Applying Wearable Sensors to Avalanche Rescue: First Experiences with a Novel Avalanche Beacon

Size: px
Start display at page:

Download "Applying Wearable Sensors to Avalanche Rescue: First Experiences with a Novel Avalanche Beacon"

Transcription

1 Applying Wearable Sensors to Avalanche Rescue: First Experiences with a Novel Avalanche Beacon Florian Michahelles 1, Peter Matter 1, Albrecht Schmidt 2, Bernt Schiele 1 1 Perceptual Computing & Computer Vision Group, ETH Zurich. {michahel, pmatter, schiele}@inf.ethz.ch 2 Computing Department, Lancaster University, LA1 4YR, UK. albrecht@comp.lancs.ac.uk Keywords situation-aware, wearable-sensing, personal assistance, avalanche rescue, mobile application, wearable computing Abstract We present a novel approach to enhance avalanche companion rescue using wearable sensing technologies. The time to find and extricate victims is most crucial: once buried by an avalanche, survival chances drop dramatically already after the first 15 minutes. Current technology offers only information on the location of a single victim, however statistics show that in many case there are multiple victims. In our research we address this issue and also investigate how the use of wearable sensors can further enhance such devices. We report on experiments using sensors to measure vital signs and environmental conditions and their suitability for avalanche rescue. Visualization for this type of application is addressed and two design sketches, both visualizing multiple victims and urgency, are presented. The architecture of current devices is extended by components to integrate these additional functions. We report on prototypical implementation of an avalanche beacon supporting multiple victims and visualization of vital signs. This prototype was used for further experiments and offered a basis for participatory evaluation with practitioners in the field. A short overview of these results is presented. 1 Introduction There is an on-going trend towards out of bound (off-piste) skiing. Recreationists go beyond their limits, underestimate the danger of avalanches and risk their lives without the appropriate awareness of avalanche risks [1]. Accordingly, the number of alpine recreationists in backcountry terrain, such as skiers, snowboarders, iceclimbers, etc., has increased in the last years [2] [3]. Statistical analysis of avalanche accidents during the last 30 years [4] has revealed that successful avalanche rescue has to aim at rescuing victims within the first 15 minutes. Avalanche survival is a monotonously decreasing function over time and after 15 minutes there is the biggest decline from 90% to 30%. It is noteworthy, that three quarters of all avalanche victims die from asphyxiation, only one quarter is killed from trauma. Consequently mountain clubs, such as the Swiss Alpine Club or the Canadian Mountain Rescue Association, put enormous efforts into educational programs on avalanche awareness and companion rescue operations. Simultaneously, beacon technology is widely used by recreationists. Worn by the mountaineers these electronic devices enable survivors and witnesses of an avalanche to start immediate search and rescue operations. This yields survival chances four times as high as in case of organized rescue [5], which is often too late. This paper concentrates on enhancing existing avalanche beacons with wearable sensors. Current devices only provide directions for finding victims. However, state of the art in wearable sensing suggests more opportunities: sensors can reveal emotional states [6], vital sign data [7], motion and orientation patterns [8] etc.. We believe that providing information on victims physical states at an avalanche site to rescuers allows much better resource allocation to the most urgent victims. Further, logging this information in a blackbox device, as used in today s airplanes, could record the sequence of events during an avalanche release for basic avalanche studies or legal actions.

2 In Section 2 today s beacon technology is reviewed. Section 3 investigates opportunities of improving today s technology through sensing technology based on practical experience. Section 4 shows how the sensed information can be presented to rescuers visually. In section 5, an architecture design demonstrates the integration of wearable sensing into existing beacon technology, and section 6 describes an implemented prototype as a result. In section 7, the concept is discussed with avalanche experts and summarized in section 8. 2 Analysis As professional aid may arrive too late, today mountaineers are trained in companion rescue. 2.1 Companion Rescue The standard companion rescue procedure - as it is advertised today - comprises three steps. First, the victims have to be localized in the avalanche. With avalanche beacons search should take no longer than 3 to 5 minutes. As a second step, extricating a localized victim with shovels should not take more than 10 to 15 minutes. Extrication has not only to be quick, but also be performed with care: victims could be injured by the shovels and air-pockets, victims' protection against asphyxiation, could be destroyed. Rescuers today do not know how victims are orientated in the snow. The third step is to execute first aid: opening respiratory tracts and avoiding hypothermia. At this point professional aid should take over. The entire rescue process has to be as fast as possible in order to maximize survival chances. Due to these severe time constraints, rescue resources will be always limited in practice. Further, rescuers are in an emergency situation and very stressed. 2.2 Current Technology Today, beacon technology only assists during search. Beacon devices operate on 457 khz long wave frequency, which has become an international standard. Microprocessors on the devices can calculate distance and direction to a single victim from the emitted dipole flux pattern [9]. By that, the devices can guide the rescuer to the victim either through arrows on a display or sounds with rising volume as the rescuer approaches the victim. Usually, a range of 80m can be achieved. Batteries last up to 300h. By default, devices operate as senders and can be switched to receive mode to initiate rescue operations. Direction and a rough estimation of the distance that is all beacons provide today. However, much more support would be desired: knowledge about the state of the victims, survival chances, urgency, vital sign functions support for rescuing multiple people orientation of the victim in the snow burial depth of the victim 2.3 Advancing the Technology In this paper we investigate opportunities of using wearable sensors for reporting information on vital sign functions. Our approach is to automate triage [10], as today emergency physicists maximize survival chances by prioritization. This enables also non-professional companion rescuers to improve their rescue strategies. Further, we apply accelerometers to report victims orientation in the snow. This information helps rescuers to avoid injuries during shoveling, provides faster access to respiratory tracts and preserves possible existing air-pockets. For the representation of sensor information, we develop different visualization schemes which could be integrated into today s devices. 3 Sensing Today s wearable technology offers a variety of sensors, which can be attached to the human body in a non-invasive matter for continuous readings and measurements. 3.1 Vital Sign Data Sensors which provide information about vital sign data are of major interest for avalanche rescue: Mountain medicine has developed a socalled triage-scheme for emergency physicists. Based upon different vital sign data, such as heart rate, respiration activity and consciousness [11] derives different urgency states and determines appropriate first aid operations [12]: Missing heart rate requires manual chest compression, absence of respiration activity demands rescue breathing, and unconsciousness has to be treated by anti-shock therapy. As rescue operations differ in rescue resources, e.g. chest compression requires two trained rescuers, anti-shock therapy

