EXPERIMENTAL INVESTIGATIONS ON MIXED FLOW IMPELLER AND VANE DIFFUSER UNDER VARIOUS OPERATING CONDITIONS

Size: px
Start display at page:

Download "EXPERIMENTAL INVESTIGATIONS ON MIXED FLOW IMPELLER AND VANE DIFFUSER UNDER VARIOUS OPERATING CONDITIONS"

Transcription

1 Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, November 9-15, 2012, Houston, Texas, USA IMECE2012 IMECE EXPERIMENTAL INVESTIGATIONS ON MIXED FLOW IMPELLER AND VANE DIFFUSER UNDER VARIOUS OPERATING CONDITIONS D. Ramesh Rajakumar National Trisonic Aerodynamic Facility CSIR-National Aerospace Laboratories Bangalore-India S. Ramamurthy Specialist Consultant, NCAD, CSIR-National Aerospace Laboratories Bangalore- India M. Govardhan Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India ABSTRACT Experimental Investigations are carried out to study the effect of tip clearance flow in a mixed flow compressor stage. Two configurations, namely; constant and variable clearance gaps between impeller and stationary shroud are considered. For the purpose of the present investigations, a mixed flow compressor stage is designed and fabricated. The flow investigations were carried out in a closed circuit compressor rig. Detailed steady and unsteady measurements were carried out for three clearance gaps, namely; 0.5 mm, 0.75 mm, 0.9 mm. From the experimental investigations it is shown that constant tip clearance configurations show better performance in terms of pressure ratio and efficiency compared to variable clearance configurations. For a given configuration the pressure ratio and efficiency of the stage decrease with increase in the tip gap without indicating any optimum value. Tip clearance flow has considerable effect on the flow through the diffuser and the unsteady flow gets amplified and carried away into the vane diffuser. Key Words: Mixed flow compressor, Tip clearance, Efficiency, Pressure ratio, Loss distribution, Tip leakage flow, Unsteady pressures. NOMENCLATURE C absolute velocity (m/s) D diameter of the shroud (m) N revelation per minute P pressure (Pa) T temperature (K) W relative velocity (m/s) U impeller tip velocity (m/s) Mass flow parameter = m (T 01 / T 01ref ) / (P 01 / P 01ref ) λ= (tip clearance/impeller inlet blade height) Subscripts 0 total 1 impeller inlet 2 impeller outlet i inlet diameter of shroud s static pressure o design value ref reference INTRODUCTION Mixed flow compressor stage is favored for applications in small gas turbine engines as it provides smaller frontal area and higher thrust to weight ratio. The efficiency and reliability of the compressor depends to a great extent on flow behavior in its flow passage and flow near shroud (tip) gap. It is well known that the interaction between mixed flow impeller and diffuser substantially influences the flow field and performance of both the components and thus the entire compressor stage. It is therefore, necessary to study and understand the complex flow field inside the flow channel of the mixed flow compressor. Due to high rotational speed and mechanical strength considerations, most of the high speed mixed flow compressors are unshrouded. The tip leakage flow has considerable effect on the performance and efficiency. The magnitude of this effect is relatively higher in mixed flow compressors than in axial compressors because a mixed flow compressor has a long narrow flow passage and the tip clearance gap occupies a large portion of the flow passage. Work presented by Austin King et al. [1], in 1942, was probably one of the earliest works regarding mixed flow compressors. They experimentally investigated a parallel cutoff mixed impeller with 0.89mm (0.35 ) frontal clearance to study the performance of compressor. A very low value of maximum adiabatic efficiency, 0.76, was reported. Ward Wilcox 1 Copyright 2012 by ASME

2 [2] tested an impeller pre-whirl vanes designed using Goldstein s method. The impeller had maximum tip diameter of about 176mm and had peak pressure ratio of 3.7 with impeller adiabatic efficiency of 0.78, which is very low value. The same impeller when tested with a supersonic diffuser by Ward Wilcox and Rabbins [3] flow choked before the design mass flow rate could be achieved. Dallenbach [4] presented a method for aerodynamic design for centrifugal and mixed flow compressors to achieve prescribed impeller blade loading distributions for impellers with radial blade elements. He also presented experimental velocity distribution results for 12 impellers including 4 mixed flow impellers designed with this method. Only one impeller gave satisfactory blade loading. All the impeller designs had radial blade elements. Wallace [5] showed that the reduction in cone angle, the velocity distribution over the blade surface improves. But small cone angles also results in comparatively low-pressure ratio due to less benefit of centrifugal effect. Moreover, the axial length of the compressor increases. Hence, a balance should be made between the performance and size requirements while selecting the cone angle. Many research have been carried out on flow mechanism, flow structure and performance loss due to the tip leakage flow on radial and axial flow compressors. Pampreen [6] concluded that clearance effects have pronounced influence on the performance of centrifugal and axial compressors compared to Reynolds number effects. Ishida and Senoo [7] used two entirely different types of centrifugal blowers one with a radial blade impeller and the other with a backward blade impeller, measured the pressure distribution along the shroud at five flow coefficient and seven tip clearances. Senoo and Ishida [8] observed the deterioration of compressor performance due to tip clearance of centrifugal impeller. They modified their theory on the tip clearance loss of centrifugal impeller to include the variation of slip co-efficient of the impeller due to the tip clearance, by deriving a rational relationship between two empirical parameters in the theory. They have compared experimental data in the literature with prediction, to select corresponding flow rates of a compressor with different values of tip clearance loss. It has been elucidated experimentally and numerically that leakage flow alters the secondary flow pattern and distribution of the low momentum fluid so that the tip clearance loss accounts for nearly 20-40,% of the total losses by Lakshminarayana, and Myong, [9-10]. Hark-Jin Eum et al. [11] have reported that the performance drop and the efficiency drop were proportional to the ratio of the tip clearance to the blade exit height and tip leakage caused the flow blockage near the shroud. According to Seeno[12], there is mutual relationship between the leakage flow loss, induced drag loss and clearance loss due to the axial pressure gradient. Farge, et al. [13] concluded that the static pressure distribution was found to be almost unaltered by the tip leakages but significant changes in the secondary velocities alters the size and position of the passage wake in centrifugal impellers. Storer and Cumpsty, [14] observed in their model that for a given geometry of axial compressors, the loss is almost exactly proportional to the ratio of tip clearance to blade span. Also they concluded that loss caused by tip clearance for the axial inlet stage was between 20 to 30 percent greater than for the 50 percent reactions stage. The intensive study has been carried out about tip clearances for centrifugal and axial compressors. In the case of mixed flow compressors, the gas density, the blade height, and the meridional component of velocity vary from the inlet to the exit of impeller. Therefore, the equations derived and the theories proposed by all the authors are not fully pertinent parameters for blade of mixed-flow impellers but it can be applied to a short distance along the shroud of the mixed-flow impeller. In the case of mixed flow compressors very few works has been done on design of impeller and diffuser. However, there is no specific paper in the literature that compares the effect of constant and variable tip clearances experimentally over the wide range of mixed flow impeller. OBJECTIVE The objective of this work is to determine the effect of constant and variable tip clearances on the performance of a mixed flow compressor stage. The objectives are achieved by conducting experiments on a mixed flow compressor stage at various speeds and for each speed at various constant and variable tip clearances configurations. EXPERIMENTAL PROCEDURE Experimental Apparatus The experiments were carried out in the Closed Circuit mixed flow Compressor Test Rig (CLOCTER), which is shown in Fig.1(a). The test compressor was driven by an electromechanically coupled twin DC motors. The rated power and speed of the D.C prime mover system are 375 kw and 3000 rpm respectively. Digital thyristor control with feedback mechanism ensures maintenance of the speed to an accuracy of 0.1%. The compressor and DC motor are connected together with a step up gear box (1:20). An electronic torque meter coupled in between the gear box and the compressor is used to measure compressor speed and input power to the compressor. A 10 inch motorized gate valve provided in the closed circuit was used to vary the mass flow rate through the compressor. For finer control of mass flow rate close to the stall region, a 50 mm bypass line connecting in between the main throttle valve was provided with a 50 mm gate valve, through which the mass flow rate was varied at very close intervals to reach stall point on the operating characteristics. An Orifice plate with D and D/2 tapings was used for mass flow measurement. 2 Copyright 2012 by ASME

