Changes of The Hadley Circulation Since 1950 Changes of The Hadley Circulation Since 1950 Xiao-Wei Quan, Henry F. Diaz, Martin P. Hoerling (NOAA-CIRES CDC, 325 Broadway, Boulder, CO 80305) Abstract The Hadley circulation is changing in response to

More information

Onset of the Summer Monsoon over the Indochina Peninsula: Climatology and Interannual Variations*

Onset of the Summer Monsoon over the Indochina Peninsula: Climatology and Interannual Variations* 3206 JOURNAL OF CLIMATE VOLUME 15 Onset of the Summer Monsoon over the Indochina Peninsula: Climatology and Interannual Variations* YONGSHENG ZHANG International Pacific Research Center, School of Ocean

More information

Choice of South Asian Summer Monsoon Indices*

Choice of South Asian Summer Monsoon Indices* Choice of South Asian Summer Monsoon Indices* Bin Wang and Zhen Fan Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii ABSTRACT In the south Asian region, two of the major precipitation

More information

SERIES ARTICLE The Indian Monsoon

SERIES ARTICLE The Indian Monsoon The Indian Monsoon 4. Links to Cloud Systems over the Tropical Oceans Sulochana Gadgil Sulochana Gadgil is an honorary Professor at the Centre for Atmospheric and Oceanic Sciences at the Indian Institute

More information

Role of Mid-Latitude Westerly Trough Index at 500 h Pa and its Association with Rainfall in Summer Monsoon over Indian Region

Role of Mid-Latitude Westerly Trough Index at 500 h Pa and its Association with Rainfall in Summer Monsoon over Indian Region Role of Mid-Latitude Westerly Trough Index at 500 h Pa and its Association with Rainfall in Summer Monsoon over Indian Region S.S. Dugam and S. D. Bansod Indian Institute of Tropical Meteorology, Pune-411008,

More information

ATMS 310 Tropical Dynamics

ATMS 310 Tropical Dynamics ATMS 310 Tropical Dynamics Introduction Throughout the semester we have focused on mid-latitude dynamics. This is not to say that the dynamics of other parts of the world, such as the tropics, are any

More information

Effect of Orography on Land and Ocean Surface Temperature

Effect of Orography on Land and Ocean Surface Temperature Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, Eds., T. Matsuno and H. Kida, pp. 427 431. by TERRAPUB, 2001. Effect of Orography on Land and Ocean Surface Temperature

More information

Effect of late 1970 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO

Effect of late 1970 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO Effect of late 97 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO 7. Introduction Biennial variability has been identified as one of the major modes of interannual

More information

On the Role of the African Topography in the South Asian Monsoon

On the Role of the African Topography in the South Asian Monsoon AUGUST 2016 W E I A N D B O R D O N I 3197 On the Role of the African Topography in the South Asian Monsoon HO-HSUAN WEI AND SIMONA BORDONI California Institute of Technology, Pasadena, California (Manuscript

More information

Comparison of the Structure and Evolution of Intraseasonal Oscillations Before and After Onset of the Asian Summer Monsoon

Comparison of the Structure and Evolution of Intraseasonal Oscillations Before and After Onset of the Asian Summer Monsoon 684 ACTA METEOROLOGICA SINICA VOL.27 Comparison of the Structure and Evolution of Intraseasonal Oscillations Before and After Onset of the Asian Summer Monsoon QI Yanjun ( ), ZHANG Renhe ( ), ZHAO Ping

More information

1 2 http://ds.data.jma.go.jp/tcc/tcc/index.html http://ds.data.jma.go.jp/tcc/tcc/index.html Climate in Japan World Climate Extratropics Tropics Oceanograhpic conditions World Climate Page 2 Extratropics

More information

The Effects of Gap Wind Induced Vorticity, the ITCZ, and Monsoon Trough on Tropical Cyclogenesis

The Effects of Gap Wind Induced Vorticity, the ITCZ, and Monsoon Trough on Tropical Cyclogenesis The Effects of Gap Wind Induced Vorticity, the ITCZ, and Monsoon Trough on Tropical Cyclogenesis Heather M. Holbach and Mark A. Bourassa Center for Ocean-Atmospheric Prediction Studies Department of Earth,