3 only one low-skilled rescuer, knowledge on victims' vital sign functions enables rescuers to foresee upcoming rescue procedures and allocate rescuers among victims more properly. Today, triage is reserved for professional aid, as triage is rather complex and requires medical experience which is usually not available for nonprofessional companion rescuers. Automation of triage would also provide companion rescuers with decision tool that helps to focus on most urgent victims first. Currently, triage is delayed until victims have been extricated and rescuers get access to them. Instead, wearable sensing attached to the human body can provide continuous sensors readings and share the awareness of emergency with surrounding rescuers much earlier. Evidence of life signs may also motivate rescuers and drive rescue of remaining victims even under harsh conditions. Finally, vital functions of victims could also be communicated to professional rescue service without human intervention. 3.2 Sensors According to the triage scheme [11] used in avalanche rescue the primary selection criteria are heart rate and respiration activity. Oximeters, which have a firm place in everyday clinical practice [13], offer a non-invasive way of measuring heart rate and blood oxygen saturation. Attached to one's finger, toe or forehead, the ratio of the fluctuation of red and infrared lights caused by hemoglobin - the oxygen carrier in human blood - is used to calculate the heart rate and oxygen blood saturation SpO 2. is very rare. We have run several tests with skiers and snowboarders and could achieve reasonable measurements of heart rate and oxygen blood saturation, as shown in Figure 1. Further, subjects reported that the sensor would not have disturbed them during their activities, once wrapped around toe or finger, they soon forget about the sensor. However, we are aware of the fact that severe cold may cause retreat of blood from the extremities, referred to as centralization, such that peripheral measurements at the toe may get unreliable under harsh conditions. Alternatively wearable ECG [14] provides heart rate measurements through electrodes attached to the chest. The advantage of this approach to oximetry is the robustness against centralization as the electrodes are very close to the heart. However, it has to be evaluated how well electrodes can be integrated into textiles in order to lower mounting efforts and to avoid displacement of the sensors during an avalanche. A more promising way of detecting heart rate, are contact-free measurements through radar: Radar waves are emitted and frequency analysis of the reflected signal from human body reveals heart rate based on Doppler phenomena. Currently, this technology has been deployed for people detection in earth quakes and border controls. However, customization for on-body measurements could offer solution which is robust against both centralization and displacement, as this technique works contact less. Fig. 1: Oximeter measurements We tested different placements of the oximeter: forehead, finger tips and toe. Only the toe turned out to be appropriate in mountaineering: Today's ski and hiking boots are well isolated and can shelter the sensor from damage and loss. Loss of boots, in contrast to gloves and hats in avalanches Fig. 2: test respiration in air pocket Another important source of information is the existence of air-pockets in the snow, closed air bubbles in front of mouth and nose, as they protect victims against asphyxiation up to 90 minutes [15]. Today, air-pocket detection is hardly possible, but both rescuers and physicists are interested in this phenomenon. In particular avoiding the accidental destruction of air-pockets during extrication is of interest. The existence airpocket can also provide evidence for working

4 respiratory tracts. As an initial study, we investigated the use of oxygen sensors for airpocket detection. For an initial assessment we measured oxygen concentration of breath activity in an artificial air-pocket and a plastic bag. We applied an oxygen sensor from Fujikura [16] connected to an evaluation board from Pewatron [17] that measures oxygen concentration in per mil accuracy range. After a few minutes, the sensor reported measurements below 12%, which is significant deviation from normal 20,9% in the air. Then, we placed the sensor into a little snow, representing a more realistic air pocket, and instructed a test person to in- and exhale into that cave through a snorkel, see Figure 2. The measurements were very different from the ones with the plastic bag: Concentration did not drop below 16% and even relaxed to 20.9% after a few minutes. Further, we measured oxygen concentration in snow by covering a sensor with snow completely: the measurements are very close to 20.9% as in air. These results also agree with [18], which revealed that asphyxiation in snow is not due to lack of oxygen but rather due to the high concentration of carbon dioxide. 3.3 Experiences and First Results As a result, oxygen sensors did not appear as the appropriate method for air-pocket detection. However, in a closed system, as the Avalung [19] product, with tubes for oxygen supply in emergency, oxygen sensor may be used very well for reporting about respiratory activity. For air pocket detection, other sensors, such as distance measurements based on radar or infra-red, closely placed to mouth and nose in one s collar seem to be more promising. Nevertheless, proper sensor placement remains crucial and difficult. Fig. 3: testing - volunteer in snow cave As outlined before, knowledge about a victim s orientation can be very helpful for rescuers during extrication. Acceleration sensors are widely used in wearable sensing [8] [20] and have proven useful for motion detection. As accelerometers measure all means of acceleration, in the stationary case these sensors can report orientation derived from direction of gravity. We explored how a two-axis accelerometer [21] can be applied to detect the orientation of one s spine, as shown in Figure 3. The orientation level can be well translated into information cues for rescuers, such as head up, head up side down or head vertical. Ideally, a number of sensors would be integrated into underwear shirts to prevent displaced and to achieve most reliable measurements through redundancy. 4 Visualization Avalanche rescue is a situation under immense pressure companion rescuers, who are usually recreationists and not professionally educated rescuers, just survived a horrific accident and feel the pressure to help their comrades. Recent statistical analysis has shown that a surprisingly high percentage of victims get caught and completely buried in avalanches producing multiple burial scenarios [22]: 61% of all backcountry skiers who could not be found by visible parts were involved in a multiple burial situation. Multiple burial scenarios ask too much of most companion rescuers, support with avalanche beacons is not sufficient yet but necessary. Consequently, ease of use for an assisting device is key. Today s devices still require lots of training: Some versions still guide the user with periodical beeps to the victim. However, changes in volume are very hard to separate for untrained users. Newer devices provide support with little arrows and rough distance estimates presented visually on a display. Accordingly, an avalanche beacon should, if at all, only require little training, its use has to be obvious even if explained long time ago. The user interface has to be very simple and should only use minimal navigation to keep complexity low. A visual user interface could help to make usage of avalanche beacons much easier. 4.1 Design Rational First, for multiple victim scenarios it is essential that the system allows discrimination between victims. Today, avalanche beacons only report the

5 occurrence of multiple signals, different sources are not isolated, such that interference between multiple signals can confuse the rescuer. Rescuers have to perform separation themselves and only follow the strongest signal by pinpointing their device. The introduction of unique identifiers is rather a standardization problem among manufacturers than a technical challenge. Based upon that, visualization of the spatial distribution of all victims could give rescuers an overview about the emergency situation and enable them to allocate resources more properly. Though, absolute positions maybe difficult to achieve with today s beacon technology, also relative positions to the rescuers location with direction and distance indications could improve today s technology. Further, vital functions, airpocket existence and orientation of the victim being searched should be visualized as well. Evidence of life signs may motivate rescuers and drive rescue of remaining victims especially under harsh conditions. Awareness on the physical state also helps to better foresee and plan upcoming rescue procedures. Presentation of the victim s 3D orientation helps during extrication. Putting all available information of multiple victims into one single interface at once is too much: Avalanche rescue is a very cognitively demanding situation, rescuers must not be flooded with information. We propose separation in location and urgency. First, visual presentation of the victims spatial distribution enables the user to select to victims such that ways can be kept short. Secondly, separation in urgency provides rescuers with a global view on the emergency which allows better focus on the most urgent victims. The system presents an integrate view of several sensor readings. 4.2 Urgency measure A so-called urgency measure, as depicted in Figure 4, assigns an urgency level to each single victim, such that multiple victims can be aligned on a one-dimensional scale. Multiple victims can be compared much easier. The decision tree for automating triage scheme is defined as follows: Heart rate is the primary criterion, air-pocket is second, oxygen blood saturation is third (categories adopted from [23]), and orientation the fourth. In case of unavailable sensor information the fundamental concept is to always assume the worst case, e.g. if the oximeter reports invalid measurements, absence of heart rate is assumed. Fig. 4: Urgency measure 4.3 Two Designs For our prototypical implementation we designed a display, as depicted by Figure 5. As most people are used to read from left to the right, the urgency list starts with colored ID buttons, using the spectrum from red to green, at the left and continues to the right with less urgent victims. Fig. 5: screen design of prototype The map below discriminates the victims by their location and ID. Especially in multiple burial scenarios with multiple rescuers the map helps to allocate resources more properly. Elapsed search time is indicated by a little timer below the map. For our prototype we used a handheld computer with a touch screen. Selecting a victim either by clicking on the urgency boxes or on the map reveals more detailed information on that person: direction and distance from the rescuer (e.g. 9m), heart rate (67), air-pocket existence (none), oxygen blood saturation (47%) and orientation (upright). We are aware of the costs of such a device and vulnerability to hazardous conditions, such as severe cold. However, the colored screen design allowed us to explore visual presentations more thoroughly and helped us to develop a more