3 Fig.1(a): Details of closed loop compressor test rig The D and D/2 tapings of the orifice plate are connected to a differential pressure transducer to measure the pressure drop across the orifice. This transducer is interfaced with the computer for online mass flow measurement. A shell and tube type heat exchanger as used to cool the compressor exhaust gas and ensure steady inlet temperature conditions to the compressor. An independent forced lubrication system was provided for the gear box and compressor module. The facility can be operated either in closed loop or open loop mode, depends on the medium to be handled and the operating condition required at the compressor inlet. In order to get three constant clearance gaps between the rotating impeller and stationary shroud, three different shrouds were manufactured and they were used to maintain 0.5 mm (λ=0.011), 0.75 mm (λ=0.016) and 0.9 mm (λ=0.019) clearances. For variable clearance configurations, the shroud with 0.5 mm clearance was axially moved by providing a suitable metal shims between shroud flange and diffuser flange. The thicknesses of the two shims used are 0.25 mm and 0.4 mm respectively. This arrangement makes the clearance between the impeller and the shroud from 0.5mm at inlet to 0.82mm at impeller exit in one set of configuration and 0.5mm at inlet to 1.02mm at impeller exit at the other set of configuration. Figure 1(b), shows a crosssectional view of the mixed compressor. Tip clearance distribution from leading edge to the trailing edge of mixed flow impeller is shown in Figs.2 (a)-2(b). All the experiments were carried out up to 65% of the design speed due to mechanical limitations on the bearings used. Specifications of the mixed flow compressor is shown in Table 1. Mixed flow impeller stage was designed for 2.72 kg/s and static to total pressure ratio of 3.8 with design speed of rpm. Fig. 1(b): Cross-sectional view of the mixed compressor stage The impeller had 11 main blade and 11 splitter blades with cone angel of 60 o. The stage had a matched vane diffuser with 14 blades. Machined impeller and vane diffuser are shown in Figs-3(a)-3(b). Fig.2 (a): Constant tip clearance gap from leading edge to the trailing edge Fig.2 (b): Variable tip clearance gap from leading edge to the trailing edge 3 Copyright 2012 by ASME

4 Table 1: Specifications of mixed flow impeller Impeller inlet parameter Value Impeller inlet tip diameter d 1it (m) Impeller inlet hub diameter d (m) Impeller rotational speed N (RPM) Hub to tip diameter ratio 1ih 1it Relative blade angle at tip β (deg) ih d d it Relative blade angle at hub β (deg) ih Impeller exit parameter Impeller exit tip diameter d 2it (m) Impeller exit hub diameter d (m) ih Impeller exit blade height b 2i (m) Relative blade angle at tip β 2itI (deg) 58.5 Relative blade angle at hub β (deg) 46.8 Absolute flow angle α (deg) 70 2it 2ihI Impeller main blades 11 Impeller splitter blades 11 Diffuse vanes 14 Fig.3(b): Photograph of machined conical diffuser A Detailed instrumentation was provided to measure the time averaged pressure and temperatures at different locations of the compressor stage. A combination probe was used to measure flow properties at impeller outlet. A dedicated on line National Instruments data acquisition system with LAB-VIEW software was used to collect on line data during experiments. In addition to steady state pressure measurements, the unsteady flow through the impeller and diffuser channel were measured using high response miniature pressure transducers and 4- channel simultaneous data acquisition system using DASY LAB software. Eddy current probe signal from the shaft was used for triggering the transducer signal. Fig.3 (a): Photograph of machined mixed flow impeller Fig.4: Locations of unsteady and static pressure ports 4 Copyright 2012 by ASME

5 This type of signal helps in getting ensemble average signal of the transducer. Figure-4 shows locations of the static pressure, total temperature and unsteady pressure taps. RESULTS AND DISCUSSION Constant tip clearance Figures 5(a) and 5(b) represent the impeller and the stage characteristics in terms of mass flow parameter versus pressure ratio for four different operating speeds. At each speed, curves are drawn for three constant tip clearance values. The impeller total pressure was estimated from measured static pressure and mass flow rate using Wisner slip correlation calculated based on number of blades and blade exit angle and conservation of mass. The vane diffuser outlet static pressure was measured at three circumferential locations and the values were averaged. Impeller outlet total pressure and diffuser outlet static pressure were normalized with reference to impeller inlet total pressure. The inlet total pressure was measured using a Pitot probe connected to a pressure transducer. In these figures, the mass flow parameter is calculated based on measured mass flow rate and normalized inlet total pressure and total temperature condition with reference to standard atmospheric pressure and temperature. The impeller speeds are normalized with reference to design speed and shown as percentage. From Fig. 5(a), it is observed that impeller total to total pressure ratio drops with increase in clearance gap. This drop is higher at higher speeds. The variation of total pressure with the mass flow rate exhibits nearly a flat behavior as the impeller is highly backswept. These characteristics were obtained almost close to the stall conditions by observing pressure fluctuations on a CRT scope at impeller outlet using high response transducers. Fig.5 (b): Variation of stage static to total pressure ratio for different speeds and constant clearance gaps Figure 5(b) shows that the effect of tip clearance gap on the compressor stage consisting of impeller and vane diffuser. In this figure the diffuser outlet static pressure is normalized by impeller inlet pressure and this value is plotted against mass flow parameter for different impeller speeds. As the flow passes through the vane diffuser there is a static pressure rise with a drop in total pressure. The drop in total pressure indicates the losses in the diffuser due to wall friction, mixing and sudden expansion at the diffuser exit. Though there is a static pressure recovery in the vane diffuser, the static pressure recovery decreases with increase in clearance gap. The stage characteristics are steeper compared to impeller characteristics as the losses in the diffuser are larger at larger flow rate. This is because the incidence to the diffuser plays an important role in the stage performance. This incidence which is large negative at high flow gradually decreases and becomes positive towards low flow. Fig. 5(a): Variation of impeller pressure ratio for different speeds and constant clearance gaps Fig.5(c): Variation of impeller isentropic efficiency at 65% of design speed for constant clearance gaps 5 Copyright 2012 by ASME