More information

INDIA METEOROLOGICAL DEPARTMENT (MINISTRY OF EARTH SCIENCES) SOUTHWEST MONSOON-2010 END OF SEASON REPORT

INDIA METEOROLOGICAL DEPARTMENT (MINISTRY OF EARTH SCIENCES) SOUTHWEST MONSOON-2010 END OF SEASON REPORT INDIA METEOROLOGICAL DEPARTMENT (MINISTRY OF EARTH SCIENCES) SOUTHWEST MONSOON-2010 END OF SEASON REPORT HIGHLIGHTS For the country as a whole, the rainfall for the season (June-September) was 102% of

More information

Chapter 3. Monsoon Onset over Kerala (MOK) and its Interannual Variability. 3.1 Introduction

Chapter 3. Monsoon Onset over Kerala (MOK) and its Interannual Variability. 3.1 Introduction Chapter 3 Monsoon Onset over Kerala (MOK) and its Interannual Variability 3.1 Introduction The monsoon onset over Kerala (MOK) is the most eagerly awaited weather phenomenon in India as it heralds the

More information

Goal: Describe the principal features and characteristics of monsoons

Goal: Describe the principal features and characteristics of monsoons Overview and description of major tropical monsoons Monsoon clouds near Kolkata India Goal: Describe the principal features and characteristics of monsoons Published Online March 25, 2010 Science DOI:

More information

Temporal and Spatial Evolution of the Asian Summer Monsoon in the Seasonal Cycle of Synoptic Fields

Temporal and Spatial Evolution of the Asian Summer Monsoon in the Seasonal Cycle of Synoptic Fields 3630 JOURNAL OF CLIMATE Temporal and Spatial Evolution of the Asian Summer Monsoon in the Seasonal Cycle of Synoptic Fields YOUNG-KWON LIM AND KWANG-YUL KIM Department of Meteorology, The Florida State

More information

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007 APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP October 29, 2007 Outline Overview Recent

More information

Climatology of the 10-m wind along the west coast of South American from 30 years of high-resolution reanalysis

Climatology of the 10-m wind along the west coast of South American from 30 years of high-resolution reanalysis Climatology of the 10-m wind along the west coast of South American from 30 years of high-resolution reanalysis David A. Rahn and René D. Garreaud Departamento de Geofísica, Facultad de Ciencias Físicas

More information

Typhoon Vamei: An Equatorial Tropical Cyclone Formation

Typhoon Vamei: An Equatorial Tropical Cyclone Formation 1 Typhoon Vamei: An Equatorial Tropical Cyclone Formation C.-P. Chang, Ching-Hwang Liu 1, Hung-Chi Kuo 2 Department of Meteorology, Naval Postgraduate School, Monterey, CA Abstract. Due to the diminishing

More information

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña -

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña - Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña - Jun ichi HIROSAWA Climate Prediction Division Japan Meteorological Agency SST anomaly in Nov. 1997 1 ( ) Outline

More information

Mechanism of the Asymmetric Monsoon Transition as Simulated in an AGCM

Mechanism of the Asymmetric Monsoon Transition as Simulated in an AGCM 15 APRIL 2008 N O T E S A N D C O R R E S P O N D E N C E 1829 Mechanism of the Asymmetric Monsoon Transition as Simulated in an AGCM ZHUO WANG Department of Meteorology, Naval Postgraduate School, Monterey,

More information

Long period waves in the coastal regions of north Indian Ocean

Long period waves in the coastal regions of north Indian Ocean Indian Journal of Marine Sciences Vol. 33(2), June 2004, pp 150-154 Long period waves in the coastal regions of north Indian Ocean *P V Hareesh Kumar & K V Sanilkumar Naval Physical & Oceanographic Laboratory,

More information

Chapter 10: Global Wind Systems

Chapter 10: Global Wind Systems Chapter 10: Global Wind Systems Three-cell model of atmospheric circulation Intertropical Convergence Zone (ITCZ) Typical surface wind patterns Upper-level pressure and winds Climatological sea-level pressure

More information

INTRODUCTION CHAPTER Relevance of the topic

INTRODUCTION CHAPTER Relevance of the topic CHAPTER 1 INTRODUCTION 1.1 Relevance of the topic The Asian monsoon system is an integral component of the earth's climate system, involving complex interactions of the atmosphere, the hydrosphere and