6 lightweight design tailored for LCD devices, as partly embedded into today s avalanche beacons already. Figure 6 shows a visualization scheme aimed for a simple LCD display. The first line shows the victims urgency, each represented by a bar at appropriate height. Victims may be selected by a button on the device and a triangle indicates the selection appropriately. Below, heart rate, direction, distance and orientation are displayed. Direction and distance are placed in the center as this is the most crucial information for search. Users are used to the arrow and distance measure from existing devices already. Because of backward compatibility to older devices the standard must not be changed, but rather an additional frequency as a data carrier should be considered. Sensor information should be broadcasted continuously, but an update rate of ten seconds is sufficient. For searchers, the avalanche beacon requires a display for visualizing the received information. Finally, for post analysis memory in the devices could be helpful for recording the sequence of events during an avalanche accident. 6 Proof of concept Implementation Fig. 6: screen sketch for LCD displays 5 System Architecture & Functionality Looking at current systems and enhancing them with the technologies discusses leads to following architecture: Fig. 7: Architecture Diagram An avalanche beacon is composed of a communication unit for sharing localization and sensor data of a victim with surrounding rescuers. Currently, avalanches beacon operate on the 457kHz international standard frequency, as longwave has the advantage of little attenuation by objects, such as snow, metal, trees or rocks. Today, a 80m range [24] is achieved. Sensor data, such as vital sign functions, environmental data, such as air-pocket evidence, does not require more than two bytes: 1 byte for an unique identifier, another byte for coding heart rate, air pocket evidence and orientation (up-right, vertical, upside down) and calculated urgency. Standardization does not permit data modulation on the 457kHz signal. Fig. 8: Prototype Setup For demonstrating and evaluating the concept we have developed a first prototype. For rapid prototyping purposes, various off-the-shelf components offered a fast and convenient approach. We integrated following three sensors: oximeter, oxygen sensor and accelerometer. We used a finger pulse oximeter [25], that can be easily attached to one's toe in a ski boot. The evaluation kit of the sensor itself can detect whether the sensor is mounted properly and the measurements are valid. The oxygen sensor [16] measures oxygen concentration in the environment in per mil accuracy range [17]. For orientation, we used an ADXL202 [21] accelerometer which was attached to a Smart-Its sensor-board [26] with a PIC micro-controller processing unit. All three sensors have been connected via a custom designed adapter board [27] to the serial port of a handheld pocket computer (IPAQ). The system itself is implemented on an IPAQ device. The colored touch screen interface provides high flexibility for exploring different visualizations: rapid prototyping enabled us discussing the concept with experts from the

7 field, see section 7. We have implemented the graphical user interface as proposed in section 4, which allows interaction by touch. Further, we integrated the urgency measure as outlined in section 4.2. Connectivity among different parties is provided by wireless LAN in peer to peer mode. Despite of the opportunities offered by a handheld computer, during implementation the restrictions posed by avalanche beacon technology were kept in mind: minimal bandwidth, battery life time, size, costs and visualization resources. 7 Discussion The prototype described in the previous section helped us to better motivate and demonstrate our concept to experts from the field by providing hands-on experience. In different focus groups and evaluation workshops with practitioners, such as emergency physicists, avalanche beacon developers and researchers from the Swiss Federal Institute for Snow and Avalanche Research we evaluated the concept [28]. Generally, we received positive feedback for the idea of applying wearable sensors to avalanche rescue, as this is completely new. Regarding sensing aspects emergency physicists argued that heart rate is a very significant vital sign more accepted than oxygen blood saturation. The suggestion was to rather focus on heart rate only than trying to integrate diverse measures. Air pocket detection was very desired by both medical experts and avalanche researchers. However, reliable ways of detection remained unknown. Apart from only assisting rescue on site, blackbox functionality appeared to be very interesting for enriching statistics and further driving education in more appropriate rescue procedures. Ethical issues seemed to be very important as well. The concept of a system performing triage, which currently is only done by professional, offers new opportunities and has to be discussed thoroughly on a broader scale. Same applies to legal issues as responsibility for decision based on automated triage. Concerning several sensors it was agreed that an urgency measure is necessary. Even hiding the actual sensor readings from the rescuers completely and provision of calculated urgency only was raised. From a manufacturer s point of view the use long-wave in another prototype appeared to be very important to make the prototype sound. Further, it was mentioned that avalanche beacon market would be very small, devices per year sold world wide, which is a very limiting factor regarding development efforts. Users, approximately three millions in total, tend to use their devices for decades. Willingness for replacements would be very low. This fact suggests the focus on the development of add-on devices for existing beacons rather than revision of the beacons themselves. Using sensors not only for worst case scenarios as the actual accident, but also for monitoring health and fitness, as heart rate monitors do, may be another incentive for users to upgrade their devices. 8 Conclusion and Further Work In this paper we motivated the use of sensors in avalanche rescue by the importance of time during avalanche rescue and the black box view on buried avalanche victims today. We discussed and described how sensor technology can be used to provide rescuers with a valuable tool to enhance their decision ability on how to allocate their resources during rescue. An overview of meaningful sensors founded the basis for our system design. Further, we emphasized that displaying raw sensor measurements will not be appropriate and sufficient. Therefore we introduced an urgency measure to provide an integrated view of the urgency of all victims involved in an accident. A first prototype underlined the feasibility of our approach. We noticed a wide interest in the concept of applying sensors to avalanche rescue. Based on experiences gained from the existing prototype a new concept for sensing appeared to be necessary. Adding additional value to beacons, e.g. such as fitness monitoring, could help to justify higher costs for sensors augmented avalanche beacons. Integrating an avalanche warning capability, as proposed in [29], adds even more value for the mountaineer. First experiences with different sensors and placements determine future directions of extending our system. Investigating the use of Doppler radar could lead to better way of measuring heart rate. Radar may also help to detect the depth of burial which could give hints on how many rescuers have to be assigned to one victim in order to excavate them in time. Sensing technology could also trigger avalanche airbags or release an emergency call including vital sign functions and GPS position automatically.