6 Fig.5 (d): Variation of stage efficiency at 65% of design speed for constant clearance gaps From the estimated total pressure at impeller outlet and measured total temperature, the isentropic efficiency of the impeller was calculated for all speeds and clearance gaps. The variations of impeller efficiency with mass flow parameter for different clearance gaps at 65% of speed are shown in Fig. 5(c). Similarly the estimated stage efficiency for the same speeds is shown in Fig. 5(d). Efficiency decreases with flow rate as well as with tip clearance gap. The diffuser efficiency is smaller than impeller efficiency by the amount of losses in the diffuser. Though the impeller total pressure characteristics showed flat behavior, the impeller efficiency at the larger flow rate is smaller as compared to the value a lower flow rate. This is because the incidence to the impeller is largely negative with a possibility of flow separation on the blades. From the pressure ratio and efficiency, the decrement in pressure ratio and efficiency of the impeller and diffuser for different speeds and clearances are estimated as percentage and are shown in Figs. 6(a) 6(c). Fig. 6(b): Percentage decrement of impeller efficiency for various constant tip clearance gaps relative to λ = From Fig. 6(a), it is observed that percentage of drop in pressure ratio increases with increase in speed, indicating rotational speed has an effect on the clearance flow in addition to pressure gradient along the impeller channel. As the rotational speed increases the coriolis force and cross flow through the clearance gap increases. Pressure drop is varying between 1.8% at lower clearance gap to 4% at larger clearance gap at 65% of designed speed. On the other hand at 50% design speed, pressure drop could be as less as 0.3% to 1.5%. Observation from Fig. 6(b) shows that the drop in efficiency increases marginally with increase in clearance gaps for a given speed. The drop in impeller efficiency could vary from an average of 3% at 50% speed to 11% at 65% speed. The drop in stage efficiency from Fig. 6(c) seems to be more pronounced with change in clearance gaps. At a given speed, efficiency could vary from 2.5% to 5.5% with variation in clearance gap at higher speed. Similar observation is seen at other speeds also. Fig. 6(a): Percentage decrement of impeller pressure ratio for various constant tip clearance gaps relative to λ = Fig.6 (c): Percentage decrement of stage efficiency for various tip clearance gaps relative to λ= Copyright 2012 by ASME

7 Variation of wall static pressures The static pressure along the shroud from impeller inlet to diffuser outlet and beyond were measured by providing static pressure taps and connecting them to electronic scanners. The static pressure taps in the vane diffuser were provided in the middle of diffuser channels. Variation of wall static pressure for different clearance gaps at a given speed were measured and plotted as non-dimensional pressure against non- dimensional distance for two different flow coefficients. Fig.7(a): Variation of normalised wall static pressure ratio with tip clearance gap at φ = Fig.7(b): Variation of normalised wall static pressure ratio with tip clearance gap at φ = Fig.8: Measured ensemble averaged unsteady static pressure at different locations along the shroud wall 7 Copyright 2012 by ASME

8 At higher flow coefficient the normalized static pressure uniformly increases from impeller inlet to diffuser exit. The effect of tip clearance is different from that observed in the case of lower flow coefficient. The steep increase in static pressure in the vane-less gap is not observed. The lowest flow coefficient is chosen close to stall condition whereas the larger flow coefficient is taken at fully open throttle condition (Figs. 7(a) and 7(b)). Static pressure increases continuously from impeller inlet to diffuser outlet with a special behavior in vane-less gap from impeller exit to vane diffuser leading edge (Fig. 7(a)). In this gap, the static pressure increase is very large as the operating point is close to design. The rate of static pressure raise in the impeller is larger as compared to vane diffuser. This behavior is observed for all clearance gaps. The static pressure rise in the vane diffuser is proportionally decreases with increase in clearances and the effect of clearances is obtained clearly as compared to impeller wall static pressure. However, the static pressure continuously increases at uniform rate from impeller inlet to diffuser outlet for all clearances. In the diffuser clearance the variation in wall static pressure is marginal and no steep increase as observed in Fig.7(a). Slight drop in static pressure with increase in clearance gaps is observed throughout the region of measurement. Unsteady pressure measurements Eight equally spaced high response miniature Kulite transducers were mounted on the shroud walls to capture unsteady pressure variation. Two transducers were located in the region between impeller inlet and splitter blade, two in the region between splitter blade leading edge and impeller outlet and remaining four in the vane diffuser channels. The pressure signals from the transducer were triggered by taking the signal from the shaft eddy current probe. The pressure signals of about 50 numbers from the transducers were ensemble averaged and recorded in a computer. The analog pressure signals in terms of millivolts are converted to actual pressure using the static pressure measured at the same location at the same instant of time. The measured pressure signals for one revolution of a given speed for 3 different tip clearances are shown in Fig.8 In this figure the measured pressure signal location are given at nearly constant flow coefficient. It is observed from Fig. 9, the flow in the channel of impeller is uniform and every channels behavior is identical. As this flow enters the diffuser channels the symmetry of the flow is lost and flow becomes more unsteady. Fig.9(a): unsteady pressure measurements along the shroud for λ =0.011 At lower flow coefficient, the unsteady diffuser flow is larger as compared to larger flow coefficient as the flow is nearer to unstable rotating stall. From the measured unsteady pressure signals the average of maximum and minimum values were calculated for different flow coefficients and clearance gaps at each transducers location. The variations of these values along the shroud are shown in Figs. 9(a) and 9(b). Though the average static pressure increases along the shroud, maximum and minimum pressure variations in the diffuser channels behave differently at the two clearance gaps considered. This indicates the tip clearance has large influences on the impeller exit flow and there off. Fig.9(b): unsteady pressure measurements along the shroud for λ =0.019 Comparison of constant and variable tip clearances A comparison of total pressure ratio and efficiency between constant clearance and variable clearance configurations is shown in Figs. 10(a) 10(b). 8 Copyright 2012 by ASME

9 Fig.10(a): Impeller total to total pressure ratio for variable and constant tip clearance gaps The pressure ratio developed by the impeller with constant clearance gap is higher than the same impeller with variable clearance gap. This is because the tip gap at impeller exit is higher for a variable clearance configuration though the gap at impeller inlet is same (Fig. 10(a)). Figure 11(b), indicates the isentropic efficiency of impeller is also lower for variable tip clearance gaps as compared to constant tip clearance gaps. An estimate of the drop in pressure ratio and isentropic efficiency for two tip clearance configurations at different speeds are shown in Figs. 11(a) and 11(b). Both drop in pressure ratio and drop in efficiency are higher for variable clearance configurations at all speeds. Fig. 11(a): Decrement of impeller pressure ratio for variable and constant tip clearance gaps relative to 0.5mm (λ=0.019) tip clearance gaps CONCLUSIONS The experimental study show that the impeller total to total pressure ratio and efficiency drop with increase in clearance gap. This effect is higher at higher impeller speeds. Diffuser efficiency is smaller than Impeller efficiency by the amount of losses in the diffuser and losses associated with exit complex flow at impeller exit. At lower flow coefficient, the unsteady diffuser flow is large as compared to larger flow coefficient as the operating point is close to rotating stall. Total to total pressure ratio drop is very prominent in variable tip clearance configurations because of the larger tip gap at the trailing edge of the impeller. It is recommended to use a constant tip clearance configuration for practical use. Fig. 10(b): Impeller isentropic efficiency for variable and constant tip clearance gaps Percentage of decrement in pressure ratio and isentropic efficiency were considered with reference to the values obtained for a configuration with constant clearance gap of 0.5 mm (λ =0.011). At lower speed the relative drop in pressure ratio and efficiency for various tip clearance gaps is higher. Fig.11(b): Decrement of impeller efficiency for variable and constant tip clearance gaps relative to λ= Copyright 2012 by ASME