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 7 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) Which of the following factors contributes to the general subsidence in the latitude zone 20 degrees

More information

On the withdrawal of the Indian summer monsoon

On the withdrawal of the Indian summer monsoon Q. J. R. Meteorol. Soc. (2004), 130, pp. 989 1008 doi: 10.1256/qj.03.36 On the withdrawal of the Indian summer monsoon By JOANNA SYROKA and RALF TOUMI Department of Physics, Imperial College, London, UK

More information

Lecture 24. El Nino Southern Oscillation (ENSO) Part 1

Lecture 24. El Nino Southern Oscillation (ENSO) Part 1 Lecture 24 El Nino Southern Oscillation (ENSO) Part 1 The most dominant phenomenon in the interannual variation of the tropical oceanatmosphere system is the El Nino Southern Oscillation (ENSO) over the

More information

An Evolution of the Asian Summer Monsoon Associated with Mountain Uplift Simulation with the MRI Atmosphere-Ocean Coupled GCM

An Evolution of the Asian Summer Monsoon Associated with Mountain Uplift Simulation with the MRI Atmosphere-Ocean Coupled GCM Journal of the Meteorological Society of Japan, Vol. 81, No. 5, pp. 909--933, 2003 909 An Evolution of the Asian Summer Monsoon Associated with Mountain Uplift Simulation with the MRI Atmosphere-Ocean

More information

THE COMPARISON BETWEEN SUMMER MONSOON COMPONENTS OVER EAST ASIA AND SOUTH ASIA

THE COMPARISON BETWEEN SUMMER MONSOON COMPONENTS OVER EAST ASIA AND SOUTH ASIA Journal of Geosciences of China Vol.4 No.3-4, Dec.2002 http://www.geosciences.net THE COMPARISON BETWEEN SUMMER MONSOON COMPONENTS OVER EAST ASIA AND SOUTH ASIA Weihong QIAN and Yafen ZHU Department of

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 4 September 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

LONG- TERM CHANGE IN PRE- MONSOON THERMAL INDEX OVER CENTRAL INDIAN REGION AND SOUTH WEST MONSOON VARIABILITY

LONG- TERM CHANGE IN PRE- MONSOON THERMAL INDEX OVER CENTRAL INDIAN REGION AND SOUTH WEST MONSOON VARIABILITY LONG- TERM CHANGE IN PRE- MONSOON THERMAL INDEX OVER CENTRAL INDIAN REGION AND SOUTH WEST MONSOON VARIABILITY *S.S. Dugam Indian Institute of Tropical Meteorology, Pune-411008 *Author for Correspondence

More information

SCIENCE CHINA Earth Sciences. Vortex genesis over the Bay of Bengal in spring and its role in the onset of the Asian Summer Monsoon

SCIENCE CHINA Earth Sciences. Vortex genesis over the Bay of Bengal in spring and its role in the onset of the Asian Summer Monsoon SCIENCE CHINA Earth Sciences RESEARCH PAPER January 2011 Vol.54 No.1: 1 9 doi: 10.1007/s11430-010-4125-6 Vortex genesis over the Bay of Bengal in spring and its role in the onset of the Asian Summer Monsoon

More information

Hui Wang, Mike Young, and Liming Zhou School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, Georgia

Hui Wang, Mike Young, and Liming Zhou School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, Georgia Water Cycle between Ocean and Land and Its Influence on Climate Variability over the South American-Atlantic Regions as Determined by SeaWinds Scatterometers Rong Fu Hui Wang, Mike Young, and Liming Zhou

More information

ENSO and monsoon induced sea level changes and their impacts along the Indian coastline

ENSO and monsoon induced sea level changes and their impacts along the Indian coastline Indian Journal of Marine Sciences Vol. 35(2), June 2006, pp. 87-92 ENSO and monsoon induced sea level changes and their impacts along the Indian coastline O.P.Singh* Monsoon Activity Centre, India Meteorological

More information

NOTES AND CORRESPONDENCE. On Wind, Convection, and SST Variations in the Northeastern Tropical Pacific Associated with the Madden Julian Oscillation*

NOTES AND CORRESPONDENCE. On Wind, Convection, and SST Variations in the Northeastern Tropical Pacific Associated with the Madden Julian Oscillation* 4080 JOURNAL OF CLIMATE NOTES AND CORRESPONDENCE On Wind, Convection, and SST Variations in the Northeastern Tropical Pacific Associated with the Madden Julian Oscillation* SOLINE BIELLI AND DENNIS L.

