of Carbon Dioxide (CO 2

Size: px
Start display at page:

Download "of Carbon Dioxide (CO 2"

Transcription

1 CHAPTER 10 Phase Changes of Carbon Dioxide (CO 2 ) Objectives This experiment is an introduction to phase changes of pure substances and an introduction to some simple microtechniques for doing experiments in the laboratory. The objectives of this experiment are to: Observe liquid phase of carbon dioxide directly. Use a micromanometer to estimate triple point pressure. Use calorimeter techniques to measure heat of sublimation. Background Solid carbon dioxide is the familiar material dry ice, which vaporizes without forming any liquid under ordinary conditions. This property is a function of temperature and pressure; if the conditions under which we live were very different, dry ice would behave differently. These relationships are often expressed in a phase diagram, a kind of graph which shows the stable phases of a substance at different conditions of temperature and pressure. The phase diagram for carbon dioxide is shown in Figure 1. Liquid Pressure Solid Vapor Temperature Figure 1. Phase diagram for CO

2 Chemistry 141 Experimental Chemistry The pressure and temperature regions where solid, liquid, and gas are stable are labeled as such. One does have to be a little careful about what this graph means! At the surface of a solid or liquid, there are always a few molecules that have enough energy to escape into the gas phase, so solids and liquids always have a film or envelope of gas around them. But as you all know, if the temperature drops below freezing and stays there, all the water outside will gradually freeze into ice and will evaporate very slowly. Dry ice is different in that it does not form any visible liquid under ordinary conditions, and it evaporates rapidly (compared to water ice). How can we interpret this on the phase diagram? The diagram has two variables, temperature and pressure. Pressure is atmospheric pressure when you look at dry ice under normal conditions, so whatever is happening as the CO 2 evaporates must be happening along some horizontal line corresponding to that pressure. Temperature is changing after the dry ice evaporates; it has a temperature of about 80 C, and as soon as it vaporizes it begins to warm up to room temperature. The dry ice is not stable in contact with the room temperature air around it; heat (thermal energy) flows from the air to the dry ice, causing it to evaporate. But the fact that no liquid can be seen during this process tells us one other thing: that the horizontal pressure line which marks atmospheric pressure must be below the point on the phase diagram where the three lines meet, because it is only under these conditions of pressure that liquid does not exist. A possible position of the atmospheric pressure line is shown in Figure 2 the dotted line indicates atmospheric pressure. Liquid Pressure Solid Vapor Temperature Figure 2. Possible position of the atmospheric pressure line in the phase diagram for CO 2. If this reasoning about the relationship between temperature, pressure, and phases of a substance is correct, is there any way of observing liquid carbon dioxide? Yes, there should be, simply by raising the pressure on the system. This is not difficult to do because the necessary increase in pressure is small. This is the first experiment you will do today; detailed instructions and precautions are given in the experimental section. 174

3 Phase Changes of Carbon Dioxide (CO 2 ) Chapter 10 The second part of the experiment is measuring the heat of sublimation of dry ice. Sublimation is the process of evaporation from the solid directly to the gas phase. All phase changes of this kind require some energy, because the molecules in the substances are going from states of limited motion to states of less limited motion. In an earlier experiment, you measured the heat of fusion (melting) of ordinary ice. That was not a very difficult experiment to do, but calculating the heat of fusion was complex because you had to take into account several temperature changes over the course of the experiment. This time the experiment will be a little harder to do because of the temperatures and pressures involved, but the calculations will be similar. Safety Precautions Eye protection must be worn at all times in this experiment. Never handle the crushed dry ice with your bare hands use a spatula or scoop. The potential for minor explosions is high because you are containing carbon dioxide gas under pressure in the first part of the experiment, and the beryl pipettes are barely strong enough to withstand the pressure and may rupture. Materials Equipment Beryl pipettes and scoops, Styrofoam cups, scissors (supplied in lab) Micromanometer, IC temperature sensor, thermometer, tongs (check out from stockroom) Watch glasses (from your locker) Supplies Crushed dry ice Experimental Procedures Part I. Estimation of the Triple Point Pressure 1. Take a new beryl pipette and clip the end off the tube so that you can insert small pieces of dry ice. Use a beryl scoop or a spatula to transfer dry ice into the pipette until you have the bulb about 1/4 full 5 mm or so of chunks. The pipette will frost up as this is done, and there is really no way to stop it. 2. When you have enough dry ice in the bulb, take your tongs and use the part close to the hinge to clamp the tube of the beryl pipette tightly shut. Hold it near the benchtop, away from your face. You will have to hold the tongs tightly with both hands to prevent leaks your TA will demonstrate this to you. If you have the tube tightly closed it will take less than a minute for liquid to begin to form in the bulb. Continue to clamp it until the solid melts, but not after: the pressure rises very rapidly at that point, and usually the beryl pipette bursts. If you release the pressure on the liquid by relaxing your grip on the tongs, the CO 2 will solidify very suddenly to a white powder. So long as the beryl pipette is intact you can repeat this experiment several times with the same sample. 175

