Riverboat and Airplane Vectors

Size: px
Start display at page:

Download "Riverboat and Airplane Vectors"

Transcription

1 Grade Homework Riverboat and Airplane Vectors It all depends on your point of view It s all relative On occasion objects move within a medium that is moving with respect to an observer. In such instances, the magnitude of the velocity of the moving object will not be same as the speedometer reading of the vehicle. The speedometer might read 20km/hr, but the motorboat might be moving 25km/hr relative to an observer on the shore. Making up time on an airplane Making up time on an airplane 1

2 Making up time on an airplane Losing time in an airplane Losing time in an airplane Losing time in an airplane Crosswinds Now consider a plane travelling 100km/hr, South that encounters a crosswind of 25km/hr Crosswinds Now consider a plane travelling 100km/hr, South that encounters a crosswind of 25km/hr (100 km/hr) 2 + (25 km/hr) 2 = R km 2 /hr km 2 /hr 2 = R km 2 /hr 2 = R 2 SQRT( km 2 /hr 2 ) = R km/hr = R 2

3 Which direction did it go and at what angle? Using the Pythagorean Theorem we know the Resultant Velocity, but we need to use another tool to solve for the direction the plane went off course The direction of a resultant vector can be determined by using the trigonometric functions SOHCAHTOA SOH stands for Sine equals Opposite over Hypotenuse CAH stands for Cosine equals Adjacent over Hypotenuse TOA stands for Tangent equals Opposite over Adjacent With the Hiker problem from before, we can determine the direction of the hiker s overall displacement The measure of the angle as determined by SOHCAHTOA is not always the direction of the vector Make sure that you are following the direction in which the vectors are travelling 3

4 Practice Problem Practice Problem tan(theta) = (5/10) = 0.5 Theta = tan-1 (0.5) Theta = 26.6 degrees Direction of R = 90 deg deg Direction of R = deg Practice Problem Crosswinds tan(theta) = (40/30) = Theta = tan-1 (1.333) Theta = 53.1 degrees Direction of R = 180 deg deg Direction of R = deg The direction of the resulting velocity can be determined using a trigonometric function. tan (Θ) = (opposite/adjacent) tan (Θ) = (25/100) Θ= -tan (25/100) Θ = 14.0 degrees If the resultant velocity of the plane makes a 14 angle with a southward direction, then the resultant is 256 Tailwind Headwind Crosswind The affect of wind on an airplane is similar to the affect of river current upon a motorboat. If a motorboat were to head straight across a river, it would not reach the shore directly across from its starting point. 4

5 Motorboat questions typically are accompanied by three separate questions 1. What is the resultant velocity (both magnitude and direction) of the boat? 2. If the width of the river is x meters wide, then how much time does it take the boat to The first question can be answered using the same method we used on the airplanes. 1. What is the resultant velocity (both magnitude and direction) of the boat? The 2 nd and 3 rd of these questions can be answered using the average speed equation (and a lot of logic) 2. If the width of the river is x meters wide, then how much time does it take the boat to travel shore to shore? reach the opposite shore? A motorboat traveling 4m/s E encounters a current traveling 3.0m/s N. 1. What is the resultant velocity of the motorboat? (4.0 m/s) 2 + (3.0 m/s) 2 = R 2 16 m 2 /s m 2 /s 2 = R 2 4m/s 3m/s 25 m 2 /s 2 = R 2 SQRT (25 m 2 /s 2 ) = R 5.0 m/s = R tan (Θ) = (opposite/adjacent) tan (Θ) = (3/4) Θ = -tan (3/4) Θ = 36.9 degrees 2. If the width of the river is 80 meters wide, time = distance / average speed Which average speed do we use? 2. If the width of the river is 80 meters wide, time = distance / average speed Be careful and pay attention to which distance you have been given 2. If the width of the river is 80 meters wide, time = distance / average speed time = 80m / 4m/s time = 20s 5