10 ACKNOWLEDGMENTS The authors would like to thank The Director NAL for the his approval for publishing this paper and V. Nagarajan, HOD, NTAF, Mr. M.N. Varadarajan & his teams also CLOCTER staff for their valuable support during the experiments. REFERENCES [1] Austin King, J., and Edward Glodeck July-1942, Performance characteristics of Mixed flow impeller and vaned diffuser with several modifications, NACA-WR-E197. [2] Ward W. Wilcox,and William H. Rabbins, April-30, 1951, Design and Performance of an Experimental Axial Discharge Mixed Flow Compressors III-Over- All performance of impeller and Supersonic-Diffuser Combination, NACA RM E51A02. [3] Ward W. Wilcox and Rabbins, Aug-12, 1948, Design and Performance of an Experimental Axial Discharge Mixed Flow Compressors II- Performance of impeller, NACA RM E8F07. [4] Dallenbach,F., 1961, The Aerodynamic Design and performance of Centrifugal and Mixed flow compressors, SAE Technical Progress Series, Vol-3, pp [5] Wallace, F. J., et al. July-1975, A Computer- aided design procedure for radial and Mixed-flow compressors, Computer Aided Design, Vol 7, No 3, pp [6] Pampreen, R.C., July -1973, Small Turbomachinery Compressor and Fan Aerodynamics," Journal of Engineering for Power, 95, pp [7] Shida, M., and Senoo,Y.,1981, On the pressure losses due to the tip clearance of centrifugal blower, Trans. of ASME J1. of Engg. for power, 03, pp [8] Senoo, Y., and Ishida,M., 1987, Deterioration of compressor performance due to tip clearance of centrifugal impellers, Trans. of ASME J1. of Turbomachinery, 109, pp [9] Lakshminarayana, B., 1970, Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachines, Journal of Basic Engineering, Vol. 92, pp [10] Myong, H. K., and Yang, S., Y., 2003, Numerical Study on Flow Characteristics at Blade Passage and Tip Clearance in a Linear Cascade of High Performance Turbine Blade, KSME lnternational Journal, Vol. 17, No. 4, pp [11] Hark-jin Eum, Young-Seok Kang and Shin-Hyoung Knag 2004, Tip clearance Effect on through-flow and performance of a Centrifugal compressors, KSME International Journal, Vol. 18, No. 6, pp [12] Senoo,Y., 1991, Mechanics on the tip clearance Loss of Impeller Blades, Trans. of ASME J1. of Turbomachinery, 113, pp [13] Farge,T.Z.,Johnson M.W., and Maksoud T.M.A., 1991, Tip leakage in a Centrifugal Impeller. Trans. of ASME J1. of Turbomachinery, 111, pp [14] Storer. J.A., and Cumpsty. N.A., 1994, An approximate Analysis and Prediction Method for Tip CLeracne Loss in Axial Compressors, Trans. of ASME J1. of Turbomachinery, 116, pp Copyright 2012 by ASME

THEORETICAL EVALUATION OF FLOW THROUGH CENTRIFUGAL COMPRESSOR STAGE

THEORETICAL EVALUATION OF FLOW THROUGH CENTRIFUGAL COMPRESSOR STAGE THEORETICAL EVALUATION OF FLOW THROUGH CENTRIFUGAL COMPRESSOR STAGE S.Ramamurthy 1, R.Rajendran 1, R. S. Dileep Kumar 2 1 Scientist, Propulsion Division, National Aerospace Laboratories, Bangalore-560017,ramamurthy_srm@yahoo.com

More information

CFD analysis of flow through mixed flow compressor under various operating conditions

CFD analysis of flow through mixed flow compressor under various operating conditions 1 CFD analysis of flow through mixed flow compressor under various operating conditions D. Ramesh Rajakumar 1 M.Govardhan 2 S.Ramamurthy 3 Abstract- Performance of mixed flow compressor with un-shrouded

More information

Effect of Inlet Clearance Gap on the Performance of an Industrial Centrifugal Blower with Parallel Wall Volute

Effect of Inlet Clearance Gap on the Performance of an Industrial Centrifugal Blower with Parallel Wall Volute International Journal of Fluid Machinery and Systems DOI: http://dx.doi.org/10.5293/ijfms.2013.6.3.113 Vol. 6, No. 3, July-September 2013 ISSN (Online): 1882-9554 Original Paper (Invited) Effect of Inlet

More information

Citation Journal of Thermal Science, 18(4),

Citation Journal of Thermal Science, 18(4), NAOSITE: Nagasaki University's Ac Title Author(s) Noise characteristics of centrifuga diffuser (Noise reduction by means leading tip) Murakami, Tengen; Ishida, Masahiro; Citation Journal of Thermal Science,

More information

An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD

An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD Vivek V. Kulkarni Department of Mechanical Engineering KLS Gogte Institute of Technology, Belagavi, Karnataka Dr. Anil T.R. Department

More information

Study of Secondary Flow Modifications at Impeller Exit of a Centrifugal Compressor

Study of Secondary Flow Modifications at Impeller Exit of a Centrifugal Compressor Open Journal of Fluid Dynamics, 2012, 2, 248-256 http://dx.doi.org/10.4236/ojfd.2012.24a029 Published Online December 2012 (http://www.scirp.org/journal/ojfd) ABSTRACT Study of Secondary Flow Modifications

More information

Inlet Swirl on Turbocharger Compressor Performance

Inlet Swirl on Turbocharger Compressor Performance Inlet Swirl on Turbocharger Compressor Performance Lei Huang, Ying Liu, Hua Chen* National laboratory of Engine Turbocharging Technology, Tianjin, China *corresponding author: Tel.:+86-22-5870-7069; fax:

More information

An Investigation on the Performance Characteristics of a Centrifugal Compressor

An Investigation on the Performance Characteristics of a Centrifugal Compressor International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 11 (November 2014), PP.77-83 An Investigation on the Performance Characteristics

More information

Computational fluid dynamics analysis of a mixed flow pump impeller

Computational fluid dynamics analysis of a mixed flow pump impeller MultiCraft International Journal of Engineering, Science and Technology Vol. 2, No. 6, 2010, pp. 200-206 INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY www.ijest-ng.com 2010 MultiCraft Limited.