8 Finally, we note that sharing awareness on individual's situations can also be applied to diverse fields ranging from military medicine over fitness monitoring to health monitoring for sick and elderly persons. In general, it would be a great achievement if A- Life could save at least some of the 150 lethal avalanche victims yearly. Acknowledgements The Smart-Its project is funded in part by the Commission of the European Union under contract IST , and by the Swiss Federal Office for Education and Science (BBW ). References [1] Jill Fredston and Doug Fesler. The Human Factor - Lessons For Avalanche Education. In Proceedings of the International Snow Science Workshop (ISSW 94). Snowbird, Utah, Nov [2] SLF. Davos ( ). Winterberichte (German) [3] La Chapelle E.. The ABC of Avalanche Safety. The Mountaineers, chapter The Mountaineers, page 65. Seattle, [4] Brugger, H. and Falk, M.. Le quattro fasi del seppellimento da valangha. Neve e Valanghe. 16:24-31, 1992 (Italian) [5] Tschirky, F. and Brabec, B. and Kern, M., Avalanche rescue systems in Switzerland: experience and limitations, In Proceedings International Snow Science Workshop (ISSW 2000). Big Sky MT, USA, Oct. 2000, p [6] Healey, J. and Picard, R.W.. StartleCam: A Cybernetic Wearable Camera. Proceedings of the Second International Symposium on Wearable Computing, Pittsburgh, PA, October 19-20, (1998). [7] Ouchi, K., Suzuki, T., Doi, M.. LifeMinder: A Wearable Healthcare Support System Using User's Context. ICDCS Workshops Vienna, Austria, Jul [8] Van Laerhoven, K., Aidoo, K. and Lowette, S.. Real-time analysis of Data from Many Sensors with Neural Networks. In Proceedings of the fifth International Symposium on Wearable Computers (ISWC 2001). Zurich, Switzerland, ISBN , IEEE Press, 2001, pp [9] Hereford, J., Edgerly, B khz Electromagnetism and the Future of Avalanche Transceivers. In Proceedings International Snow Science Workshop (ISSW 2000). Big Sky MT, USA, Oct [10]The World Medical Association Inc.. World Medical Association Statement on Medical Ethics in the Event of Disasters. 46th WMA General Assembly, Stockholm, Sweden, September [11]Brugger, H., Durrer, B., Adler-Kastner, L., Falk, M., Tschirky, F.. Field management of avalanche victims. Resuscitation 51: [12]Basic Life Support Resuscitation Guidelines. Resuscitation Council (UK). [13]Principles of Pulse Oximetry. Clinical Monograph. Nellcor Corp., Pleasanton, CA, [14]Martin, T., Jovanov, E., and Raskovic, D.. Issues in Wearable Computing of a Wearable ECG Monitoring Device. In Proceedings of the fourth International Symposium on Wearable Computing (ISWC 2000). Atlanta, USA, ISBN , IEEE Press, 2000, p [15]Falk, M., Brugger, H., Adler-Kastner, L.. Avalanche survival chances. Nature 368:21, [16]Fujikura. [17]Pewatron. [18]Radwin, M., Grissom, C., Scholand, M., Harmston C.. Normal oxygenation and ventilation during snow burial by the exlusion of exhaled carbon dioxide. Wilderness and Environmental Medicine 12, pp , [19]Grissom et al. Respiration During Snow Burial Using An Artificial Air Pocket. JAMA Vol. 283, No.17: , [20]Lukowicz, P. et al.. WearNET: A Distributed Multi-sensor System for Context Aware Wearables, In Proceedings of the 4th International Conference on Ubiquitous Computing (Ubicomp 2002), September 2002, pp [21]Analog Devices: edfiles/datasheets/ adxl202_10_b.pdf [22]Genswein, M., Harvey, S.. Statistical analyses on multiple burial situations and search strategies for multiple burials. In Proceedings International Snow Science Workshop (ISSW 2002). British Columbia, Canada, Oct [23]Miller, K. Pulse Oximetry. Alameda County Emergency Medical News Letter (EMS Newsletter) Volume 15, No. 2, Oct [24] Schweizer, J., Krüsi, G.. Avalanche Rescue Beacon Testing. In Proceedings International Snow Science Workshop (ISSW 2002). British Columbia, Canada, Oct [25]XPOD Pulse Oximetry Module. [26]Release of Smart-Its Hardware and Software. TecO, [27]Schmidt, A.. Ubicomp Development. comp.lancs.ac.uk/~albrecht/ubidev/ [28]Swiss Institute for Avalanche and Snow Research, Colloquium. Davos, Switzerland, March 6, [29]Signer, B. et al.. Telephone Interface for Avalanche Warnings based on Information Server for Adaptable Context Delivery. In International Conference on Pervasive Computing, Zurich, Switzerland, August 2002.

AVALANCHE RESUSCITATION. ALICIA PETERSON, MD Emergency and Wilderness Medicine

AVALANCHE RESUSCITATION. ALICIA PETERSON, MD Emergency and Wilderness Medicine AVALANCHE RESUSCITATION ALICIA PETERSON, MD Emergency and Wilderness Medicine OBJECTIVES Prevention Rescue Survival probability of an avalanche Recommended Resuscitation Avalanche victim resuscitation

More information

First Class. Monitoring. solutions for. Range of monitors CO 2 O 2 SpO 2 ECG NIBP. More Choices to meet your needs

First Class. Monitoring. solutions for. Range of monitors CO 2 O 2 SpO 2 ECG NIBP. More Choices to meet your needs First Class solutions for Monitoring by CO 2, O 2, SpO 2, ECG, NIBP Range of monitors CO 2 O 2 SpO 2 ECG NIBP More Choices to meet your needs Medical technology Monitors Sensors OEM modules Accessories

More information

Use of On-Body Sensors to Support Elite Sprint Coaching

Use of On-Body Sensors to Support Elite Sprint Coaching Use of On-Body Sensors to Support Elite Sprint Coaching Kuntze, G. 1, Pias, M.R. 2, Bezodis, I.N. 1, Kerwin, D.G. 1, Coulouris, G. 2 and Irwin, G. 1 Cardiff School of Sport, University of Wales Institute,

More information

Even Better Support For. Professional Rescuers

Even Better Support For. Professional Rescuers Even Better Support For Professional Rescuers Beyond the AED Plus In 2002, ZOLL launched the AED Plus defibrillator with Real CPR Help real-time CPR feedback to let rescuers know, for the first time ever,

More information

Warranty The device shall have a 6-year warranty at minimum

Warranty The device shall have a 6-year warranty at minimum Bid Specifications Defibrillator The AED must have a high-resolution liquid crystal display with capacitive touch panel. The AED must have an ON/OFF button. The AED must have a SHOCK button that illuminates

More information

MANAGEMENT OF COLLAPSED ADULT PATIENT

MANAGEMENT OF COLLAPSED ADULT PATIENT MANAGEMENT OF COLLAPSED ADULT PATIENT Author Information Dr. Venugopalan P.P. Chief Emergency Medicine Dy Director, MIMS Academy Malabar Institute of Medical Sciences Ltd. P.O. Govindapuram, Calicut, Kerala

More information

Overview. The user must follow the instructions below.

Overview. The user must follow the instructions below. Overview Thank you for purchasing i-pad. This product can be successfully and safely used for a long period if you familiarize yourself with the instructions and precautions by reading the user's manual

More information

To help you understand about defibrillation and defibrillators (AEDs), we have put together a list of questions we get asked most often.

To help you understand about defibrillation and defibrillators (AEDs), we have put together a list of questions we get asked most often. To help you understand about defibrillation and defibrillators (AEDs), we have put together a list of questions we get asked most often. Section 1 what is an AED and why should I have one Q: What does

More information

Datalogging Shirt for Baseball Pitchers

Datalogging Shirt for Baseball Pitchers Datalogging Shirt for Baseball Pitchers Design Team Marcus Moché, Alexandra Morgan, David Schmidt Design Advisor Prof. M. Taslim Abstract Baseball pitcher elbow injuries have been increasing in frequency

More information

2015 Guidelines Summary HeartSine samaritan PAD Automated External Defibrillators

2015 Guidelines Summary HeartSine samaritan PAD Automated External Defibrillators 2015 Guidelines Summary HeartSine samaritan PAD Automated External Defibrillators This document provides a summary of the 2015 guidelines and how the HeartSine samaritan PAD range of products complies

More information

MEDIANA HEARTON AED A15. Mediana Automated External Defibrillator A15

MEDIANA HEARTON AED A15. Mediana Automated External Defibrillator A15 AED A5 Mediana Automated External Defibrillator A5 AED A5 COVER Protected icon sheet, shock button, adult/paediatric mode switch. 7 BATTERY Disposable LiMnO2 Non-Rechargeable. 2yrs shelf life, 5yrs standby

More information

AED Plus. The Best Support For Rescuers

AED Plus. The Best Support For Rescuers AED Plus The Best Support For Rescuers CPR Required The latest American Heart Association (AHA) Guidelines, issued in 2010, are clear: successful defibrillation requires high-quality CPR performed at the

More information

Magdalen Court School

Magdalen Court School Rules for the Slopes The FIS (International Ski Federation) has established ten rules for the conduct of skiers and snowboarders. In short, they are: 1. RESPECT. Do not endanger others. 2. CONTROL. Adapt

More information

SIL explained. Understanding the use of valve actuators in SIL rated safety instrumented systems ACTUATION

SIL explained. Understanding the use of valve actuators in SIL rated safety instrumented systems ACTUATION SIL explained Understanding the use of valve actuators in SIL rated safety instrumented systems The requirement for Safety Integrity Level (SIL) equipment can be complicated and confusing. In this document,

More information

Enhancing Small Arms Target Engagement. Mike Tombu DRDC Toronto Research Centre

Enhancing Small Arms Target Engagement. Mike Tombu DRDC Toronto Research Centre Enhancing Small Arms Target Engagement Mike Tombu DRDC Toronto Research Centre DMC A INFORMATIVE STATEMENTS (U) The data collected as part of this study was approved either by Defence Research and Development

More information

Confidence comes with knowing you are Code-Ready.