6 distance = time * average speed Again, we have to determine which of the three average speeds to use distance = time * average speed If the boat is traveling downstream with the current, then we have to use river speed Go to the Boards distance = time * average speed distance = 3m/s * 20s distance=60m A plane can travel with a speed of 80 mi/hr with respect to the air. Determine the resultant velocity of the plane (magnitude only) if it encounters a a. 10 mi/hr headwind. b. 10 mi/hr tailwind. c. 10 mi/hr crosswind. d. 60 mi/hr crosswind. Go to the Boards A motorboat traveling 5 m/s, East encounters a current traveling 2.5 m/s, North. a. What is the resultant velocity and direction of the motor boat? b. If the width of the river is 80 meters wide, c. What distance downstream does the boat Homework Riverboat and Airplane Next class-projectile Motion 6

Riverboat Simulator Activity

Riverboat Simulator Activity Riverboat Simulator Activity Purpose: The purpose of this activity is to analyze the relationship between the two vector components of motion for a river boat as it travels across a river in the presence

More information

Riverboat Simulator Activity Sheet

Riverboat Simulator Activity Sheet Riverboat Simulator Activity Sheet Purpose: The purpose of this activity is to analyze the relationship between the two vector components of motion for a river boat as it travels across a river in the

More information

Vector Practice Problems

Vector Practice Problems Vector Practice Problems Name: Use the diagram below to answer Questions #1-3. Each square on the diagram represents a 20-meter x 20- meter area. 1. If a person walks from D to H to G to C, then the direction

More information

Vectors. Wind is blowing 15 m/s East. What is the magnitude of the wind s velocity? What is the direction?

Vectors. Wind is blowing 15 m/s East. What is the magnitude of the wind s velocity? What is the direction? Physics R Scalar: Vector: Vectors Date: Examples of scalars and vectors: Scalars Vectors Wind is blowing 15 m/s East. What is the magnitude of the wind s velocity? What is the direction? Magnitude: Direction:

More information

Relative Motion. New content!

Relative Motion. New content! Relative Motion New content! Task: Draw the speed vs time graphs for the six toy cars 2-D Kinematics Relative Motion Projectile Motion Angled Projectiles Announcements Meet in the lab tomorrow (bring

More information

Vector Representation

Vector Representation Name: Vector Representation Read from Lesson 1 of the Vectors and Motion in Two-Dimensions chapter at The Physics Classroom: http://www.physicsclassroom.com/class/vectors/u3l1a.html MOP Connection: Vectors

More information

1. At what speed must you throw a ball vertically in order to reach the top of a building, 12m tall? Vectors

1. At what speed must you throw a ball vertically in order to reach the top of a building, 12m tall? Vectors Physics R Date: 1. At what speed must you throw a ball vertically in order to reach the top of a building, 12m tall? Scalar: Vectors Vectors Scalars Vector: Wind is blowing 15 m/s East. What is the magnitude

More information

Relative Velocity Practice + Special Relativity. Grab a reference table

Relative Velocity Practice + Special Relativity. Grab a reference table Relative Velocity Practice + Special Relativity Grab a reference table Note: Answer all of these questions with respect to the spaceship. Announcements Lab Report is due Friday (Late = 55, No submission

More information

Similar Right Triangles

Similar Right Triangles MATH 1204 UNIT 5: GEOMETRY AND TRIGONOMETRY Assumed Prior Knowledge Similar Right Triangles Recall that a Right Triangle is a triangle containing one 90 and two acute angles. Right triangles will be similar

More information

Unit 2: Right Triangle Trigonometry RIGHT TRIANGLE RELATIONSHIPS

Unit 2: Right Triangle Trigonometry RIGHT TRIANGLE RELATIONSHIPS Unit 2: Right Triangle Trigonometry This unit investigates the properties of right triangles. The trigonometric ratios sine, cosine, and tangent along with the Pythagorean Theorem are used to solve right