4 Chemistry 141 Experimental Chemistry 3. To make an estimate of the triple point pressure, you need some way of measuring the pressure. This will be done with a micromanometer: a small glass tube, sealed at one end and graduated, with a pigtail for handling and a drop of colored water as a marker. Take one of these devices by the pigtail and drop it down the tube of your Beryl pipette. Be sure that you still have a fair amount of dry ice in the bulb; you may wish to add a little more before inserting the micromanometer. 4. Use the pigtail to position the manometer so that you can close the tube with the tongs without breaking the manometer, and so that you can see the colored water drop and the scale. Read the position of the water drop before you clamp the tongs shut read the distance in cm from the closed end of the tube (you should be able to estimate to the nearest mm). Clamp the tube closed again with your tongs and watch the colored drop. If the tube is tightly closed you will see the drop move quickly toward the closed end of the manometer tube. Watch the sample again for the formation of liquid; when you have some visible liquid, and there is still some solid left, read the manometer again. You are making this reading when solid, liquid, and gas are all present in your sample, so it is called a triple point pressure. We will explain in the data analysis section how to calculate this pressure from these two readings and the barometric pressure. Be sure that you record the barometric pressure for the day before you leave the lab! Your TA will have it written on the blackboard. Data Analysis To calculate the pressure at the triple point you need to use Boyle s law in the form: 176 P 1 V 1 5 P 2 V 2 When you take your first reading the volume inside the manometer tube, V 1 is proportional to the length from the closed end, and you can use the reading of the length instead of the volume. Since V i 5 L i A (length cross-sectional area), P 1 L 1 A 5 P 2 L 2 A The cross-sectional area doesn t change, so the A s can be canceled. P 1, the pressure before you close the pipette tube, is just atmospheric pressure for that day. P 2 is the pressure at the triple point, which is what you want to calculate. P 2 5 P 1 (L 1 /L 2 ) Report your experimental triple point pressure both in mm Hg and in atmospheres. Use the Data Summary sheet at the end of this experiment to record your data, calculations, and results. Part II. Measuring the Heat of Sublimation of Carbon Dioxide 1. Program the MicroLAB to measure time and temperature, with a one second delay. Calibrate your temperature sensor. Record the high calibration temperature in your notes. After the temperature sensor is calibrated fill a nested pair of dry

5 Phase Changes of Carbon Dioxide (CO 2 ) Chapter 10 Styrofoam cups with fresh hot water, insert the sensor, and cover the cup with a watch glass. From here on everything needs to be done as quickly and efficiently as possible. A sample of dry ice must be weighed and transferred to the calorimeter with as little loss as possible. The program needs to be running as the dry ice is added, so that you can see the entire interval of the temperature change. 2. Weigh a dry Styrofoam cup and record that weight on the data sheet. Place about 1 1/2 tablespoons of crushed dry ice in the cup you have weighed, and cover with a watch glass to minimize condensation. Start the program and see that the temperature is plotting on-screen, and that the temperature is a little below your high calibration temperature. Take your cup of dry ice to the balance, weigh it without the watch glass, cover it again and return quickly to your workstation. Immediately add the dry ice to the warm water. Be sure that all of the dry ice transfers; some of it may stick to the bottom of the cup. Carbon dioxide gas will evolve vigorously for a few seconds, and the water will cool rapidly. Continue monitoring the temperature until it stabilizes. 3. Remove the thermistor from the calorimeter, carefully shaking any drops of water back into the calorimeter. You still have to weigh the calorimeter to determine how much water it contained during the experiment. (Why are you doing this after the experiment instead of before?) Weigh the calorimeter and its contents, empty it out, dry it gently with a paper towel, and weigh the two nested cups so you can determine the weight of water you had present. 4. Save your data to a disk file, then repeat the procedures to get an idea of how reproducible your measurements are. Use the Lab Works spreadsheet to determine the water temperatures before and after adding dry ice. Data Analysis As in the experiment where you measured the heat of fusion of water (Flames, Heat, and Calories), the heat loss from one part of the system must equal the heat gained by other parts. (You may want to review the Background and Data Analysis sections of that experiment.) Heat lost by water 5 Heat gained by dry ice There are several small heat losses that we are neglecting, just as we ignored the loss of vaporized CO 2 between the balance room and your workstation. You can ignore the heat that went to warming the CO 2 gas. Most of the gas escapes immediately, while it is still very cold, and does not take very much heat from the water. To calculate the heat lost by the water you will need the temperature change and the mass of the water: q 5 s 3 m 3 ΔT, where q is the heat loss in calories, s is the specific heat of water (1.000 cal/g- C), m is the mass of the water sample, and ΔT is the water temperature change. 177