Confidence comes with knowing you are Code-Ready. Confidence comes with knowing you are Code-Ready. The First and Only Code-Ready Defibrillator. The worst time to find out a defibrillator isn t ready is at the code. Quick action is essential and stress

More information

Solutions for transcutaneous monitoring

Solutions for transcutaneous monitoring Solutions for transcutaneous monitoring About Radiometer Radiometer is a leading provider of technologically advanced acute care solutions that simplify and automate all phases of acute care testing. By

More information

Avalanche Victim Resuscitation Checklist

Avalanche Victim Resuscitation Checklist Avalanche Victim Resuscitation Checklist Changing process for saving lives ICAR MEDCOM: Kottmann A, Blancher M, Boyd J, Spichiger T, Brugger H Dr A. Kottmann Avalanche Time Hazard Life or death Stressfull

More information

HAMILTON-G5. The modular high-end ventilation solution

HAMILTON-G5. The modular high-end ventilation solution HAMILTON-G5 The modular high-end ventilation solution We live for ventilation technology We live for ventilation technology. Technology that helps caregivers improve the lives of their critically ill patients.

More information

What is an AED? Why buy from defibshop?

What is an AED? Why buy from defibshop? What is an AED? The American Heart Association estimates 350,000 people die each year from Sudden Cardiac Arrest (SCA). The only treatment against this, is a defibrillation shock from an AED. They may

More information

User Activity Related Data Sets for Context Recognition

User Activity Related Data Sets for Context Recognition User Activity Related Data Sets for Context Recognition Holger Junker 1, Paul Lukowicz 1,2, Gerhard Tröster 1 1 Wearable Computing Lab, ETH Zurich, Switzerland 2 Institute for Computer Systems and Networks,

More information

Basic Life Support & Automated External Defibrillation Course. OBJECTIVES

Basic Life Support & Automated External Defibrillation Course.  OBJECTIVES OBJECTIVES Basic Life Support & Automated External Defibrillation Course www.erc.edu At the end of this course participants should be able to demonstrate: How to assess the collapsed victim. How to perform

More information

Introducing Intellisense CPR Feedback Sensor and Technology Overview. Internal Use Only Not For Distribution

Introducing Intellisense CPR Feedback Sensor and Technology Overview. Internal Use Only Not For Distribution Introducing Intellisense CPR Feedback Sensor and Technology Overview 1 2015 Guidelines The Need For Better Quality CPR 2 Guidelines 2015 High quality CPR remains essential to improving outcomes CPR providers

More information

AED Trainer NF1200-T. Operator s Manual

AED Trainer NF1200-T. Operator s Manual AED Trainer i-pad NF1200-T Operator s Manual NF1200-T Table of Contents Table of Contents 2 1. Introduction 3 Product Description 3 Intended Use 3 2. Device Orientation 4 3. Setting up the i-pad 8 Package

More information

Introduction Welcome to COMPREHENSIVE BASIC LIFE SUPPORT Course. BLS is the foundation for saving lives after cardiac arrest. You will learn the skills of highquality cardiopulmonary resuscitation (CPR)

More information

Homeostasis and Negative Feedback Concepts and Breathing Experiments 1

Homeostasis and Negative Feedback Concepts and Breathing Experiments 1 Homeostasis and Negative Feedback Concepts and Breathing Experiments 1 I. Homeostasis and Negative Feedback Homeostasis refers to the maintenance of relatively constant internal conditions. For example,

More information

Wire ropes condition monitoring: conception and embodiment

Wire ropes condition monitoring: conception and embodiment NDT2015, Hyderabad November 26-28, 2015 More info about this article: http://www.ndt.net/?id=21134 Wire ropes condition monitoring: conception and embodiment Alexander Mironenko INTRON PLUS LTD., Moscow,

More information

Avalanche deaths in the United States: a 45-year analysis

Avalanche deaths in the United States: a 45-year analysis Wilderness and Environmental Medicine, 10, 146-151 (1999) ORIGINAL RESEARCH Avalanche deaths in the United States: a 45-year analysis CHARLES E. PAGE, MD; DALE ATKINS, BA; LEE W. SHOCKLEY, MD; MICHAEL

More information

THE CANDU 9 DISTRffiUTED CONTROL SYSTEM DESIGN PROCESS

THE CANDU 9 DISTRffiUTED CONTROL SYSTEM DESIGN PROCESS THE CANDU 9 DISTRffiUTED CONTROL SYSTEM DESIGN PROCESS J.E. HARBER, M.K. KATTAN Atomic Energy of Canada Limited 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 CA9900006 and M.J. MACBETH Institute for

More information

Even Better Support. For Rescuers

Even Better Support. For Rescuers Even Better Support For Rescuers Beyond the AED Plus In 2002, ZOLL launched the AED Plus defibrillator with Real CPR Help real-time CPR Feedback to let rescuers know, for the first time ever, when they

More information

A systematic hazard analysis and management process for the concept design phase of an autonomous vessel.

A systematic hazard analysis and management process for the concept design phase of an autonomous vessel. A systematic hazard analysis and management process for the concept design phase of an autonomous vessel. Osiris A. Valdez Banda ᵃᵇ, Sirpa Kannos, Floris Goerlandt ᵃ, Piet er van Gelder ᵇ, Mart in Bergst

More information

Distinguishing Features

Distinguishing Features CardiAid CT0207 AED «The best public access defibrillator!» Distinguishing Features CardiAid does not have an on-off button, automatically starts operating when the cover is opened; which provides simplicity

More information

INTELLiVENT -ASV. The world s first Ventilation Autopilot

INTELLiVENT -ASV. The world s first Ventilation Autopilot INTELLiVENT -ASV The world s first Ventilation Autopilot Intelligent Ventilation since 1983 We live for ventilation technology We live for ventilation technology that helps caregivers improve the lives

More information

HAMILTON-T1 Intelligent transport ventilation for armed forces

HAMILTON-T1 Intelligent transport ventilation for armed forces HAMILTON-T1 HAMILTON-T1 Intelligent transport ventilation for armed forces The HAMILTON-T1 combines for the first time the functionality of a fully featured intensive care unit ventilator with the compactness

More information

HAMILTON-C3. The compact high-end ventilator

HAMILTON-C3. The compact high-end ventilator The compact high-end ventilator We live for ventilation technology We live for ventilation technology. Technology that helps caregivers improve the lives of their critically ill patients. We believe that

More information

R S A B C CPR. Basic Life Support Flow Chart Check for danger. Check Response. Send for Help. Check Airway. Check for Breathing.

R S A B C CPR. Basic Life Support Flow Chart Check for danger. Check Response. Send for Help. Check Airway. Check for Breathing. CPR CPR is the technique of the manual inflation of the lungs with oxygen, and compression of the heart, therefore pumping oxygenated blood around the body, and keeping the vital organs supplied with oxygen.