More information

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) ISSN 2249-6890 Vol.2, Issue 2 June 2012 1-10 TJPRC Pvt. Ltd., PRESSURE DISTRIBUTION OF SMALL WIND TURBINE

More information

Design and Analysis of a High Pressure Ratio Mixed Flow Compressor Stage

Design and Analysis of a High Pressure Ratio Mixed Flow Compressor Stage Design and Analysis of a High Pressure Ratio Mixed Flow Compressor Stage Gaurav Giri 1 and Abdul Nassar. 2 SoftInWay Turbomachinery Solutions Pvt Ltd. 70/10, Cunningham Road, Bangalore, KA, 560052, India

More information

Numerical Fluid Analysis of a Variable Geometry Compressor for Use in a Turbocharger

Numerical Fluid Analysis of a Variable Geometry Compressor for Use in a Turbocharger Special Issue Turbocharging Technologies 15 Research Report Numerical Fluid Analysis of a Variable Geometry Compressor for Use in a Turbocharger Yuji Iwakiri, Hiroshi Uchida Abstract A numerical fluid

More information

OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD

OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD http:// OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD Anand Kumar S malipatil 1, Anantharaja M.H 2 1,2 Department of Thermal Power Engineering, VTU-RO Gulbarga,

More information

AIAA Brush Seal Performance Evaluation. P. F. Crudgington Cross Manufacturing Co. Ltd. Devizes, ENGLAND

AIAA Brush Seal Performance Evaluation. P. F. Crudgington Cross Manufacturing Co. Ltd. Devizes, ENGLAND AIAA 98-3172 Brush Seal Performance Evaluation P. F. Crudgington Cross Manufacturing Co. Ltd. Devizes, ENGLAND BRUSH SEAL PERFORMANCE EVALUATION AIAA-98-3172 P. F. Crudgington Cross Manufacturing Co. Ltd

More information

Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel

Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel Journal of Scientific SARAVANAN & Industrial et al: Research PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADES WITH WINGLET Vol. 71, June 01, pp. 45-49 45 Pressure distribution of rotating small wind

More information

A COMPARATIVE STUDY OF MIX FLOW PUMP IMPELLER CFD ANALYSIS AND EXPERIMENTAL DATA OF SUBMERSIBLE PUMP

A COMPARATIVE STUDY OF MIX FLOW PUMP IMPELLER CFD ANALYSIS AND EXPERIMENTAL DATA OF SUBMERSIBLE PUMP IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN 2321-8843 Vol. 1, Issue 3, Aug 2013, 57-64 Impact Journals A COMPARATIVE STUDY OF MIX FLOW PUMP IMPELLER CFD ANALYSIS

More information

CFD ANALYSIS TO INVESTIGATE THE EFFECT OF AXIAL SPACING IN A SINGLE STAGE TRANSONIC AXIAL FLOW COMPRESSOR

CFD ANALYSIS TO INVESTIGATE THE EFFECT OF AXIAL SPACING IN A SINGLE STAGE TRANSONIC AXIAL FLOW COMPRESSOR Symposium on Applied Aerodynamics and Design of Aerospace Vehicle (SAROD 2011) November 16-18, 2011, Bangalore, India CFD ANALYSIS TO INVESTIGATE THE EFFECT OF AXIAL SPACING IN A SINGLE STAGE TRANSONIC

More information

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles International Journal of Engineering Research and Development e-issn: 7-067X, p-issn: 7-00X, www.ijerd.com Volume 3, Issue 4 (August ), PP. 33-39 Experimental Analysis on Vortex Tube Refrigerator Using

More information

Analysis of pressure losses in the diffuser of a control valve

Analysis of pressure losses in the diffuser of a control valve Analysis of pressure losses in the diffuser of a control valve Petr Turecký 1, Lukáš Mrózek 2*, Ladislav Taj 2, and Michal Kolovratník 3 1 ENVIROS, s.r.o., Dykova 53/10, 101 00 Praha 10-Vinohrady, Czech

More information

EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2

EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2 EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2 Assistant Professor,Chandubhai S. Patel Institute of Technology, CHARUSAT, Changa, Gujarat, India Abstract The

More information

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program ISSN : 2250-3021 Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program ARVIND SINGH RATHORE 1, SIRAJ AHMED 2 1 (Department of Mechanical Engineering Maulana

More information

The Aerodynamic Design and Investigation of Loading Distribution of a Mixed Flow Compressor

The Aerodynamic Design and Investigation of Loading Distribution of a Mixed Flow Compressor Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2014) 000 000 www.elsevier.com/locate/procedia APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology,

More information

AF100. Subsonic Wind Tunnel AERODYNAMICS. Open-circuit subsonic wind tunnel for a wide range of investigations into aerodynamics

AF100. Subsonic Wind Tunnel AERODYNAMICS. Open-circuit subsonic wind tunnel for a wide range of investigations into aerodynamics Open-circuit subsonic wind tunnel for a wide range of investigations into aerodynamics Page 1 of 4 Works with Computer, chair and work table shown for photographic purposes only (not included) Screenshot

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Inlet Influence on the Pressure and Temperature Distortion Entering the Compressor of an Air Vehicle

Inlet Influence on the Pressure and Temperature Distortion Entering the Compressor of an Air Vehicle Distortion Entering the Compressor of an Air Vehicle P. Hendrick Université Libre de Bruxelles, ULB Avenue F.D. Roosevelt, 50 1050 Brussels BELGIUM patrick.hendrick@ulb.ac.be ABSTRACT One of the possible

More information

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES 5 th International Advanced Technologies Symposium (IATS 09), May 13-15, 2009, Karabuk, Turkey COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES Emrah KULUNK a, * and Nadir YILMAZ b a, * New

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

INTRODUCTION 1.0 GENERAL

INTRODUCTION 1.0 GENERAL 1 Chapter INTRODUCTION 1.0 GENERAL Blower is an important class of fluid machine, which has characteristics of transfer of energy between continuous stream of fluid & an element rotating about a fixed

More information

Axial and Centrifugal Compressor Mean Line Flow Analysis Method

Axial and Centrifugal Compressor Mean Line Flow Analysis Method 7th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition - January 9, Orlando, Florida AIAA 9- Axial and Centrifugal Compressor Mean Line Flow Analysis Method Joseph

More information

Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler

Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler C. Becnel, J. Lagrone, and K. Kelly Mezzo Technologies Baton Rouge, LA USA 70806 ABSTRACT The Missile Defense Agency has supported a research

More information

V. A. Sedunin 1, O. V. Komarov 1, V. L. Blinov 1, A. V. Skorokhodov 1 & A. O. Procopets 2. Abstract. 1 Introduction

V. A. Sedunin 1, O. V. Komarov 1, V. L. Blinov 1, A. V. Skorokhodov 1 & A. O. Procopets 2. Abstract. 1 Introduction Energy Production and Management in the 21st Century, Vol. 1 707 The application of modern Computational Fluid Dynamics techniques for increasing the efficiency and stability of an axial compressor in

More information

Aerodynamic Analysis of a Symmetric Aerofoil

Aerodynamic Analysis of a Symmetric Aerofoil 214 IJEDR Volume 2, Issue 4 ISSN: 2321-9939 Aerodynamic Analysis of a Symmetric Aerofoil Narayan U Rathod Department of Mechanical Engineering, BMS college of Engineering, Bangalore, India Abstract - The

More information

CFD Analysis and Experimental Study on Impeller of Centrifugal Pump Alpeshkumar R Patel 1 Neeraj Dubey 2

CFD Analysis and Experimental Study on Impeller of Centrifugal Pump Alpeshkumar R Patel 1 Neeraj Dubey 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 2, 21 ISSN (online): 2321-613 Alpeshkumar R Patel 1 Neeraj Dubey 2 1 PG Student 2 Associate Professor 1,2 Department of

More information

EFFECT OF LEADING EDGE SWEEP ON THE PERFORMANCE OF A CENTRIFUGAL COMPRESSOR IMPELLER. Abstract 1. INTRODUCTION

EFFECT OF LEADING EDGE SWEEP ON THE PERFORMANCE OF A CENTRIFUGAL COMPRESSOR IMPELLER. Abstract 1. INTRODUCTION EFFECT OF LEADING EDGE SWEEP ON THE PERFORMANCE OF A CENTRIFUGAL COMPRESSOR Abstract IMPELLER Ch. Sivaji Ganesh 1, *Q. H. Nagpurwala 2, C. S. Bhaskar Dixit 3 1 Student, M. Sc. [Engg.], 2 Professor, 3 Professor