6 Chemistry 141 Experimental Chemistry The water heat loss approximately equals the heat gained by the dry ice sample to change it from a solid to a gas. For your lab report, you need to calculate the heat of sublimation per gram of dry ice, called the specific heat of sublimation (in cal/gram of CO 2 and the molar heat of sublimation (in Joules/mole of CO 2 ). One calorie of heat is equal to Joules, and the molar mass (molecular weight) of carbon dioxide is 44 grams/mole. Can you write an equation relating the specific heat of sublimation and the molar heat of sublimation? Show your calculations and report your results on the Data Summary sheet. Pre-lab Questions Make sure you can answer these before you come to lab. 1. What information does a phase diagram give you? 2. In the heat of sublimation portion of this experiment, suppose you had 75.2 g of water that initially was 64 C. Upon the addition of 11.6 g of CO 2 the temperature reached 18 C. Calculate the heat lost by the water. 3. Use your answer from Question #2 to calculate the specific heat of sublimation in calories per gram of CO

7 Phase Changes of Carbon Dioxide (CO 2 ) Chapter 10 CHAPTER 10 Name ID No. Worksheet Instructor Partner s Name (if applicable Course/Section ate (of Lab Meeting) Data Summary Part I. Estimation of the Triple Point Pressure Barometric pressure: mm Hg Micromanometer reading before clamping beryl pipette (L 1 ): mm Micromanometer reading at the triple point (L 2 ): mm Calculated triple point pressure: mm Hg; atm Calculations: Part II. Heat of Sublimation of Carbon Dioxide irst Trial Second Trial Mass of Styrofoam cup and crushed dry ice g g Mass of Styrofoam cup g g Mass of dry ice g g Mass of nested Styrofoam cups and water g g Mass of nested Styrofoam cups g g Mass of water g g (Continued on back) 179

8 Chemistry 141 Experimental Chemistry Temperature of water before adding dry ice Final temperature of water Temperature change of water Calculations (report results at bottom of page) irst Trial Second Trial C C C C C C Heat loss: irst Trial Second Trial Specific heat of sublimation: irst Trial Second Trial Molar Heat of sublimation: irst Trial Second Trial irst Trial Second Trial Average Heat loss from water cal cal Specific heat of sublimation cal/g cal/g cal/g Molar heat of sublimation J/mole J/mole J/mole 180

Experiment 13 Molar Mass of a Gas. Purpose. Background. PV = nrt

Experiment 13 Molar Mass of a Gas. Purpose. Background. PV = nrt Experiment 13 Molar Mass of a Gas Purpose In this experiment you will use the ideal gas law to calculate the molar mass of a volatile liquid compound by measuring the mass, volume, temperature, and pressure

More information

Determination of the Gas-Law Constant (R) using CO2

Determination of the Gas-Law Constant (R) using CO2 Determination of the Gas-Law Constant (R) using CO2 EXPERIMENT 11 Prepared by Edward L. Brown and Miranda Raines, Lee University The student will become familiar with ideal gases and how their properties

More information

CHM 100 / Introductory Laboratory Experiment (r10) 1/11

CHM 100 / Introductory Laboratory Experiment (r10) 1/11 CHM 100 / 110 - Introductory Laboratory Experiment (r10) 1/11 Purpose This introductory exercise will familiarize you with a few of the measurements we make in the chemistry laboratory and the level of

More information

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract Experiment 9: Gas Laws VC 09 Abstract In this laboratory activity, you will experimentally confirm Boyle s Law, determine absolute zero from Gay-Lussac's Law, and determine the molecular weight of acetone,

More information

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

CHM Introductory Laboratory Experiment (r17sd) 1/13

CHM Introductory Laboratory Experiment (r17sd) 1/13 CHM 110 - Introductory Laboratory Experiment (r17sd) 1/13 Purpose This introductory exercise will familiarize you with a few of the measurements we make in the chemistry laboratory and the level of uncertainty

More information

Phase Changes * OpenStax

Phase Changes * OpenStax OpenStax-CNX module: m42218 1 Phase Changes * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Interpret a phase diagram. State Dalton's

More information

Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497

Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497 Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497 Figure 13.25 This photograph of Apollo 17 Commander Eugene Cernan driving the lunar rover on the Moon in 1972 looks as though it was taken at

More information

UNIT 10 - GASES. Notes & Worksheets - Honors

UNIT 10 - GASES. Notes & Worksheets - Honors Ideal Gas Equation 1 WKSHT 1.) What is the pressure exerted by 2.0 moles of an ideal gas when it occupies a volume of 12.0 L at 373 K? 2.) A flashbulb of volume 2.6 cm 3 contains O 2 gas at a pressure

More information

Determination of the relative molecular mass of a gas

Determination of the relative molecular mass of a gas Determination of the relative molecular mass of a gas Chapter 1 section 1.3 page 43 pages 41 45 Pearson Baccalaureate HL Chemistry 2014 Catrin Brown AIM To calculate the relative molecular mass of carbon

More information

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8.