More information

DESIGNED FOR PROFESSIONAL RESCUERS

DESIGNED FOR PROFESSIONAL RESCUERS DESIGNED FOR PROFESSIONAL RESCUERS SMART TECHNOLOGY. UNRIVALED SUPPORT. Designed for professional rescuers, the ZOLL AED 3 BLS defibrillator provides in-depth rescue support for both adult and child victims

More information

ACCESSORIES FOR EVERY RESCUE

ACCESSORIES FOR EVERY RESCUE AED Plus Accessories and Training Products ACCESSORIES FOR EVERY RESCUE ELECTRODES, BATTERIES & ACCESSORY KIT Everything you need to keep your AED Plus ready to use CPR-D-padz Electrodes One-piece design

More information

Even Better Support For Rescuers

Even Better Support For Rescuers Even Better Support For Rescuers Beyond the AED Plus In 2002, ZOLL launched the AED Plus defibrillator with Real CPR Help real-time CPR Feedback to let rescuers know, for the first time ever, when they

More information

New Generation System M, leading the World in the Non-Invasive Measurement of Critical Real-Time Parameters.

New Generation System M, leading the World in the Non-Invasive Measurement of Critical Real-Time Parameters. New Generation System M, leading the World in the Non-Invasive Measurement of Critical Real-Time Parameters. System M Spectrum Medicals total commitment to continuous product improvement is demonstrated

More information

3M Electrial Markets Division EMS. Electronic Marker System

3M Electrial Markets Division EMS. Electronic Marker System 3M Electrial Markets Division EMS Electronic Marker System 3M EMS Electronic Marker System The 3M Electronic Marker System helps eliminate guesswork. 3M markers operate even in the presence of metal conduits

More information

Proposal for a System of Mutual Support Among Passengers Trapped Inside a Train

Proposal for a System of Mutual Support Among Passengers Trapped Inside a Train Proposal for a System of Mutual Support Among Passengers Trapped Inside a Train Ryohei Yagi (&), Takayoshi Kitamura, Tomoko Izumi, and Yoshio Nakatani Graduate School of Science and Engineering, Ritsumeikan

More information

Traffic safety developments in Poland

Traffic safety developments in Poland Traffic safety developments in Poland Siem Oppe D-2001-8 Traffic safety developments in Poland A research note D-2001-8 Siem Oppe Leidschendam, 2001 SWOV Institute for Road Safety Research, The Netherlands

More information

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications Application Description AG/266PILD-EN Rev. C 2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic Pressure Measurement Engineered solutions for all applications Increase plant productivity

More information

REWARMING MILD HYPOTHERMIA AFTER AVALANCHE BURIAL

REWARMING MILD HYPOTHERMIA AFTER AVALANCHE BURIAL REWARMING MILD HYPOTHERMIA AFTER AVALANCHE BURIAL Colin K. Grissom, MD, Chris H. Harmston, MSE, John C. McAlpine, MD, Martin I. Radwin, MD, Brad Ellington, DO, Ellie Hirshberg, MD. LDS Hospital and the

More information

Evaluation System for Chest Compression Training Shinnosuke-kun

Evaluation System for Chest Compression Training Shinnosuke-kun NEW AREAS Evaluation System for Chest Compression Training Shinnosuke-kun Youta KOKUBO*, Ichinosuke MAEDA, Shingo HIBINO and Kouichirou MINAMI ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

Collision Avoidance System using Common Maritime Information Environment.

Collision Avoidance System using Common Maritime Information Environment. TEAM 2015, Oct. 12-15, 2015, Vladivostok, Russia Collision Avoidance System using Common Maritime Information Environment. Petrov Vladimir Alekseevich, the ass.professor, Dr. Tech. e-mail: petrov@msun.ru

More information

Fingertip Pulse Oximeter

Fingertip Pulse Oximeter Instruction Manual Fingertip Pulse Oximeter Item # 40-810-000 Item # 40-811-000 Item # 40-812-000 Item # 40-813-000 Please read this guidebook completely before operating this unit. Limited Two-Year Warranty

More information

COALINGA STATE HOSPITAL. Effective Date: August 31, 2006

COALINGA STATE HOSPITAL. Effective Date: August 31, 2006 COALINGA STATE HOSPITAL NURSING POLICY AND PROCEDURE MANUAL SECTION Emergency Procedures POLICY NUMBER: 702 Effective Date: August 31, 2006 SUBJECT: CARDIOPULMONARY RESUSCITATION (CPR) 1. PURPOSE: To provide

More information

AED Plus AL The Best Support For Rescuers

AED Plus AL The Best Support For Rescuers AED Plus AL-80166 The Best Support For Rescuers AL-80166 CPR Required The latest American Heart Association (AHA) Guidelines issued in 2010, are clear: successful defibrillation requires high-quality CPR

More information

Minimum size for maximum performance

Minimum size for maximum performance HAMILTON-C1 HAMILTON-C1 Minimum size for maximum performance Minimum size for maximum performance HAMILTON-C1 - One for all The high-performance capabilities of the HAMILTON-C1 include advanced lung protective

More information

2018 National Metal and Nonmetal Mine Rescue Contest. Technician Team Competition Written Test (Dräger BG-4) Good Luck!

2018 National Metal and Nonmetal Mine Rescue Contest. Technician Team Competition Written Test (Dräger BG-4) Good Luck! 2018 National Metal and Nonmetal Mine Rescue Contest Technician Team Competition Written Test (Dräger BG-4) Directions: 1. Find the correct answer to each of the questions. 2. Select only one answer per

More information

At the end of this course participants should be able to demonstrate:

At the end of this course participants should be able to demonstrate: ١ ٢ At the end of this course participants should be able to demonstrate: How to assess the collapsed victim. How to perform chest compression and rescue breathing. How to place an unconscious breathing

More information

HAMILTON-C2 HAMILTON-C2. The universal ventilation solution

HAMILTON-C2 HAMILTON-C2. The universal ventilation solution HAMILTON-C2 HAMILTON-C2 The universal ventilation solution The universal ventilation solution HAMILTON-C2 - The compact ventilation solution The HAMILTON-C2 mechanical ventilator is a universal ventilation

More information

SmartDose is available for both liquid and gas cylinder applications.

SmartDose is available for both liquid and gas cylinder applications. SmartDose Auto-Adjusting Intelligent Technology. It s what separates Inspired Technologies portable oxygen system from every other portable on the market.without SmartDose, your patient is forced to focus

More information

Medical Instruments in the Developing World

Medical Instruments in the Developing World 2.2 Ventilators 2.2.1 Clinical Use and Principles of Operation Many patients in an intensive care and the operating room require the mechanical ventilation of their lungs. All thoracic surgery patients,

More information

Analyses and statistics on the frequency and the incidence of traffic accidents within Dolj County

Analyses and statistics on the frequency and the incidence of traffic accidents within Dolj County UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN Faculty of Mechanics and Technology AUTOMOTIVE series, year XXIV, no. 28 Analyses and statistics on the frequency and the incidence of traffic accidents within

More information

HumiSys HF High Flow RH Generator

HumiSys HF High Flow RH Generator HumiSys HF High Flow RH Generator Designed, built, and supported by InstruQuest Inc. Versatile Relative Humidity Generation and Multi-Sensor System The HumiSys HF is a high flow version of the previously

More information

Fifteen years ago, being in the

Fifteen years ago, being in the Editor: Albrecht Schmidt n University of Stuttgart n albrecht@computer.org Ubiquitous Connectivity in the Mountains: Enhancing the Ski Experience Bastian Pfleging, Albrecht Schmidt, and Florian Michahelles

More information

AUTONOMOUS AND AUTOMATIC ACCIDENT RECOVERY SYSTEM USING GPS AND HAM RADIO

AUTONOMOUS AND AUTOMATIC ACCIDENT RECOVERY SYSTEM USING GPS AND HAM RADIO AUTONOMOUS AND AUTOMATIC ACCIDENT RECOVERY SYSTEM USING GPS AND HAM RADIO 1 Sidhartha Velpula, student, ECE Department, KL University, India, velpulasidhartha@gmail.com 2 Vivek Obilineni, student, ECE