More information

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING ICAS 2002 CONGRESS AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING Yoshiaki NAKAMURA (nakamura@nuae.nagoya-u.ac.jp) Takafumi YAMADA (yamada@nuae.nagoya-u.ac.jp) Department of Aerospace Engineering,

More information

(Refer Slide Time: 2:16)

(Refer Slide Time: 2:16) Fluid Machines. Professor Sankar Kumar Som. Department Of Mechanical Engineering. Indian Institute Of Technology Kharagpur. Lecture-23. Diffuser and Cavitation. Good morning and welcome you all to this

More information

Flow Through Axial and Centrifugal Compressors by Kartik Sharma Mentors Prof. Gautam Biswas Prof. Subrata Sarkar

Flow Through Axial and Centrifugal Compressors by Kartik Sharma Mentors Prof. Gautam Biswas Prof. Subrata Sarkar 6 th Indo-German Winter Academy 2007 IIT Guwahati, India, December 13-19, 2007 Flow Through Axial and Centrifugal Compressors by Kartik Sharma Mentors Prof. Gautam Biswas Prof. Subrata Sarkar Outline of

More information

Návrh vratného kanálu u dvoustupňového kompresoru Return channel design of the two stage compressor

Návrh vratného kanálu u dvoustupňového kompresoru Return channel design of the two stage compressor Návrh vratného kanálu u dvoustupňového kompresoru Return channel design of the two stage compressor J. Hrabovský, J. Vacula, M. Komárek L. K. Engineering, s.r.o C. Drápela, M. Vacek, J. Klíma PBS Turbo

More information

Experimental Determination of Temperature and Pressure Profile of Oil Film of Elliptical Journal Bearing

Experimental Determination of Temperature and Pressure Profile of Oil Film of Elliptical Journal Bearing International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 5 (2014), pp. 469-474 Research India Publications http://www.ripublication.com Experimental Determination of Temperature

More information

International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

International Journal of Technical Research and Applications e-issn: ,  Volume 4, Issue 3 (May-June, 2016), PP. DESIGN AND ANALYSIS OF FEED CHECK VALVE AS CONTROL VALVE USING CFD SOFTWARE R.Nikhil M.Tech Student Industrial & Production Engineering National Institute of Engineering Mysuru, Karnataka, India -570008

More information

Casing wall static pressure distribution behavior in a centrifugal compressor with asymmetric inlet/outlet structures

Casing wall static pressure distribution behavior in a centrifugal compressor with asymmetric inlet/outlet structures Original Article Casing wall static pressure distribution behavior in a centrifugal compressor with asymmetric inlet/outlet structures Proc IMechE Part A: J Power and Energy 2019, Vol. 233(1 37 51! IMechE

More information

Investigation of Suction Process of Scroll Compressors

Investigation of Suction Process of Scroll Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2006 Investigation of Suction Process of Scroll Compressors Michael M. Cui Trane Jack Sauls

More information

Vibration-Free Joule-Thomson Cryocoolers for Distributed Microcooling

Vibration-Free Joule-Thomson Cryocoolers for Distributed Microcooling Vibration-Free Joule-Thomson Cryocoolers for Distributed Microcooling W. Chen, M. Zagarola Creare Inc. Hanover, NH, USA ABSTRACT This paper reports on an innovative concept for a space-borne Joule-Thomson

More information

Multifunctional Screw Compressor Rotors

Multifunctional Screw Compressor Rotors Multifunctional Screw Compressor Rotors Nikola Stosic, Ian K. Smith and Ahmed Kovacevic Centre for Positive Displacement Compressor Technology, City University, London EC1V OHB, U.K. N.Stosic@city.ac.uk

More information

Wind tunnel effects on wingtip vortices

Wind tunnel effects on wingtip vortices 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-325 Wind tunnel effects on wingtip vortices Xin Huang 1, Hirofumi

More information

IMPROVED BLADE PROFILES FOR HIGH LIFT LOW PRESSURE TURBINE APPLICATIONS

IMPROVED BLADE PROFILES FOR HIGH LIFT LOW PRESSURE TURBINE APPLICATIONS IMPROVED BLADE PROFILES FOR HIGH LIFT LOW PRESSURE TURBINE APPLICATIONS P. González *, I.Ulizar *, H.P.Hodson ** * ITP, Industria de Turbo Propulsores, SA. Parque Empresarial San Fernando Avda. Castilla

More information

Numerical simulation of radial compressor stages with seals and technological holes

Numerical simulation of radial compressor stages with seals and technological holes EPJ Web of Conferences 67, 02115 (2014) DOI: 10.1051/ epjconf/ 20146702115 C Owned by the authors, published by EDP Sciences, 2014 Numerical simulation of radial compressor stages with seals and technological

More information

Understanding Centrifugal Compressor Capacity Controls:

Understanding Centrifugal Compressor Capacity Controls: Understanding Centrifugal Compressor Capacity Controls: Richard Stasyshan, CAGI Technical Consultant and the Centrifugal Compressor Section of the Compressed Air & Gas Institiute (CAGI). CAGI and our centrifugal

More information

The Effect of Impeller Width on the Location of BEP in a Centrifugal Pump

The Effect of Impeller Width on the Location of BEP in a Centrifugal Pump The Effect of Impeller Width on the Location of BEP in a Centrifugal Pump Vinayak Manur 1, Sharanabasappa 2, M. S. Hebbal 3 P.G.Students, Department of Mechanical Engineering, Basaveshwar Engineering College,

More information

AIR EJECTOR WITH A DIFFUSER THAT INCLUDES BOUNDARY LAYER SUCTION

AIR EJECTOR WITH A DIFFUSER THAT INCLUDES BOUNDARY LAYER SUCTION Engineering MECHANICS, Vol. 20, 2013, No. 3/4, p. 213 220 213 AIR EJECTOR WITH A DIFFUSER THAT INCLUDES BOUNDARY LAYER SUCTION Václav Dvořák* The article deals with axial-symmetric subsonic air-to-air

More information

OPTIMIZATION OF RECUPERATER FIN GEOMETRY FOR MICRO GAS TURBINE

OPTIMIZATION OF RECUPERATER FIN GEOMETRY FOR MICRO GAS TURBINE OPTIMIZATION OF RECUPERATER FIN GEOMETRY FOR MICRO GAS TURBINE S.Ramamurthy 1 and Bharat Makwana 2 1 Scientist,National Aerospace Laboratories, Bangalore, ramamurthy_srm@yahoo.com 2 Engineer,INOX Private

More information

Centrifugal Compressor Performance Deviations with Various Refrigerants, Impeller Sizes and Shaft Speeds

Centrifugal Compressor Performance Deviations with Various Refrigerants, Impeller Sizes and Shaft Speeds Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 Centrifugal Compressor Performance Deviations with Various Refrigerants, Impeller Sizes