More information

Intra-seasonal variations in the tropical atmospheric circulation. Climate Prediction Division Yayoi Harada

Intra-seasonal variations in the tropical atmospheric circulation. Climate Prediction Division Yayoi Harada Intra-seasonal variations in the tropical atmospheric circulation Climate Prediction Division Yayoi Harada TCC training seminar on 1st December 2009 Outline The importance of the tropical circulations

More information

Causes of the Intraseasonal SST Variability in the Tropical Indian Ocean

Causes of the Intraseasonal SST Variability in the Tropical Indian Ocean ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2008, VOL. 1, NO. 1, 1 6 Causes of the Intraseasonal SST Variability in the Tropical Indian Ocean Tim Li 1, Francis Tam 1, Xiouhua Fu 1, ZHOU Tian-Jun 2, ZHU Wei-Jun

More information

Use of Interactions between NAO and MJO for the Prediction of Dry and Wet Spell in Monsoon Season

Use of Interactions between NAO and MJO for the Prediction of Dry and Wet Spell in Monsoon Season Use of Interactions between NAO and MJO for the Prediction of Dry and Wet Spell in Monsoon Season S. S. Dugam Indian Institute of Tropical Meteorology, Pune-411008 Email:dugam@tropmet.res.in Abstract The

More information

Increasing trend of break-monsoon conditions over India - Role of ocean-atmosphere processes in the Indian Ocean

Increasing trend of break-monsoon conditions over India - Role of ocean-atmosphere processes in the Indian Ocean Author versions: IEEE Geosci. Remote Sens. Lett.: 6(2); 2009; 332-336 Increasing trend of break-monsoon conditions over India - Role of ocean-atmosphere processes in the Indian Ocean M.R.Ramesh Kumar 1,

More information

Lecture 33. Indian Ocean Dipole: part 2

Lecture 33. Indian Ocean Dipole: part 2 Lecture 33 Indian Ocean Dipole: part 2 Understanding the processes I continue the discussion of the present understanding of the processes involved in the evolution of the mean monthly SST, and convection

More information

EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS FOR CLIMATE VARIABILITY OVER THE INDONESIA-PACIFIC REGION

EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS FOR CLIMATE VARIABILITY OVER THE INDONESIA-PACIFIC REGION EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS FOR CLIMATE VARIABILITY OVER THE INDONESIA-PACIFIC REGION Orbita Roswintiarti 1, Betty Sariwulan 1 and Nur Febrianti 1 1 Natural Resources and Environmental Monitoring

More information

Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability

Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability Tim Li IPRC and Dept. of Meteorology, Univ. of Hawaii Acknowledgement. B. Wang, C.-P. Chang, P. Liu, X. Fu, Y. Zhang, Kug

More information

Mechanism of the Asymmetric Monsoon Transition as. Simulated in an AGCM

Mechanism of the Asymmetric Monsoon Transition as. Simulated in an AGCM Mechanism of the Asymmetric Monsoon Transition as Simulated in an AGCM Zhuo Wang Department of Meteorology, Naval Postgraduate School, Monterey, California C.-P. Chang Department of Meteorology, Naval

More information

Intra-seasonal Vagaries of the Indian Summer Monsoon Rainfall

Intra-seasonal Vagaries of the Indian Summer Monsoon Rainfall ISSN 5-175 Contribution from IITM Research Report No. RR-11 Intra-seasonal Vagaries of the Indian Summer Monsoon Rainfall Ashwini Kulkarni, S S Sabade and R H Kripalani July Indian Institute of Tropical

More information

Somali Jet in the Arabian Sea, El Niño, and India Rainfall

Somali Jet in the Arabian Sea, El Niño, and India Rainfall 434 JOURNAL OF CLIMATE VOLUME 14 Somali Jet in the Arabian Sea, El Niño, and India Rainfall DAVID HALPERN AND PETER M. WOICESHYN Earth and Space Sciences Division, Jet Propulsion Laboratory, California