More information

Mt Hood Meadows Avalanche Accident

Mt Hood Meadows Avalanche Accident Mt Hood Meadows Avalanche Accident February 28, 2011 Date: Noon on Monday, 2/28/2011 Submitted by: Joe Sillman, Mt Hood Meadows Pro Patrol and Mark Moore, NWAC Place: Heather Canyon Drainage, Backyards,

More information

C. Mokkapati 1 A PRACTICAL RISK AND SAFETY ASSESSMENT METHODOLOGY FOR SAFETY- CRITICAL SYSTEMS

C. Mokkapati 1 A PRACTICAL RISK AND SAFETY ASSESSMENT METHODOLOGY FOR SAFETY- CRITICAL SYSTEMS C. Mokkapati 1 A PRACTICAL RISK AND SAFETY ASSESSMENT METHODOLOGY FOR SAFETY- CRITICAL SYSTEMS Chinnarao Mokkapati Ansaldo Signal Union Switch & Signal Inc. 1000 Technology Drive Pittsburgh, PA 15219 Abstract

More information

Judo Sensor Vest. Project Proposal. Team: Max Baumgartner (mtbaumg2) Alex Gaynor (bchmnng2) Janak Mehta (jrmehta3) TA: Samuel Sagan

Judo Sensor Vest. Project Proposal. Team: Max Baumgartner (mtbaumg2) Alex Gaynor (bchmnng2) Janak Mehta (jrmehta3) TA: Samuel Sagan Judo Sensor Vest Project Proposal Team: Max Baumgartner (mtbaumg2) Alex Gaynor (bchmnng2) Janak Mehta (jrmehta3) TA: Samuel Sagan ECE 445 Senior Design Spring 2017 University of Illinois at Urbana Champaign

More information

LEADER SEARCH RADAR LIFE LOCATOR

LEADER SEARCH RADAR LIFE LOCATOR INTRODUCTION OF: Ultra Wide Band Victims detector & Locator V30.09.13.00 Product Concept i. The is designed to be simplistic in use whilst producing reliable and accurate information in the search for

More information

AED Plus. The Best Support For Rescuers

AED Plus. The Best Support For Rescuers AED Plus The Best Support For Rescuers CPR Required The latest American Heart Association (AHA) Guidelines issued in 2010, are clear: successful defibrillation requires high-quality CPR performed at the

More information

Training Fees 3,400 US$ per participant for Public Training includes Materials/Handouts, tea/coffee breaks, refreshments & Buffet Lunch.

Training Fees 3,400 US$ per participant for Public Training includes Materials/Handouts, tea/coffee breaks, refreshments & Buffet Lunch. Training Title DISTRIBUTED CONTROL SYSTEMS (DCS) 5 days Training Venue and Dates DISTRIBUTED CONTROL SYSTEMS (DCS) Trainings will be conducted in any of the 5 star hotels. 5 22-26 Oct. 2017 $3400 Dubai,

More information

Focused on essentials DRÄGER SAVINA 300

Focused on essentials DRÄGER SAVINA 300 D-46451-2012 Focused on essentials DRÄGER SAVINA 300 2 How can a ventilator help to make your daily work easier? D-46454-2012 D-11112-2010 The best possible patient care is your focus every day. In the

More information

2005 Top Ten Major Changes in Treatment Recommendations *

2005 Top Ten Major Changes in Treatment Recommendations * 2005 Top Ten Major Changes in Treatment Recommendations * This document reviews the top ten new treatment recommendations and guidelines for ASHI s basic life support training programs for professional

More information

References PEDOMETER PULSOMETER

References PEDOMETER PULSOMETER spacecraft, it is usually beneficial to wait until the solar max to use it because then it brings down three times faster than average. In summary, the operation of GOLD has a lower risk of disabling than

More information

TIGHTNESS. Glass sealing Thanks to our glass-sealing technology, ODU products can meet the most demanding tightness requirements.

TIGHTNESS. Glass sealing Thanks to our glass-sealing technology, ODU products can meet the most demanding tightness requirements. TIGHTNESS Glass sealing Thanks to our glass-sealing technology, ODU products can meet the most demanding tightness requirements. ODU has the necessary expertise for developing and manufacturing connectors

More information

US Avalanche Accidents Dale Atkins

US Avalanche Accidents Dale Atkins US Avalanche Accidents 2014-15 Dale Atkins 3 Alaska 11 deaths (5-yr average = 31deaths) Fatalities 1 2 Montana 2 Wyoming 3 Utah Colorado Accidents New Hampshire Massachusetts New York West Virginia Virginia

More information

Code Blue III Simulators. ALS and Emergency Care Simulators

Code Blue III Simulators. ALS and Emergency Care Simulators Code Blue III Simulators ALS and Emergency Care Simulators Our Code Blue III system teaches ALS skills using realistic code scenarios. Each step you take is monitored by software providing important feedback,

More information

Measurement of Representative Landfill Gas Migration Samples at Landfill Perimeters: A Case Study

Measurement of Representative Landfill Gas Migration Samples at Landfill Perimeters: A Case Study Measurement of Representative Landfill Migration Samples at Landfill Perimeters: A Case Study Breda M. Kiernan, PhD. National Centre for Sensor Research, Dublin City University Glasnevin Dublin 9 Ireland

More information

Basic Life Support. Based on UK Resuscitation Guidelines (2010)

Basic Life Support. Based on UK Resuscitation Guidelines (2010) Basic Life Support Based on UK Resuscitation Guidelines (2010) Clinical Skills and Simulation Team With acknowledgements also to Basic Life Support Faculty - SoNMS PowerPoint content last updated 26/05/2015

More information

Wiimote Visualization Through Particles

Wiimote Visualization Through Particles 1 Abstract Wiimote Visualization Through Particles Joshua Jacobson Since 2006, the Wii video game console has been found within homes throughout out the world. The Wiimote exists as the primary input method

More information

ACCESSORIES FOR EVERY RESCUE

ACCESSORIES FOR EVERY RESCUE AED Plus Accessories and Training Products ACCESSORIES FOR EVERY RESCUE 7-inch Standard Wall Cabinet 7-inch alarmed wall cabinet holds AED Plus (without carry case) and one spare set of electrodes Part#

More information

IDeA Competition Report. Electronic Swimming Coach (ESC) for. Athletes who are Visually Impaired

IDeA Competition Report. Electronic Swimming Coach (ESC) for. Athletes who are Visually Impaired IDeA Competition Report Electronic Swimming Coach (ESC) for Athletes who are Visually Impaired Project Carried Out Under: The Department of Systems and Computer Engineering Carleton University Supervisor

More information

Pedestrian Scenario Design and Performance Assessment in Driving Simulations

Pedestrian Scenario Design and Performance Assessment in Driving Simulations Pedestrian Scenario Design and Performance Assessment in Driving Simulations Achal Oza, Qiong Wu, and Ronald R. Mourant Virtual Environments Laboratory, Dept. of Mechanical and Industrial Engineering 334

More information

HYPOXIA IN OPERATION ORIENTED SIMULATION. SAFE EUROPE, ZEIST, APRIL 2017 Wietse Ledegang, MSc.

HYPOXIA IN OPERATION ORIENTED SIMULATION. SAFE EUROPE, ZEIST, APRIL 2017 Wietse Ledegang, MSc. HYPOXIA IN OPERATION ORIENTED SIMULATION SAFE EUROPE, ZEIST, APRIL 2017 Wietse Ledegang, MSc. TNO TNO = Netherlands Organisation for Applied Scientific Research Department of Human Factors in Soesterberg

More information

Education and Research

Education and Research Richard Wall University of Idaho http://www.ece.uidaho.edu/ee/digital/rwall/research/transportation/niatt.html edu/ee/digital/rwall/research/transportation/niatt html 1 Presentations Summary of activities

More information

The HumiSys. RH Generator. Operation. Applications. Designed, built, and supported by InstruQuest Inc.