More information

AP Physics 1 Summer Packet Review of Trigonometry used in Physics

AP Physics 1 Summer Packet Review of Trigonometry used in Physics AP Physics 1 Summer Packet Review of Trigonometry used in Physics For some of you this material will seem pretty familiar and you will complete it quickly. For others, you may not have had much or any

More information

Chapter 7. Right Triangles and Trigonometry

Chapter 7. Right Triangles and Trigonometry Chapter 7 Right Triangles and Trigonometry 4 16 25 100 144 LEAVE IN RADICAL FORM Perfect Square Factor * Other Factor 8 20 32 = = = 4 *2 = = = 75 = = 40 = = 7.1 Apply the Pythagorean Theorem Objective:

More information

1. A right triangle has legs of 8 centimeters and 13 centimeters. Solve the triangle completely.

1. A right triangle has legs of 8 centimeters and 13 centimeters. Solve the triangle completely. 9.7 Warmup 1. A right triangle has legs of 8 centimeters and 13 centimeters. Solve the triangle completely. 2. A right triangle has a leg length of 7 in. and a hypotenuse length of 14 in. Solve the triangle

More information

Application of Geometric Mean

Application of Geometric Mean Section 8-1: Geometric Means SOL: None Objective: Find the geometric mean between two numbers Solve problems involving relationships between parts of a right triangle and the altitude to its hypotenuse

More information

Week 11, Lesson 1 1. Warm Up 2. Notes Sine, Cosine, Tangent 3. ICA Triangles

Week 11, Lesson 1 1. Warm Up 2. Notes Sine, Cosine, Tangent 3. ICA Triangles Week 11, Lesson 1 1. Warm Up 2. Notes Sine, Cosine, Tangent 3. ICA Triangles HOW CAN WE FIND THE SIDE LENGTHS OF RIGHT TRIANGLES? Essential Question Essential Question Essential Question Essential Question

More information

Put in simplest radical form. (No decimals)

Put in simplest radical form. (No decimals) Put in simplest radical form. (No decimals) 1. 2. 3. 4. 5. 6. 5 7. 4 8. 6 9. 5 10. 9 11. -3 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 3 28. 1 Geometry Chapter 8 - Right Triangles

More information

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 2. A car is travelling at a constant speed of 26.0 m/s down a slope which is 12.0 to the horizontal. What

More information

Welcome to Trigonometry!

Welcome to Trigonometry! Welcome to Trigonometry! Right Triangle Trigonometry: The study of the relationship between the sides and the angles of right triangles. Why is this important? I wonder how tall this cake is... 55 0 3

More information

Review on Right Triangles

Review on Right Triangles Review on Right Triangles Identify a Right Triangle Example 1. Is each triangle a right triangle? Explain. a) a triangle has side lengths b) a triangle has side lengths of 9 cm, 12 cm, and 15 cm of 5 cm,7

More information

October 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components

October 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components Honors Physics Chapter 4 Scalar Vector Resultant Components 1 When we take two vectors and ADD them, the thing we get is called the RESULTANT, or VECTOR SUM. It is also possible to take a single vector

More information

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final.

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final. Tuesday January 30 Assignment 3: Due Friday, 11:59pm.like every Friday Pre-Class Assignment: 15min before class like every class Office Hours: Wed. 10-11am, 204 EAL Help Room: Wed. & Thurs. 6-9pm, here

More information

Two-Dimensional Motion and Vectors

Two-Dimensional Motion and Vectors Science Objectives Students will measure and describe one- and two-dimensional position, displacement, speed, velocity, and acceleration over time. Students will graphically calculate the resultant of

More information

Algebra/Geometry Blend Unit #7: Right Triangles and Trigonometry Lesson 1: Solving Right Triangles. Introduction. [page 1]

Algebra/Geometry Blend Unit #7: Right Triangles and Trigonometry Lesson 1: Solving Right Triangles. Introduction. [page 1] Algebra/Geometry Blend Unit #7: Right Triangles and Trigonometry Lesson 1: Solving Right Triangles Name Period Date Introduction [page 1] Learn [page 2] Pieces of a Right Triangle The map Brian and Carla

More information

Learning Goal: I can explain when to use the Sine, Cosine and Tangent ratios and use the functions to determine the missing side or angle.