More information

RELATIONSHIP BETWEEN CROSS-EQUATORIAL FLOW, TRADE WIND FLOW AND FAVOURABLE CONDITIONS OF THE CYCLOGENESIS OVER THE MOZAMBICA CHANNEL

RELATIONSHIP BETWEEN CROSS-EQUATORIAL FLOW, TRADE WIND FLOW AND FAVOURABLE CONDITIONS OF THE CYCLOGENESIS OVER THE MOZAMBICA CHANNEL RELATIONSHIP BETWEEN CROSS-EQUATORIAL FLOW, TRADE WIND FLOW AND FAVOURABLE CONDITIONS OF THE CYCLOGENESIS OVER THE MOZAMBICA CHANNEL Olga Ramiarinjanahary a), Bessafi Miloud b), Adolphe A. Ratiarison c)

More information

UNIFIED MECHANISM OF ENSO CONTROL ON INDIAN MONSOON RAINFALL SUNEET DWIVEDI

UNIFIED MECHANISM OF ENSO CONTROL ON INDIAN MONSOON RAINFALL SUNEET DWIVEDI UNIFIED MECHANISM OF ENSO CONTROL ON INDIAN MONSOON RAINFALL SUNEET DWIVEDI K Banerjee Centre of Atmospheric and Ocean Studies, M N Saha Centre of Space Studies University of Allahabad, Allahabad, INDIA

More information

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture!

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture! Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction Previous Lecture! Global Winds General Circulation of winds at the surface and aloft Polar Jet Stream Subtropical Jet Stream Monsoons 1 2 Radiation

More information

332 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 6, NO. 2, APRIL X/$ IEEE

332 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 6, NO. 2, APRIL X/$ IEEE 332 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 6, NO. 2, APRIL 2009 Increasing Trend of Break-Monsoon Conditions Over India Role of Ocean Atmosphere Processes in the Indian Ocean M. R. Ramesh Kumar,

More information

MIRAGES MONSOON. Overview. Further Reading. See also

MIRAGES MONSOON. Overview. Further Reading. See also MONSOONS / Overview 1365 Like the SAO, the theoretical understanding of the QBO is that it is forced by momentum transfer by vertically propagating waves forced in the lower atmosphere, interacting with

More information

2.2 Southwest Monsoon

2.2 Southwest Monsoon 2.2 Southwest Monsoon While many manuals place their discussion of the northeast monsoon first-since it can be associated with January, the first month of the year-the southwest monsoon is presented first

More information

The impacts of explicitly simulated gravity waves on large-scale circulation in the

The impacts of explicitly simulated gravity waves on large-scale circulation in the The impacts of explicitly simulated gravity waves on large-scale circulation in the Southern Hemisphere. Linda Mudoni Department of Geological and Atmospheric Sciences October 2003 Introduction In the

More information

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts The Delayed Oscillator Zebiak and Cane (1987) Model Other Theories Theory of ENSO teleconnections Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts The delayed oscillator

More information

UTLS Asian monsoon anticyclone

UTLS Asian monsoon anticyclone UTLS Asian monsoon anticyclone Dynamics and transport in the monsoon anticyclone Chemical variability linked to the monsoon Instability and eddy shedding; PV diagnostics Transport to stratosphere Eruption

More information

Decadal changes in the relationship between Indian and Australian summer monsoons

Decadal changes in the relationship between Indian and Australian summer monsoons Decadal changes in the relationship between Indian and Australian summer monsoons By C. Nagaraju 1, K. Ashok 2, A. Sen Gupta 3 and D.S. Pai 4 1 CES, C-DAC Pune, India 2 CCCR, IITM, Pune, India 3 Universities

More information

The Morphology of the Subtropical Anticyclone. By Y. Neyama

The Morphology of the Subtropical Anticyclone. By Y. Neyama December 1968 Yoshiharu Neyama 431 The Morphology of the Subtropical Anticyclone By Y. Neyama Hiroshima District Meteorological Observatory, Hiroshima (Manuscript received 7 February 1968, in revised form

More information

The Asian monsoon anticyclone and water vapor transport

The Asian monsoon anticyclone and water vapor transport The Asian monsoon anticyclone and water vapor transport Bill Randel Atmospheric Chemistry Division NCAR Thanks to: Mijeong Park, Louisa Emmons 1 What is the monsoon anticyclone, and why is it interesting?