The HumiSys. RH Generator. Operation. Applications. Designed, built, and supported by InstruQuest Inc. The HumiSys RH Generator Designed, built, and supported by InstruQuest Inc. Versatile Relative Humidity Generation and Multi-Sensor System The new HumiSys with single or dual RH probes capabilities is

More information

siot-shoe: A Smart IoT-shoe for Gait Assistance (Miami University)

siot-shoe: A Smart IoT-shoe for Gait Assistance (Miami University) siot-shoe: A Smart IoT-shoe for Gait Assistance (Miami University) Abstract Mark Sullivan, Casey Knox, Juan Ding Gait analysis through the Internet of Things (IoT) is able to provide an overall assessment

More information

AED Plus Accessories and Training Products

AED Plus Accessories and Training Products AED Plus Accessories and Training Products Electrodes CPR-D-padz This revolutionary one-piece adult electrode ensures fast and accurate placement, then senses and reports the depth and rate of the chest

More information

Administrative Procedures Automated External Defibrillator (AED)

Administrative Procedures Automated External Defibrillator (AED) Administrative Procedures Automated External Defibrillator (AED) PURPOSE: The purpose of these procedures is to give guidance to those employees of the Lynden School District who are trained and willing

More information

Basic steps and spatial-temporal dimensions in the process of skills acquisition in alpine skiing

Basic steps and spatial-temporal dimensions in the process of skills acquisition in alpine skiing Basic steps and spatial-temporal dimensions in the process of skills acquisition in alpine skiing Rado Pisot 1,2, Tomaž Šegula 2, Milan Žvan 2, 3, Blaž Lešnik 2,4 1 Institute for Kinesiology Research,

More information

MP15 Jockey Pump Controller

MP15 Jockey Pump Controller Setup and Operating Instructions MP15 Jockey Pump Controller This manual provides general information, installation, operation, maintenance, and system setup information for Metron Model MP15 Jockey Pump

More information

OxyScan Graphic. Operating Instructions. UMS Micro-oxygen sensor 501. Microprocessor instrument

OxyScan Graphic. Operating Instructions. UMS Micro-oxygen sensor 501. Microprocessor instrument OxyScan Graphic Operating Instructions UMS Micro-oxygen sensor 501 Microprocessor instrument Introduction Thank you for choosing the UMS Micro Oxygen Sensor 501 - a highly advanced product! Please read

More information

Understanding safety life cycles

Understanding safety life cycles Understanding safety life cycles IEC/EN 61508 is the basis for the specification, design, and operation of safety instrumented systems (SIS) Fast Forward: IEC/EN 61508 standards need to be implemented

More information

SHUKSAN ARM AVALANCE ACCIDENT, 2/14/1999

SHUKSAN ARM AVALANCE ACCIDENT, 2/14/1999 SHUKSAN ARM AVALANCE ACCIDENT, 2/14/1999 Date & Time 2-14-1999, ~1220 PM PST Location Rumble Gully below Shuksan Arm in the Mt Baker Wilderness, just east of the eastern boundary of the Mt Baker Ski Area

More information

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA Capnography in the Veterinary Technician Toolbox Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA What are Respiration and Ventilation? Respiration includes all those chemical and physical

More information

Device overview. 6 Breathing circuit connection. Note: When the remote control foot pedal is connected, the manual switch is disabled.

Device overview. 6 Breathing circuit connection. Note: When the remote control foot pedal is connected, the manual switch is disabled. CoughAssist E70 Quick start guide 1 2 3 4 5 Device overview Starting therapy Modifying therapy settings Monitoring view and icons 6 7 Suggested guidelines for therapy Device menu Mask fitting 1 Device

More information

How does the paramedics work day look like? Have a look at our field research video.

How does the paramedics work day look like? Have a look at our field research video. Adrinject Adripod Adrinject and Adripod are designed as a kit to assist paramedics in adrenaline administration during CPR procedures in pre-hospital contexts. Together two products will free up time,

More information

Initial training - OCCUPATIONAL HEALTH AND SAFETY and FIRE PROTECTION

Initial training - OCCUPATIONAL HEALTH AND SAFETY and FIRE PROTECTION Initial training - OCCUPATIONAL HEALTH AND SAFETY and FIRE PROTECTION Project registration number: CZ.1.05/2.1.00/03.0078 Project name: Národní ústav duševního zdraví (National Institute of Mental Health)

More information

COMMISSION FOR MOUNTAIN EMERGENCY MEDICINE

COMMISSION FOR MOUNTAIN EMERGENCY MEDICINE COMMISSION FOR MOUNTAIN EMERGENCY MEDICINE INTERNATIONALE KOMMISSION FÜR ALPINES RETTUNGSWESEN COMMISSION INTERNATIONALE DU SECOURS ALPIN THE MEDICAL ON SITE TREATMENT OF HYPOTHERMIA Bruno Durrer, Hermann

More information

2016/04/03 Alaska Hoodoo Mountains, Eastern Alaska Range Published by Conrad Chapman Eastern Alaska Range Avalanche Center

2016/04/03 Alaska Hoodoo Mountains, Eastern Alaska Range Published by Conrad Chapman Eastern Alaska Range Avalanche Center 2016/04/03 Alaska Hoodoo Mountains, Eastern Alaska Range Published by Conrad Chapman Eastern Alaska Range Avalanche Center Avalanche Details Date: 03 April 2016 Time: 3:00 pm AST Location: Hoodoo Mountains,

More information

Advanced PMA Capabilities for MCM

Advanced PMA Capabilities for MCM Advanced PMA Capabilities for MCM Shorten the sensor-to-shooter timeline New sensor technology deployed on off-board underwater systems provides navies with improved imagery and data for the purposes of

More information

LIFEPAK. CR2 Defibrillator. Better technology for better outcomes. Essential version

LIFEPAK. CR2 Defibrillator. Better technology for better outcomes. Essential version LIFEPAK CR2 Defibrillator Better technology for better outcomes. Essential version The LIFEPAK CR2 Defibrillator is not available for sale in the U.S. LIFEPAK CR2 Defibrillator A new approach to public

More information

OSSA MINIMUM SEARCH & RESCUE CERTIFICATION / QUALIFICATION CRITERIA BASIC LEVEL

OSSA MINIMUM SEARCH & RESCUE CERTIFICATION / QUALIFICATION CRITERIA BASIC LEVEL OSSA MINIMUM SEARCH & RESCUE CERTIFICATION / QUALIFICATION CRITERIA BASIC LEVEL Chapter 1 LEGAL ISSUES Through written evaluation the applicant will demonstrate knowledge of the legal issues involved in

More information

Envisioning Collaboration at a Distance for the Evacuation of Walking Wounded

Envisioning Collaboration at a Distance for the Evacuation of Walking Wounded Envisioning Collaboration at a Distance for the Evacuation of Walking Wounded Lucy T. Gunawan Delft University of Technology L.T.Gunawan@TUDdelft.nl Martin Voshell Ohio State University Voshell.2@osu.edu

More information

E C C. American Heart Association. Basic Life Support for Healthcare Providers. Written Examinations. March 2011

E C C. American Heart Association. Basic Life Support for Healthcare Providers. Written Examinations. March 2011 E C C American Heart Association Basic Life Support for Healthcare Providers Written Examinations Contents: Examination Memo Student Answer Sheet Version A Exam Version A Answer Key Version A Reference

More information