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8. Gas Laws EXPERIMENTAL TASK Determine the mathematical relationship between the volume of a gas sample and its absolute temperature, using experimental data; and to determine the mathematical relationship

More information

VAPOR PRESSURE AND ENTHALPY OF VAPORIZATION OF A PURE LIQUID: THE ISOTENISCOPE METHOD

VAPOR PRESSURE AND ENTHALPY OF VAPORIZATION OF A PURE LIQUID: THE ISOTENISCOPE METHOD Physical Chemistry Laboratory Experiment I-3b VAPOR PRESSURE AND ENTHALPY OF VAPORIZATION OF A PURE LIQUID: THE ISOTENISCOPE METHOD References: See relevant sections of undergraduate Physical Chemistry

More information

3/30/2013. Vapor Pressure and Changes of State Phase Diagrams. Chapter 10 Sections 8, 9

3/30/2013. Vapor Pressure and Changes of State Phase Diagrams. Chapter 10 Sections 8, 9 Vapor Pressure and Changes of State Chapter 10 Sections 8, 9 Vapor Pressure In a closed container, liquid evaporates. The vapor starts to condensate. Condensation and evaporation happens simultaneously.

More information

Chapter 3. Solids, Liquids, and Gases

Chapter 3. Solids, Liquids, and Gases Chapter 3 Solids, Liquids, and Gases Section 1: States of Matter Learning Objectives: Describe the characteristics of a solid Describe the characteristics of a liquid Describe the characteristics of a

More information

Determination of R: The Gas-Law Constant

Determination of R: The Gas-Law Constant Determination of R: The Gas-Law Constant PURPOSE: EXPERIMENT 9 To gain a feeling for how well real gases obey the ideal-gas law and to determine the ideal-gas-law constant R. APPARATUS AND CHEMICALS: KClO

More information

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. Atmospheric pressure is 760 mm Hg. 2. The SI unit of pressure is

More information

Gas Laws. Introduction

Gas Laws. Introduction Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as

More information

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq) Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

More information

States of Matter Review

States of Matter Review States of Matter Review May 13 8:16 PM Physical States of Matter (Phases) Solid Liquid Melting Gas Condensation Freezing Evaporation Deposition Sublimation Sep 13 6:04 PM 1 May 13 8:11 PM Gases Chapter

More information

Hydrostatics Physics Lab XI

Hydrostatics Physics Lab XI Hydrostatics Physics Lab XI Objective Students will discover the basic principles of buoyancy in a fluid. Students will also quantitatively demonstrate the variance of pressure with immersion depth in

More information

11.1 Dumas Method - Pre-Lab Questions

11.1 Dumas Method - Pre-Lab Questions 11.1 Dumas Method - Pre-Lab Questions Name: Instructor: Date: Section/Group: Show all work for full credit. 1. If a 275-mL gas container has pressure of 732.6 mm Hg at -28 C, how many moles of gas are

More information

Experiment 13: Make-Up Lab for 1408/1420

Experiment 13: Make-Up Lab for 1408/1420 Experiment 13: Make-Up Lab for 1408/1420 This is only for those that have approval. Students without approval will not be allowed to perform the lab. The pre-lab must be turned in at the beginning of lab.

More information

EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT

EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT INTRODUCTION A course in chemistry, one of the physical sciences, differs from a course in, say, literature or history. A main difference is that chemistry usually

More information

General Chemistry Mr. MacGillivray Test: States of Matter

General Chemistry Mr. MacGillivray Test: States of Matter General Chemistry Mr. MacGillivray Test: States of Matter I. Label each of the 5 phase changes in the diagram below with the letter of the correct response. Not all of the letters get used. a) Vaporization

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Limited 2014

More information

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq) Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

More information

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas?

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas? MOLECULAR MASS OFA VOLATILE LIQUID A lab to study the ideal gas law Introduction The ideal gas law indicates that the observed properties of a gas sample are directly related to the number of moles of

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure

More information

Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17

Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17 Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17 Objective: The purpose of this experiment is confirm Boyle's and Amontons' Laws in the laboratory. Prelab Questions: Read through this lab handout

More information

THERMODYNAMICS OF A GAS PHASE REACTION: DISSOCIATION OF N 2 O 4

THERMODYNAMICS OF A GAS PHASE REACTION: DISSOCIATION OF N 2 O 4 THERMODYNAMICS OF A GAS PHASE REACTION: DISSOCIATION OF N 2 O 4 OBJECTIVES 1. To measure the equilibrium constant, enthalpy, entropy, and Gibbs free energy change of the reaction N2O4(g) = 2 NO2(g). 2.