More information

3 The monsoon currents in an OGCM

3 The monsoon currents in an OGCM 3 The monsoon currents in an OGCM The observations show that both Ekman drift and geostrophy contribute to the surface circulation in the north Indian Ocean. The former decays rapidly with depth, but the

More information

Active and Break Spells of the Indian Summer Monsoon

Active and Break Spells of the Indian Summer Monsoon 7 Active and Break Spells of the Indian Summer Monsoon M. Rajeevan 1, Sulochana Gadgil 2 and Jyoti Bhate 1 1 2 National Climate Centre, India Meteorological Department, Pune, 411 005, India. Centre for

More information

The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon

The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon SUST Journal of Science and Technology, Vol. 20, No. 6, 2012; P:89-98 The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon (Submitted: July 18, 2012; Accepted for

More information

Long-term warming trend over the Indian Ocean

Long-term warming trend over the Indian Ocean Long-term warming trend over the Indian Ocean RIO WIO 1. Western Indian Ocean experienced strong, monotonous warming during the last century 2. Links to asymmetry and skewness in ENSO forcing 3. Strong

More information

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW.

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. ATMOSPHERIC CIRCULATION WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. Pressure differences result from variations in temperature. AIR

More information

A possible mechanism effecting the earlier onset of southwesterly monsoon in the South China Sea compared to the Indian monsoon

A possible mechanism effecting the earlier onset of southwesterly monsoon in the South China Sea compared to the Indian monsoon Meteorol. Atmos. Phys. 76, 237±249 (2001) Department of Atmospheric Sciences, Nanjing University, Nanjing China, 210093 A possible mechanism effecting the earlier onset of southwesterly monsoon in the

More information

Towards understanding the unusual Indian monsoon in 2009

Towards understanding the unusual Indian monsoon in 2009 Towards understanding the unusual Indian monsoon in 2009 P A Francis 1, and Sulochana Gadgil 2, 1 Indian National Centre for Ocean Information Services, Ministry of Earth Science, P. B. No. 21, Ocean Valley,

More information

Characteristics and Changes of Cold Surge Events over China during

Characteristics and Changes of Cold Surge Events over China during ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2009, VOL. 2, NO. 6, 339 344 Characteristics and Changes of Cold Surge Events over China during 1960 2007 DING Ting 1, QIAN Wei-Hong 1, and YAN Zhong-Wei 2 1 Monsoon

More information

Effect of sea surface temperature on monsoon rainfall in a coastal region of India

Effect of sea surface temperature on monsoon rainfall in a coastal region of India Loughborough University Institutional Repository Effect of sea surface temperature on monsoon rainfall in a coastal region of India This item was submitted to Loughborough University's Institutional Repository

More information

Monsoon variability over South and East Asia: statistical downscaling from CMIP5 models

Monsoon variability over South and East Asia: statistical downscaling from CMIP5 models Monsoon variability over South and East Asia: statistical downscaling from CMIP5 models AMITA PRABHU* Jaiho OH, P. Bhaskar, R.H. Kripalani Indian Institute of Tropical Meteorology Pune 411008, India *Presenter:

More information

Wind Driven Circulation Indian Ocean and Southern Ocean

Wind Driven Circulation Indian Ocean and Southern Ocean Wind Driven Circulation Indian Ocean and Southern Ocean Lecture 18 MAR 350 Spring 2017 Reading: Knauss Chapter 7 ECCO2 model animation ecco2_sst_flow (2).mp4 Mean surface height and currents DPO Fig. 11.1

More information

Anomalous behaviour of the Indian summer monsoon 2009

Anomalous behaviour of the Indian summer monsoon 2009 Anomalous behaviour of the Indian summer monsoon 09 B Preethi, JVRevadekarand R H Kripalani Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pune 411 008, India. Corresponding author. e-mail:

More information

Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes

Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L02703, doi:10.1029/2006gl028579, 2007 Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes Chunzai Wang 1 and Sang-ki Lee

More information

THE INDIAN MONSOON AND ITS VARIABILITY

THE INDIAN MONSOON AND ITS VARIABILITY Annu. Rev. Earth Planet. Sci. 2003. 31:429 67 doi: 10.1146/annurev.earth.31.100901.141251 Copyright c 2003 by Annual Reviews. All rights reserved THE INDIAN MONSOON AND ITS VARIABILITY Sulochana Gadgil

More information

Northward propagation of the subseasonal variability over the eastern Pacific warm pool

Northward propagation of the subseasonal variability over the eastern Pacific warm pool Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L09814, doi:10.1029/2008gl033723, 2008 Northward propagation of the subseasonal variability over the eastern Pacific warm pool Xianan

More information

REFERENCES. J. Met. Soc. Japan., 39,49-58, 1961.