Learning Goal: I can explain when to use the Sine, Cosine and Tangent ratios and use the functions to determine the missing side or angle. MFM2P Trigonometry Checklist 1 Goals for this unit: I can solve problems involving right triangles using the primary trig ratios and the Pythagorean Theorem. U1L4 The Pythagorean Theorem Learning Goal:

More information

Use SOH CAH TOA to memorize the three main trigonometric functions.

Use SOH CAH TOA to memorize the three main trigonometric functions. Use SOH CAH TOA to memorize the three main trigonometric functions. Content Objective Content Objective Content Objective Content Objective Content Objective Content Objective Content Objective Content

More information

Worksheet 1.1 Kinematics in 1D

Worksheet 1.1 Kinematics in 1D Worksheet 1.1 Kinematics in 1D Solve all problems on your own paper showing all work! 1. A tourist averaged 82 km/h for a 6.5 h trip in her Volkswagen. How far did she go? 2. Change these speeds so that

More information

Ch. 2 & 3 Velocity & Acceleration

Ch. 2 & 3 Velocity & Acceleration Ch. 2 & 3 Velocity & Acceleration Objective: Student will be able to Compare Velocity to Speed Identify what is acceleration Calculate velocity and acceleration from an equation and from slope of a graph.

More information

Chapter 2 Two Dimensional Kinematics Homework # 09

Chapter 2 Two Dimensional Kinematics Homework # 09 Homework # 09 Pthagorean Theorem Projectile Motion Equations a 2 +b 2 =c 2 Trigonometric Definitions cos = sin = tan = a h o h o a v =v o v =v o + gt =v o t = o + v o t +½gt 2 v 2 = v 2 o + 2g( - o ) v

More information

Honors Assignment - Vectors

Honors Assignment - Vectors Honors Assignment - Vectors Reading Chapter 3 Homework Assignment #1: Read Chap 3 Sections 1-3 M: #2, 3, 5 (a, c, f), 6-9 Homework Assignment #2: M: #14, 15, 16, 18, 19 Homework Assignment #3: Read Chap

More information

Module 13 Trigonometry (Today you need your notes)

Module 13 Trigonometry (Today you need your notes) Module 13 Trigonometry (Today you need your notes) Question to ponder: If you are flying a kite, you know the length of the string, and you know the angle that the string is making with the ground, can

More information

1.6.1 Inertial Reference Frames

1.6.1 Inertial Reference Frames 1.6.1 Inertial Reference Frames The laws of physics which apply when you are at rest on the earth also apply when you are in any reference frame which is moving at a constant velocity with respect to the

More information

AP Physics B Summer Homework (Show work)

AP Physics B Summer Homework (Show work) #1 NAME: AP Physics B Summer Homework (Show work) #2 Fill in the radian conversion of each angle and the trigonometric value at each angle on the chart. Degree 0 o 30 o 45 o 60 o 90 o 180 o 270 o 360 o

More information

Trig Functions Learning Outcomes. Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem.

Trig Functions Learning Outcomes. Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. 1 Trig Functions Learning Outcomes Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. Opposite Adjacent 2 Use Trig Functions (Right-Angled Triangles)

More information

Physics 2204 Review for test 3 Vectors and The first four sections of Unit 2

Physics 2204 Review for test 3 Vectors and The first four sections of Unit 2 Physics 2204 Review for test 3 Vectors and The first four sections of Unit 2 1 You set out in a canoe from the east shore of a south-flowing river. To maximize your velocity relative to the shore you should