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

The Decomposition of Potassium Chlorate

The Decomposition of Potassium Chlorate The Decomposition of Potassium Chlorate Small quantities of molecular oxygen (O 2 ) can be obtained from the thermal decomposition of certain oxides, peroxides, and salts of oxoacids. Some examples of

More information

Modeling Diffusion Rates of a Gas in an Enclosed Space

Modeling Diffusion Rates of a Gas in an Enclosed Space Modeling Diffusion Rates of a Gas in an Enclosed Space By: Chirag Kulkarni, Haoran Fei, Henry Friedlander Abstract: This research attempts to identify the relationship between pressure of a certain gas

More information

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point.

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Chemistry 1020 Identification of an Unknown Liquid Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Text reference solubility, density,

More information

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii Experiment THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law By Dale A. Hammond, PhD, Brigham Young University Hawaii The objectives of this experiment are to... LEARNING OBJECTIVES introduce

More information

Name Chemistry Pre-AP

Name Chemistry Pre-AP Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

More information

To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure

To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure Standard Molar Volume To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure At STP, one mole of any gas has a volume of: 22.4 L = (This is a cube

More information

Cooling Gases Phase Changes and Phase Diagrams

Cooling Gases Phase Changes and Phase Diagrams Cooling Gases Phase Changes and Phase Diagrams SCIENTIFIC Introduction What happens to gases when the temperature is dropped way down? As this activity illustrates, it all depends on the gas. Concepts

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 1 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

Experiment 18 Properties of Gases

Experiment 18 Properties of Gases Experiment 18 Properties of Gases E18-1 E18-2 The Task In this experiment you will investigate some of the properties of gases, i.e. how gases flow, their phase changes and chemical reactivity. Skills

More information

Gases. Unit 10. How do gases behave?

Gases. Unit 10. How do gases behave? Gases Unit 10 How do gases behave? Gases are perhaps the most mysterious of all of the phases of matter. For the most part gases are invisible to us, and it was once believed that in the air there is no

More information

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot?

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot? Name Period HW 1 Worksheet (Goals 1-4) - Kinetic Molecular Theory 1. Describe how gases, liquids, and solids compare using the following table. Solids Liquids Gases Volume (definite or indefinite) Molecular

More information

1. Quantity of a gas (moles) 2. Temperature of the gas. 3. Volume occupied by the gas. 4. Pressure exerted by the gas. PV = nrt

1. Quantity of a gas (moles) 2. Temperature of the gas. 3. Volume occupied by the gas. 4. Pressure exerted by the gas. PV = nrt Experiment 5 Stoichiometry : Gases Determining the Ideal Gas Constant Lab Owl Announcement: Upon completion of this lab log onto OWL. Your fourth Lab Owl assignment, Lab Owl: Exp 5 should appear there.

More information

Under pressure pushing down

Under pressure pushing down Under pressure pushing down on me When Dalton was conducting his studies, which led him to the atomic-molecular theory of matter, he also included studies of the behaviour of gases. These led him to propose,

More information

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure.

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure. Chapter 12 Section 1 Pressure A gas exerts pressure on its surroundings. Blow up a balloon. The gas we are most familiar with is the atmosphere, a mixture of mostly elemental nitrogen and oxygen. Pressure

More information

Gas Laws: Boyle s and Amonton s Laws Minneapolis Community and Technical College v.9.08

Gas Laws: Boyle s and Amonton s Laws Minneapolis Community and Technical College v.9.08 Gas Laws: Boyle s and Amonton s Laws Minneapolis Community and Technical College v.9.08 I. Introduction The purpose of this experiment is to test the extent real gases (to the limits of our measurements)

More information

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT:

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT: AP Chemistry Ms. Ye Name Date Block Kinetic Molecular Theory Explains properties of gases, liquids, and solids in terms of energy using an ideal gas, an imaginary which fits all the assumptions of kinetic

More information

Intermolecular Forces

Intermolecular Forces Experiment 2 Intermolecular Forces Prepared by Ross S. Nord, Eastern Michigan University with large parts adapted from Chemistry with Computers by Dan D. Holmquist and Donald D. Volz PURPOSE The purpose