More information

Influence of the Number of Blades on the Mechanical Power Curve of Wind Turbines

Influence of the Number of Blades on the Mechanical Power Curve of Wind Turbines European Association for the Development of Renewable Energies, Environment and Power quality International Conference on Renewable Energies and Power Quality (ICREPQ 9) Valencia (Spain), 15th to 17th

More information

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL ONLINE CERTIFICATION COURSE. On Industrial Automation and Control

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL ONLINE CERTIFICATION COURSE. On Industrial Automation and Control INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL ONLINE CERTIFICATION COURSE On Industrial Automation and Control By Prof. S. Mukhopadhyay Department of Electrical Engineering IIT Kharagpur Topic Lecture

More information

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN George Feng, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga, Ontario Vadim Akishin, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga,

More information

Results of the Development of a Tandem-bladed Centrifugal Compressor Stage

Results of the Development of a Tandem-bladed Centrifugal Compressor Stage Results of the Development of a Tandem-bladed Centrifugal Compressor Stage David Hlaváček 1,*, Daniel Hanus 2 1 Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Aerospace

More information

Purdue e-pubs. Purdue University. Lee G. Tetu Carrier Corporation. Follow this and additional works at:

Purdue e-pubs. Purdue University. Lee G. Tetu Carrier Corporation. Follow this and additional works at: Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2004 Improving Centrifugal Compressor Performance By Optimizing Surge Control (Variable

More information

Numerical Studies on the Effect of Slotted Casing Treatment on the Performance of a Transonic Axial Flow Compressor

Numerical Studies on the Effect of Slotted Casing Treatment on the Performance of a Transonic Axial Flow Compressor Numerical Studies on the Effect of Slotted Casing Treatment on the Performance of a Transonic Axial Flow Compressor A. K. Shivayogi 1, Q. H. Nagpurwala 2 and M. D. Deshpande 3 1 - M. Sc. [Engg.] Student,

More information

6. EXPERIMENTAL METHOD. A primary result of the current research effort is the design of an experimental

6. EXPERIMENTAL METHOD. A primary result of the current research effort is the design of an experimental 6. EXPERIMENTAL METHOD 6.1 Introduction A primary result of the current research effort is the design of an experimental setup that can simulate the interaction of a windmill with a vortex wake and record

More information

AerE 343L: Aerodynamics Laboratory II. Lab Instructions

AerE 343L: Aerodynamics Laboratory II. Lab Instructions AerE 343L: Aerodynamics Laboratory II Lab Instructions Lab #2: Airfoil Pressure Distribution Measurements and Calibration of a Small Wind Tunnel Instructor: Dr. Hui Hu Department of Aerospace Engineering

More information

Cover Page for Lab Report Group Portion. Pump Performance

Cover Page for Lab Report Group Portion. Pump Performance Cover Page for Lab Report Group Portion Pump Performance Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Single Phase Pressure Drop and Flow Distribution in Brazed Plate Heat Exchangers

Single Phase Pressure Drop and Flow Distribution in Brazed Plate Heat Exchangers Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Single Phase Pressure Drop and Flow Distribution in Brazed Plate Heat Exchangers

More information

A. M. Dalavi, Mahesh Jadhav, Yasin Shaikh, Avinash Patil (Department of Mechanical Engineering, Symbiosis Institute of Technology, India)

A. M. Dalavi, Mahesh Jadhav, Yasin Shaikh, Avinash Patil (Department of Mechanical Engineering, Symbiosis Institute of Technology, India) IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN(e) : 2278-1684, ISSN(p) : 2320 334X, PP : 45-49 www.iosrjournals.org Modeling, Optimization & Manufacturing of Vortex Tube and Application

More information

Application of Sweep to Low Pressure Turbine Cascade Blade for Tip Flow Containment

Application of Sweep to Low Pressure Turbine Cascade Blade for Tip Flow Containment Application of Sweep to Low Pressure Turbine Cascade Blade for Tip Flow Containment Rachel F. Trehan 1 and Bhaskar Roy 2 Indian Institute of Technology-Bombay, Mumbai, 400076, India A numerical investigation

More information

Copyright by Turbomachinery Laboratory, Texas A&M University

Copyright by Turbomachinery Laboratory, Texas A&M University Proceedings of the 2 nd Middle East Turbomachinery Symposium 17 20 March, 2013, Doha, Qatar Effectiveness of Windage Features on High Speed Couplings Steven Pennington Global Engineering Manager John Crane

More information

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK ABSTRACT Ventilation stacks are becoming increasingly common in the design of naturally

More information

STALLING BEHAVIOUR OF A CONTRA-ROTATING AXIAL COMPRESSOR STAGE

STALLING BEHAVIOUR OF A CONTRA-ROTATING AXIAL COMPRESSOR STAGE STALLING BEHAVIOUR OF A CONTRA-ROTATING AXIAL COMPRESSOR STAGE by YASHPAL JAIN Thesis submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Mechanical Engineering

More information

School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK;

School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK; Energies 2015, 8, 8516-8536; doi:10.3390/en8088516 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies An Iterative Method to Derive the Equivalent Centrifugal Compressor Performance

More information

Kazuhiko TOSHIMITSU 1, Hironori KIKUGAWA 2, Kohei SATO 3 and Takuya SATO 4. Introduction. Experimental Apparatus

Kazuhiko TOSHIMITSU 1, Hironori KIKUGAWA 2, Kohei SATO 3 and Takuya SATO 4. Introduction. Experimental Apparatus Proceedings of 4th Asian Joint Workshop on Thermophysics and Fluid Science Oct. 14~17, 2012, Busan, Korea Experimental Investigation of Performance of the Wind Turbine with the Flanged-diffuser Shroud

More information

PREDICTION OF TOTAL PRESSURE CHARACTERISTICS IN THE SETTLING CHAMBER OF A SUPERSONIC BLOWDOWN WIND TUNNEL

PREDICTION OF TOTAL PRESSURE CHARACTERISTICS IN THE SETTLING CHAMBER OF A SUPERSONIC BLOWDOWN WIND TUNNEL PREDICTION OF TOTAL PRESSURE CHARACTERISTICS IN THE SETTLING CHAMBER OF A SUPERSONIC BLOWDOWN WIND TUNNEL S R Bhoi and G K Suryanarayana National Trisonic Aerodynamic Facilities, National Aerospace Laboratories,

More information

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT - 277 - NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT Iseler J., Heiser W. EAS GmbH, Karlsruhe, Germany ABSTRACT A numerical study of the flow behaviour

More information

Development of a High-Flow Centrifugal Compressor Stage

Development of a High-Flow Centrifugal Compressor Stage Development of a -Flow Centrifugal Compressor Stage KAWAKUBO Tomoki : Manager, Turbomachinery & Engine Technology Department, Product Development Center, Corporate Research & Development UNNO Masaru :

More information

MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE

MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE Proceedings of the 37 th International & 4 th National Conference on Fluid Mechanics and Fluid Power FMFP2010 December 16-18, 2010, IIT Madras, Chennai, India FMFP2010 341 MODELING AND SIMULATION OF VALVE

More information

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY September 2009 ALDEN RESEARCH LABORATORY, INC.