More information

Unit 3 Trigonometry. 3.1 Use Trigonometry to Find Lengths

Unit 3 Trigonometry. 3.1 Use Trigonometry to Find Lengths Topic : Goal : Unit 3 Trigonometry trigonometry I can use the primary trig ratios to find the lengths of sides in a right triangle 3.1 Use Trigonometry to Find Lengths In any right triangle, we name the

More information

8-1. The Pythagorean Theorem and Its Converse. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary

8-1. The Pythagorean Theorem and Its Converse. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary 8-1 he Pythagorean heorem and Its Converse Vocabulary Review 1. Write the square and the positive square root of each number. Number Square Positive Square Root 9 81 3 1 4 1 16 1 2 Vocabulary Builder leg

More information

EQ: How do I use trigonometry to find missing side lengths of right triangles?

EQ: How do I use trigonometry to find missing side lengths of right triangles? EQ: How do I use trigonometry to find missing side lengths of right triangles? Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question Essential

More information

Remeber this? You still need to know this!!!

Remeber this? You still need to know this!!! Remeber this? You still need to know this!!! Motion: Speed: Measure of how fast something is moving Speed = Distance Time Speed is a rate: something divided by time SI units for Speed: (m/s) Instantaneous

More information

REVIEW : KINEMATICS

REVIEW : KINEMATICS 1 REVIEW 5-4-16: KINEMATICS Kinematics-Defining Motion 1 A student on her way to school walks four blocks east, three blocks north, and another four blocks east, as shown in the diagram. Compared to the

More information

Math Section 4.1 Special Triangles

Math Section 4.1 Special Triangles Math 1330 - Section 4.1 Special Triangles In this section, we ll work with some special triangles before moving on to defining the six trigonometric functions. Two special triangles are 30 60 90 triangles

More information

BASICS OF TRIGONOMETRY

BASICS OF TRIGONOMETRY Mathematics Revision Guides Basics of Trigonometry Page 1 of 9 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier BASICS OF TRIGONOMETRY Version: 1. Date: 09-10-015 Mathematics Revision

More information

EQ: SRT.8 How do I use trig to find missing side lengths of right triangles?

EQ: SRT.8 How do I use trig to find missing side lengths of right triangles? EQ: SRT.8 How do I use trig to find missing side lengths of right triangles? Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question Essential

More information

MATERIALS: softball, stopwatch, measuring tape, calculator, writing utensil, data table.

MATERIALS: softball, stopwatch, measuring tape, calculator, writing utensil, data table. 1 PROJECTILE LAB: (SOFTBALL) Name: Partner s Names: Date: PreAP Physics LAB Weight = 1 PURPOSE: To calculate the speed of a softball projectile and its launch angle by measuring only the time and distance

More information

Right is Special 1: Triangles on a Grid

Right is Special 1: Triangles on a Grid Each student in your group should have a different equilateral triangle. Complete the following steps: Using the centimeter grid paper, determine the length of the side of the triangle. Write the measure

More information

Midterm Exam: Making a Study Guide

Midterm Exam: Making a Study Guide Name: Class: Physics Teacher: Mr. Szopiak Date: Midterm Exam: Making a Study Guide This worksheet will help you and your classmates put together a pretty comprehensive guide to your midterm studying. Your

More information

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec 1. A truck, initially traveling at a speed of 22 meters per second, increases speed at a constant rate of 2.4 meters per second 2 for 3.2 seconds. What is the total distance traveled by the truck during

More information

Geom- Chpt. 8 Algebra Review Before the Chapter

Geom- Chpt. 8 Algebra Review Before the Chapter Geom- Chpt. 8 Algebra Review Before the Chapter Solving Quadratics- Using factoring and the Quadratic Formula Solve: 1. 2n 2 + 3n - 2 = 0 2. (3y + 2) (y + 3) = y + 14 3. x 2 13x = 32 1 Working with Radicals-

More information

TWO DIMENSIONAL KINEMATICS

TWO DIMENSIONAL KINEMATICS PHYSICS HOMEWORK #11 TWO DIMENSIONAL [Remember that ALL vectors must be described by BOTH magnitude and direction!] 1. You walk 250. steps North and then 400. steps East. What is your displacement? (Distance

More information

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE Physics 1 Exam 2 Practice S14 Name: Show work for ANY credit. Box answers. Assume 3 significant figures! Ignore air resistance. NEATNESS COUNTS. Conceptual Questions. (2 points each) 1. A 100 g ball rolls

More information

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour.