More information

Chem 110 General Principles of Chemistry

Chem 110 General Principles of Chemistry CHEM110 Worksheet - Gases Chem 110 General Principles of Chemistry Chapter 9 Gases (pages 337-373) In this chapter we - first contrast gases with liquids and solids and then discuss gas pressure. - review

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

More information

BASIC LABORATORY TECHNIQUES (Revised )

BASIC LABORATORY TECHNIQUES (Revised ) BASIC LABORATORY TECHNIQUES (Revised 1-6-13) A. WEIGHING The determination of the quantity of matter in a sample is most directly determined by measuring its mass. The process by which we determine the

More information

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle from: USGS http://water.usgs.gov/edu/watercycle.html Evaporation: enough water to cover the entire surface of Earth to 1 meter cycles

More information

Page 1. Question 17.1a Nitrogen and Oxygen I. Question 17.1b Nitrogen and Oxygen II. Question 17.2a Ideal Gas Law I

Page 1. Question 17.1a Nitrogen and Oxygen I. Question 17.1b Nitrogen and Oxygen II. Question 17.2a Ideal Gas Law I ConcepTest Clicker Questions Chapter 17 Question 17.1a Nitrogen and Oxygen I Which has more molecules a mole of nitrogen (N 2 ) gas or a mole of oxygen (O 2 ) gas? Physics, 4 th Edition James S. Walker

More information

Experiment 11: The Ideal Gas Law

Experiment 11: The Ideal Gas Law Experiment 11: The Ideal Gas Law The behavior of an ideal gas is described by its equation of state, PV = nrt. You will look at two special cases of this. Part 1: Determination of Absolute Zero. You will

More information

Completed ALL 2 Warm-up IC Kinetic Molecular Theory Notes. Kinetic Molecular Theory and Pressure Worksheet

Completed ALL 2 Warm-up IC Kinetic Molecular Theory Notes. Kinetic Molecular Theory and Pressure Worksheet Name: Unit 10- Gas Laws Day Page # Description IC/HW Due Date Completed ALL 2 Warm-up IC 1 3 5 Kinetic Molecular Theory Notes IC 1 6 8 Kinetic Molecular Theory and Pressure Worksheet IC 2 9 10 Gas Law

More information

What happens to the mass and what happens to the weight of the liquid in the cup? decreases stays the same decreases stays the same

What happens to the mass and what happens to the weight of the liquid in the cup? decreases stays the same decreases stays the same 1 cup contains hot liquid. Some of the liquid evaporates. What happens to the mass and what happens to the weight of the liquid in the cup? mass stays the same stays the same weight stays the same stays

More information

Students measure the change in pressure by varying the volume of trapped air in a syringe while:

Students measure the change in pressure by varying the volume of trapped air in a syringe while: How Does a Trapped Gas Behave? Teacher Information Objective Students investigate the effect of changes in the volume of a confined gas on pressure at constant temperature. Using the pressure sensor, students

More information

Experiment 1 Introduction to Some Laboratory Measurements

Experiment 1 Introduction to Some Laboratory Measurements Experiment 1 Introduction to Some Laboratory Measurements Introduction In this experiment you will familiarize yourself with the English & metric systems of measurement, weigh with a centigram balance,

More information

Measuring Mass and Volume

Measuring Mass and Volume Measuring Mass and Volume Experiment 2 Expt 2 Measurement.wpd INTENT The purpose of this experiment is to introduce some fundamental aspects of the measurement making process as well as to introduce some

More information

Analysis of a KClO3 Mixture and Determination of R

Analysis of a KClO3 Mixture and Determination of R Experiment 10 Analysis of a KClO3 Mixture and Determination of R Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise.

More information

PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS!

PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS! EXPERIMENT # 6 Name: PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS! 1. Calculate the height of a corresponding column of mercury (in mm) that is at

More information

EXPERIMENT XI. Careful!! Improper handling of the vacuum line may result in the release of SO 2 which is an irritating and suffocating gas.

EXPERIMENT XI. Careful!! Improper handling of the vacuum line may result in the release of SO 2 which is an irritating and suffocating gas. Chem 366-3 Page XI - 1 EXPERIMENT XI INFRARED SPECTRUM OF SO2 (S&G, 5th ed. Expt 36, 6th ed. Expt. 35) 1. Pre-Lab preparation. The description of this experiment has disappeared from the more recent editions

More information

BASIC LABORATORY TECHNIQUES (Revised )

BASIC LABORATORY TECHNIQUES (Revised ) BASIC LABORATORY TECHNIQUES (Revised 1-2-16) (See Appendix II: Summary for making Spreadsheets and Graphs with Excel and Appendix III parts C, C1 and C2: Significant figures, scientific notation and rounding)