More information

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction...1 2) Methodology.3 3) Results...5

More information

V

V THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS -345 E. 47th St., New York, N.Y. 117 The Society shall not be responsible for statements or opinions advanced in papers or discussion at meetings of the Society

More information

Lab # 03: Visualization of Shock Waves by using Schlieren Technique

Lab # 03: Visualization of Shock Waves by using Schlieren Technique AerE545 Lab # 03: Visualization of Shock Waves by using Schlieren Technique Objectives: 1. To get hands-on experiences about Schlieren technique for flow visualization. 2. To learn how to do the optics

More information

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft , July 1-3, 2015, London, U.K. Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft Pooja Pragati, Sudarsan Baskar Abstract This paper provides a practical design of a new concept of massive

More information

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1 Advances in Natural Science Vol. 3, No. 2, 2010, pp. 244-20 www.cscanada.net ISSN 171-7862 [PRINT] ISSN 171-7870 [ONLINE] www.cscanada.org *The 3rd International Conference of Bionic Engineering* Numerical

More information

An Investigation of Liquid Injection in Refrigeration Screw Compressors

An Investigation of Liquid Injection in Refrigeration Screw Compressors An Investigation of Liquid Injection in Refrigeration Screw Compressors Nikola Stosic, Ahmed Kovacevic and Ian K. Smith Centre for Positive Displacement Compressor Technology, City University, London EC1V

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

More information

WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION

WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION Akihito MITSUHATA *, Canghai LIU *, Ato KITAGAWA * and Masato KAWASHIMA ** * Department of Mechanical and Control Engineering, Graduate school

More information

Inlet Influence on the Pressure and Temperature Distortion Entering the Compressor of an Air Vehicle

Inlet Influence on the Pressure and Temperature Distortion Entering the Compressor of an Air Vehicle Distortion Entering the Compressor of an Air Vehicle P. Hendrick Université Libre de Bruxelles, ULB Avenue F.D. Roosevelt, 50 1050 Brussels BELGIUM patrick.hendrick@ulb.ac.be ABSTRACT One of the possible

More information

High Swept-back Delta Wing Flow

High Swept-back Delta Wing Flow Advanced Materials Research Submitted: 2014-06-25 ISSN: 1662-8985, Vol. 1016, pp 377-382 Accepted: 2014-06-25 doi:10.4028/www.scientific.net/amr.1016.377 Online: 2014-08-28 2014 Trans Tech Publications,

More information

Subsonic Wind Tunnel 300 mm

Subsonic Wind Tunnel 300 mm aerodynamics AF1300 An open circuit suction subsonic wind tunnel with a working section of 300 mm by 300 mm and 600 mm long Screenshot of the optional VDAS software Saves time and money compared to full-scale

More information

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder Influence of rounding corners on unsteady flow and heat transfer around a square cylinder S. K. Singh Deptt. of Mech. Engg., M. B. M. Engg. College / J. N. V. University, Jodhpur, Rajasthan, India Abstract

More information

DEVELOPMENT OF HIGH ALTITUDE TEST FACILITY FOR COLD JET SIMULATION

DEVELOPMENT OF HIGH ALTITUDE TEST FACILITY FOR COLD JET SIMULATION DEVELOPMENT OF HIGH ALTITUDE TEST FACILITY FOR COLD JET SIMULATION Aldin Justin 1, Robin James, Shruti Panicker 2,A.N.Subash,Saravana Kumar 1 Assistant Professor,Karunya University, aldinjustin@karunya.edu

More information

A Research on the Airflow Efficiency Analysis according to the Variation of the Geometry Tolerance of the Sirocco Fan Cut-off for Air Purifier

A Research on the Airflow Efficiency Analysis according to the Variation of the Geometry Tolerance of the Sirocco Fan Cut-off for Air Purifier A Research on the Airflow Efficiency Analysis according to the Variation of the Geometry Tolerance of the Sirocco Fan Cut-off for Air Purifier Jeon-gi Lee*, Choul-jun Choi*, Nam-su Kwak*, Su-sang Park*

More information

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Nicolas BRUMIOUL Abstract This thesis deals with the optimization of the aerodynamic design of a small

More information

Effects of wind incidence angle on wind pressure distribution on square plan tall buildings

Effects of wind incidence angle on wind pressure distribution on square plan tall buildings J. Acad. Indus. Res. Vol. 1(12) May 2013 747 RESEARCH ARTICLE ISSN: 2278-5213 Effects of wind incidence angle on wind pressure distribution on square plan tall buildings S.K. Verma 1, A.K. Ahuja 2* and

More information

Experimental Investigation on the Ice Accretion Effects of Airplane Compressor Cascade of Stator Blades on the Aerodynamic Coefficients

Experimental Investigation on the Ice Accretion Effects of Airplane Compressor Cascade of Stator Blades on the Aerodynamic Coefficients Journal of Applied Fluid Mechanics, Vol. 6, No. 2, pp. 6775, 23. Available online at www.jafmonline.net, ISSN 735-3572, EISSN 735-3645. Experimental Investigation on the Ice Accretion Effects of Airplane

More information

Redesign of Centrifugal PLACE FOR Compressor TITLE. Impeller by means of Scalloping

Redesign of Centrifugal PLACE FOR Compressor TITLE. Impeller by means of Scalloping Redesign of Centrifugal PLACE FOR Compressor TITLE AUTHORS Impeller by means of Scalloping Kirill Grebinnyk, Aerodynamics Engineer, Sulzer (USA) Rob Widders, Engineering Manager, BOC (Australia) Kirill

More information

EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS

EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July, 2-24 8 EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS J. A. Amin and A. K. Ahuja

More information

A Characterization of Rotating Stall Behaviors in High and Low Speed Centrifugal Compressors

A Characterization of Rotating Stall Behaviors in High and Low Speed Centrifugal Compressors Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1998 A Characterization of Rotating Stall Behaviors in High and Low Speed Centrifugal Compressors W. C. Oakes

More information

Rub Tolerant Labyrinth Seals

Rub Tolerant Labyrinth Seals Rub Tolerant Labyrinth Seals A Simple Method for Estimating the Effect of Upgrading Your Compressor Try this on your compressor to see if you can benefit from a conversion to rub tolerant seals. Degradation

More information

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE - 247 - AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE J D Castro a, C W Pope a and R D Matthews b a Mott MacDonald Ltd, St Anne House,

More information

Subsonic Wind Tunnel 300 mm

Subsonic Wind Tunnel 300 mm aerodynamics AF1300 TecQuipment s AF1300 Subsonic Wind Tunnel. See also AF300S starter set that includes AF1300Z Basic Lift and Drag Balance and a set of AF1300J Three Dimensional Drag Models with the

More information

STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS

STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS ICAS 2000 CONGRESS STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS Kenichi RINOIE Department of Aeronautics and Astronautics, University of Tokyo, Tokyo, 113-8656, JAPAN Keywords: vortex flap,

More information

Efficiency Improvement of Rotary Compressor by Improving the Discharge path through Simulation

Efficiency Improvement of Rotary Compressor by Improving the Discharge path through Simulation Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 Efficiency Improvement of Rotary Compressor by Improving the Discharge path through

More information

Centrifugal Compressor Tip Clearance and Impeller Flow

Centrifugal Compressor Tip Clearance and Impeller Flow Centrifugal Compressor Tip Clearance and Impeller Flow Ahti Jaatinen-Värri 1*, Jonna Tiainen 1, Teemu Turunen-Saaresti 1, Aki Grönman 1, Alireza Ameli 1, Abraham Engeda 2, Jari Backman 1 1 Laboratory of

More information