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. Speed How are instantaneous speed and average speed different? Average

More information

Trig Functions Learning Outcomes. Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem.

Trig Functions Learning Outcomes. Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. 1 Trig Functions Learning Outcomes Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. Opposite Adjacent 2 Use Trig Functions (Right-Angled Triangles)

More information

Unit 1 Continued: Vectors

Unit 1 Continued: Vectors Unit 1 Continued: Vectors Remember: Scalar the expression of a physical quantity using only magnitude and unit. Ex. 120 km, 56 N, +125 µc, 37 km/h Vector express magnitude, unit and direction. Ex. 21.1

More information

Average Speed and Average Velocity Practice

Average Speed and Average Velocity Practice Average Speed and Average Velocity Practice Problem #1: What is the average speed of my bunny rabbit when she hops 6 meters to the east across the room in 11 seconds? Express your answer using the proper

More information

Parking Lot HW? Joke of the Day: What do you get when you combine a flat, infinite geometric figure with a beef patty?

Parking Lot HW? Joke of the Day: What do you get when you combine a flat, infinite geometric figure with a beef patty? Parking Lot HW? Joke of the Day: What do you get when you combine a flat, infinite geometric figure with a beef patty? a plane burger Agenda 1 23 hw? Finish Special Right Triangles L8 3 Trig Ratios HW:

More information

VECTORS Important Questions from CBSE point of view

VECTORS Important Questions from CBSE point of view VECTORS Important Questions from CBSE point of view LEVEL-1 1. Two forces have their resultant equal to either. At what angle are they inclined? 2. Add a velocity of 30 m/s eastwards to a velocity of 40

More information

UNIT 2 RIGHT TRIANGLE TRIGONOMETRY Lesson 2: Applying Trigonometric Ratios Instruction

UNIT 2 RIGHT TRIANGLE TRIGONOMETRY Lesson 2: Applying Trigonometric Ratios Instruction Prerequisite Skills This lesson requires the use of the following skills: defining and calculating sine, cosine, and tangent setting up and solving problems using the Pythagorean Theorem identifying the

More information

Student Instruction Sheet: Unit 4, Lesson 4. Solving Problems Using Trigonometric Ratios and the Pythagorean Theorem

Student Instruction Sheet: Unit 4, Lesson 4. Solving Problems Using Trigonometric Ratios and the Pythagorean Theorem Student Instruction Sheet: Unit 4, Lesson 4 Suggested Time: 75 minutes Solving Problems Using Trigonometric Ratios and the Pythagorean Theorem What s important in this lesson: In this lesson, you will

More information

Honors/AP Physics 1 Homework Packet #2

Honors/AP Physics 1 Homework Packet #2 Section 3: Falling Objects Honors/AP Physics 1 Homework Packet #2 1. A ball is dropped from a window 10 m above the sidewalk. Determine the time it takes for the ball to fall to the sidewalk. 2. A camera

More information

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit? Chapter Problems Motion at Constant Speed Class Work. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?. During the first 50 s a truck traveled at constant speed of 5 m/s.

More information

8-1. The Pythagorean Theorem and Its Converse. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary

8-1. The Pythagorean Theorem and Its Converse. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary 8-1 The Pythagorean Theorem and Its Converse Vocabulary Review 1. Write the square and the positive square root of each number. Number 9 Square Positive Square Root 1 4 1 16 Vocabulary Builder leg (noun)

More information

A life not lived for others is not a life worth living. Albert Einstein

A life not lived for others is not a life worth living. Albert Einstein life not lived for others is not a life worth living. lbert Einstein Sides adjacent to the right angle are legs Side opposite (across) from the right angle is the hypotenuse. Hypotenuse Leg cute ngles

More information

(1) In the following diagram, which vectors are the components, and which vector is the resultant?