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure 1, it

More information

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases World of Chemistry Notes for Students [Chapter 3, page ] Chapter 3 Gases ) Sec 3.8 Kinetic Theory of Gases and the Nature of Gases The Kinetic Theory of Matter says that the tiny particles in all forms

More information

AP Biology Lab - Cell Respiration

AP Biology Lab - Cell Respiration AP Biology Lab - Cell Respiration This investigation uses respirometry techniques to calculate the rate of oxygen consumption (cellular respiration) in germinating pea seeds. The effect of temperature

More information

Gas Laws. Figure 1: Experimental Set-up with Leveling Bulb. GCC CHM 151LL: Gas Laws GCC, 2019 page 1 of 8

Gas Laws. Figure 1: Experimental Set-up with Leveling Bulb. GCC CHM 151LL: Gas Laws GCC, 2019 page 1 of 8 Gas Laws Introduction Although we cannot see gases, we can observe their behavior and study their properties. This lab will apply several concepts from Ideal Gas Laws. You will use your knowledge of chemical

More information

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS Vapor Pressure of Liquids Computer 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

VOLUMETRIC TECHNIQUES

VOLUMETRIC TECHNIQUES REVISED 10/14 CHEMISTRY 1101L VOLUMETRIC TECHNIQUES Volume measurements are important in many experimental procedures. Sometimes volume measurements must be exact; other times they can be approximate.

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 2 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

Chapter 10: Gases. Characteristics of Gases

Chapter 10: Gases. Characteristics of Gases Chapter 10: Gases Learning Outcomes: Calculate pressure and convert between pressure units with an emphasis on torr and atmospheres. Calculate P, V, n, or T using the ideal-gas equation. Explain how the

More information

Aerobic Respiration. Evaluation copy

Aerobic Respiration. Evaluation copy Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely

More information

CONCEPTUAL PHYSICS LAB

CONCEPTUAL PHYSICS LAB PURPOSE The purpose of this lab is to determine the density of an unknown solid by direct calculation and by graphing mass vs. volume for several samples of the solid. INTRODUCTION Which is heavier, a

More information

Chapter 1, Lesson 5: Air, It s Really There

Chapter 1, Lesson 5: Air, It s Really There Chapter 1, Lesson 5: Air, It s Really There Key Concepts In a gas, the particles (atoms and molecules) have weak attractions for one another. They are able to move freely past each other with little interaction

More information

Target Density Lab SCIENTIFIC. Density Inquiry Lab Activities. Introduction. Concepts. Materials. Safety Precautions. Preparation

Target Density Lab SCIENTIFIC. Density Inquiry Lab Activities. Introduction. Concepts. Materials. Safety Precautions. Preparation Target Density Lab Density Inquiry Lab Activities SCIENTIFIC Introduction The concept of density is reinforced as students measure the volume and mass of an unknown liquid in a graduated cylinder, graph

More information

8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points.

8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points. Charles s Law According to Charles s law, the volume of a fixed mass of gas varies directly with its Kelvin temperature if its pressure is constant. The following table contains Celsius temperature and

More information

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997 ELECTRONIC LABORATORY NOTEBOOK (ELN) INSTRUCTIONS Read the directions and

More information

The use of the analytical balance, and the buret.

The use of the analytical balance, and the buret. 1211L Experiment 1. Density 2015 by H. Patterson Instructor Notes: Students make measurements individually then share data to make the graph. There are four volumetric measurements to be studied; 3.00

More information

DEMONSTRATION 2.1 PROPERTIES OF CO 2. Chapter 2: Gases

DEMONSTRATION 2.1 PROPERTIES OF CO 2. Chapter 2: Gases DEMONSTRATION 2.1 Chapter 2: Gases PROPERTIES OF CO 2 This demonstration has two aims: firstly, to show that carbon dioxide gas is denser than air; secondly, to show that carbon dioxide will not support

More information

General Chemistry I Percent Yield of Hydrogen Gas From Magnesium and HCl

General Chemistry I Percent Yield of Hydrogen Gas From Magnesium and HCl Introduction For chemical reactions involving gases, gas volume measurements provide a convenient means of determining stoichiometric relationships. A gaseous product is collected in a long, thin graduated

More information

Mini-Labs. 7. Movie Fog 8. Jet Power 9. Sauce Pan 10. Magnetic Bubbles 11. Aquarium Magic 12. Hockey Puck 13. Carbon dioxide balloons

Mini-Labs. 7. Movie Fog 8. Jet Power 9. Sauce Pan 10. Magnetic Bubbles 11. Aquarium Magic 12. Hockey Puck 13. Carbon dioxide balloons Mini-Labs (13) Mini-Labs 1. Magic Raisins 2. Mysterious Balloons 3. Candle Power 4. Super-cooled Liquid 5. Singing Tongs 6. Film Canister 7. Movie Fog 8. Jet Power 9. Sauce Pan 10. Magnetic Bubbles 11.