REFERENCES. J. Met. Soc. Japan., 39,49-58, 1961. REFERENCES Ananthakrishnan, Rand Soman, M. K, The onset of southwest monsoon over Kerala 1901-1980, J. Climatol, 8, 283-296, 1988. Anderson, D. L. T., The low-level jet as western boundary current, Mon.

More information

Lightning distribution with respect to the monsoon trough position during the Indian summer monsoon season

Lightning distribution with respect to the monsoon trough position during the Indian summer monsoon season JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 8, 4780 4787, doi:0.00/jgrd.508, Lightning distribution with respect to the monsoon trough position during the Indian summer monsoon season Ramesh Kumar

More information

Propagation of planetary-scale zonal mean wind anomalies and polar oscillations

Propagation of planetary-scale zonal mean wind anomalies and polar oscillations Article Atmospheric Science July 2012 Vol.57 No.20: 2606 261 doi: 10.1007/s113-012-5168-1 SPECIAL TOPICS: Propagation of planetary-scale zonal mean wind anomalies and polar oscillations QIAN WeiHong *

More information

The Air-Sea Interaction. Masanori Konda Kyoto University

The Air-Sea Interaction. Masanori Konda Kyoto University 2 The Air-Sea Interaction Masanori Konda Kyoto University 2.1 Feedback between Ocean and Atmosphere Heat and momentum exchange between the ocean and atmosphere Atmospheric circulation Condensation heat

More information

Influence of the Anticyclonic Anomaly in the Subtropical Jet over the Western Tibetan

Influence of the Anticyclonic Anomaly in the Subtropical Jet over the Western Tibetan Title: Influence of the Anticyclonic Anomaly in the Subtropical Jet over the Western Tibetan Plateau on the Intraseasonal Variability of the Summer Asian Monsoon in Early Summer Name: TAKESHI WATANABE

More information

Organized Deep Cumulus Convection Over the South China Sea and its Interaction with Cold Surges

Organized Deep Cumulus Convection Over the South China Sea and its Interaction with Cold Surges December 1983 F.-C. Zhu 839 Organized Deep Cumulus Convection Over the South China Sea and its Interaction with Cold Surges By Fu-Cheng Zhu* Atmospheric Physics Group, Imperial College, London, U.K. (Manuscript

More information

Abrupt seasonal variation of the ITCZ and the Hadley circulation

Abrupt seasonal variation of the ITCZ and the Hadley circulation GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L18814, doi:10.1029/2007gl030950, 2007 Abrupt seasonal variation of the ITCZ and the Hadley circulation Yongyun Hu, 1 Dawei Li, 1 and Jiping Liu 2 Received 16 June

More information

ESCI 107 The Atmosphere Lesson 11 Global Circulation

ESCI 107 The Atmosphere Lesson 11 Global Circulation Reading: Meteorology Today, Chapter 10 THE GLOBAL CIRCULATION ESCI 107 The Atmosphere Lesson 11 Global Circulation Latitudinal heat imbalance The tropics receive more radiation than they emit. The polar

More information

Internal Feedbacks from Monsoon Midlatitude Interactions during Droughts in the Indian Summer Monsoon

Internal Feedbacks from Monsoon Midlatitude Interactions during Droughts in the Indian Summer Monsoon VOLUME 66 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S MARCH 2009 Internal Feedbacks from Monsoon Midlatitude Interactions during Droughts in the Indian Summer Monsoon R. KRISHNAN AND

More information

A Mechanism of the Onset of the South Asian Summer Monsoon

A Mechanism of the Onset of the South Asian Summer Monsoon Journal of the Meteorological Society of Japan, Vol. 81, No. 3, pp. 563--580, 2003 563 A Mechanism of the Onset of the South Asian Summer Monsoon Daisuke MINOURA, Ryuichi KAWAMURA Department of Earth Sciences,

More information