(1) In the following diagram, which vectors are the components, and which vector is the resultant? Homework 2.1 Vectors & Vector Addition (1) In the following diagram, which vectors are the components, and which vector is the resultant? C A B (2) Give the magnitude and direction (angle) of all three

More information

Physics for Scientist and Engineers third edition Kinematics 2-D

Physics for Scientist and Engineers third edition Kinematics 2-D Kinematics 2-D A rural mail carrier leaves the post office and drives 22.0 km in a northerly direction to the next town. She then drives in a direction sixty degrees south of east for 47.0 km to another

More information

Physics for Scientist and Engineers third edition Kinematics 2-D

Physics for Scientist and Engineers third edition Kinematics 2-D Kinematics 2-D A rural mail carrier leaves the post office and drives 22.0 km in a northerly direction to the next town. She then drives in a direction sixty degrees south of east for 47.0 km to another

More information

HONORS PHYSICS One Dimensional Kinematics

HONORS PHYSICS One Dimensional Kinematics HONORS PHYSICS One Dimensional Kinematics LESSON OBJECTIVES Be able to... 1. use appropriate metric units and significant figures for given measurements 2. identify aspects of motion such as position,

More information

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) distance B) velocity

More information

Functions - Trigonometry

Functions - Trigonometry 10. Functions - Trigonometry There are si special functions that describe the relationship between the sides of a right triangle and the angles of the triangle. We will discuss three of the functions here.

More information

1 What is Trigonometry? Finding a side Finding a side (harder) Finding an angle Opposite Hypotenuse.

1 What is Trigonometry? Finding a side Finding a side (harder) Finding an angle Opposite Hypotenuse. Trigonometry (9) Contents 1 What is Trigonometry? 1 1.1 Finding a side................................... 2 1.2 Finding a side (harder).............................. 2 1.3 Finding an angle.................................

More information

Title: Direction and Displacement

Title: Direction and Displacement Title: Direction and Displacement Subject: Mathematics Grade Level: 10 th 12 th Rational or Purpose: This activity will explore students knowledge on directionality and displacement. With the use angle

More information

Sin, Cos, and Tan Revealed

Sin, Cos, and Tan Revealed Sin, Cos, and Tan Revealed Reference Did you ever wonder what those keys on your calculator that say sin, cos, and tan are all about? Well, here s where you find out. You ve seen that whenever two right

More information

Lesson 30, page 1 of 9. Glencoe Geometry Chapter 8.3. Trigonometric Ratios

Lesson 30, page 1 of 9. Glencoe Geometry Chapter 8.3. Trigonometric Ratios Lesson 30 Lesson 30, page 1 of 9 Glencoe Geometry Chapter 8.3 Trigonometric Ratios Today we look at three special ratios of right triangles. The word Trigonometry is derived from two Greek words meaning

More information

Unit-1. 10th grade. Elective Fizx. v cm =v c - v m. v cm =5 3 m/s. Force & Motion. Solutions 1.2 Relative Motion page v c. -v m. 5 m/s.