More information

Background information. normal force on a surface area of the surface

Background information. normal force on a surface area of the surface Experiment 5a Class: Name: ( ) Date: 5a Boyle s law Objective To investigate the relationship between the pressure and volume of a fixed mass of gas at a constant temperature. Background information Pressure

More information

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch 11 Gases STUDY GUIDE Accelerated Chemistry SCANTRON Name /74 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements

More information

weight of the book divided by the area of the bottom of the plunger.

weight of the book divided by the area of the bottom of the plunger. Lab: Boyle s Law Datasheet Name Data: Pressure is defined as force per unit area: P = Force/Area When a book rests on top of the plunger, the pressure it exerts equals the weight of the book divided by

More information

LAB 06 Organismal Respiration

LAB 06 Organismal Respiration LAB 06 Organismal Respiration Objectives: To learn how a respirometer can be used to determine a respiration rate. Identify and explain the effect of seed germination on cell respiration. To design and

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids Calculator 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

Boyle s Law Practice

Boyle s Law Practice Boyle s Law Practice Boyle s Law is an indirect relationship. Most of these problems can be done in your head without showing your work. 1. Herman has 30.0 L of helium gas trapped in a cylinder by a piston.

More information

2.1 Simple Kinetic Molecular Model of Matter

2.1 Simple Kinetic Molecular Model of Matter For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ 2.1 Simple Kinetic Molecular Model of Matter Question Paper Level IGSE Subject Physics (625) Exam oard Topic Sub Topic ooklet

More information

DO NOT, under any circumstances, throw this away! This packet MUST be saved for the final exam.

DO NOT, under any circumstances, throw this away! This packet MUST be saved for the final exam. Name: Period: Unit 2 Packet Energy and States of Matter Unit 2 Packet Contents Sheet (This Paper!) Unit 2 Objectives Notes: Kinetic Molecular Theory of Gases- 3 pgs (with Behavior of Gases Reading, and

More information

Kinetic Molecular Theory

Kinetic Molecular Theory Kinetic Molecular Theory Name Period Unit 7 HW 1 Worksheet (Goals 1 & 2) 1. Describe how gases, liquids, and solids compare using the following table. Volume (definite or indefinite) Molecular Motion (high,

More information

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12 LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

More information

Question McGraw-Hill Ryerson Limited

Question McGraw-Hill Ryerson Limited Question 1 Which of the following cannot be explained by considering the empty space between the particles of a gas? A) Gases are more compressible than liquids. B) Gases have lower viscosities than liquids.

More information

Unit 9: Gas Laws REGENTS CHEMISTRY

Unit 9: Gas Laws REGENTS CHEMISTRY Name: Unit 9: Gas Laws REGENTS CHEMISTRY 1 Name: Unit 9: Gas Laws The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information

Chemistry Chapter 11 Test Review

Chemistry Chapter 11 Test Review Chemistry Chapter 11 Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Pressure is the force per unit a. volume. c. length. b. surface area.

More information

SCIENCE Research how living things rely on carbon dioxide, study the greenhouse effect, research carbon dating

SCIENCE Research how living things rely on carbon dioxide, study the greenhouse effect, research carbon dating Dry Ice! Brief description This is a WOW lesson your students will never forget! The demonstrations provided are safe, fun, amazing, thought provoking and loud. Use them to discuss the states of matter,

More information

Experiment 12: MOLAR VOLUME OF AN IDEAL GAS

Experiment 12: MOLAR VOLUME OF AN IDEAL GAS Experiment 1: MOLAR VOLUME OF AN IDEAL GAS Purpose: Determine the molar volume of a gas at standard temperature and pressure (STP, 0 C and pressure of 1 atm) Performance Goals: Collect and measure the

More information

Overview of Earlier Lecture

Overview of Earlier Lecture 4 1 Overview of Earlier Lecture Hydrogen Helium Phase Diagram of Helium Super fluid Helium 2 Outline of the Lecture Uses of Helium 4 Thermomechanical, Mechanocaloric, Fountain, Rollin Film Effects. Sound

More information

Heat-Trapping Gases Lab

Heat-Trapping Gases Lab Heat-Trapping Gases Lab Before performing the lab, show this video to the students. http://spark.ucar.edu/greenhouse-effect-movie-scott-denning Objective: The main goal of this activity is instrumentally

More information

[USING THE VITROBOT April 9, Using the Vitrobot

[USING THE VITROBOT April 9, Using the Vitrobot Using the Vitrobot The Vitrobot Mk 3 (aka Mark III, Mark 3, etc.) can control both the local temperature and the local humidity during the process of plunge-freezing a grid for cryoem. It does require

More information