Unit-1. 10th grade. Elective Fizx. v cm =v c - v m. v cm =5 3 m/s. Force & Motion. Solutions 1.2 Relative Motion page v c. -v m. 5 m/s. page - 23 N W 5 m/s 60 o v c 5 m/s E -v m S 5 3 m/s v cm =v c - v m v cm =5 3 m/s page - 23 N v c W 60 o 60 o -v ct E S -v t v ct =v c - v t v ct =10 m/s (due east) page - 23 3. Cars A, B, C, and D move

More information

OVERVIEW Similarity Leads to Trigonometry G.SRT.6

OVERVIEW Similarity Leads to Trigonometry G.SRT.6 OVERVIEW Similarity Leads to Trigonometry G.SRT.6 G.SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric

More information

Phys 101 College Physics I ` Student Name: Additional Exercises on Chapter 3

Phys 101 College Physics I ` Student Name: Additional Exercises on Chapter 3 Phys 0 College Physics I ` Student Name: Additional Exercises on Chapter ) A displacement vector is.0 m in length and is directed 60.0 east of north. What are the components of this vector? Choice Northward

More information

Geometry Chapter 7 Review Right Triangles Use this review to help prepare for the Chapter 7 Test. The answers are attached at the end of the document.

Geometry Chapter 7 Review Right Triangles Use this review to help prepare for the Chapter 7 Test. The answers are attached at the end of the document. Use this review to help prepare for the hapter 7 Test. The answers are attached at the end of the document. 1. Solve for a and b. 2. Find a, b, and h. 26 24 a h b 10 b a 4 12. The tangent of is. 4. A is

More information

Unit 3 ~ Learning Guide Name:

Unit 3 ~ Learning Guide Name: Unit 3 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

The Battleship North Carolina s Fire Control

The Battleship North Carolina s Fire Control The Battleship North Carolina s Fire Control Objectives: 1. Students will see the application of trigonometry that the Mark 14 gun sight used with the 20mm guns aboard the NC Battleship. (Geometry SCOS:

More information

Motion, Vectors, and Projectiles Review. Honors Physics

Motion, Vectors, and Projectiles Review. Honors Physics Motion, Vectors, and Projectiles Review Honors Physics The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. The shaded area under the

More information

I can add vectors together. IMPORTANT VOCABULARY

I can add vectors together. IMPORTANT VOCABULARY Pre-AP Geometry Chapter 9 Test Review Standards/Goals: G.SRT.7./ H.1.b.: I can find the sine, cosine and tangent ratios of acute angles given the side lengths of right triangles. G.SRT.8/ H.1.c.: I can

More information

DATA EQUATIONS MATH ANSWER

DATA EQUATIONS MATH ANSWER HCP PHYSICS REVIEW SHEET MID TERM EXAM Concepts And Definitions 1. Definitions of fact, hypothesis, law, theory 2. Explain the scientific method 3. Difference between average and instantaneous speed and

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A mosquito flying at 3 m/s that encounters a breeze blowing at 3 m/s in the same direction

More information

Kinematics-Projectiles

Kinematics-Projectiles 1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

*Definition of Cosine

*Definition of Cosine Vetors - Unit 3.3A - Problem 3.5A 3 49 A right triangle s hypotenuse is of length. (a) What is the length of the side adjaent to the angle? (b) What is the length of the side opposite to the angle? ()

More information

Name: Date Due: Motion. Physical Science Chapter 2

Name: Date Due: Motion. Physical Science Chapter 2 Name: Date Due: Motion Physical Science Chapter 2 What is Motion? 1. Define the following terms: a. motion= a. frame of reference= b. distance= c. vector= d. displacement= 2. Why is it important to have

More information

Last First Date Per SETTLE LAB: Speed AND Velocity (pp for help) SPEED. Variables. Variables

Last First Date Per SETTLE LAB: Speed AND Velocity (pp for help) SPEED. Variables. Variables DISTANCE Last First Date Per SETTLE LAB: Speed AND Velocity (pp108-111 for help) Pre-Activity NOTES 1. What is speed? SPEED 5-4 - 3-2 - 1 2. What is the formula used to calculate average speed? 3. Calculate

More information

Chapter 11 Motion. Displacement-. Always includes Shorter than distance

Chapter 11 Motion. Displacement-. Always includes Shorter than distance Chapter 11 Motion Section 1 - an object s change in position relative to a reference point. Observe objects in to other objects. international unit for. Frame of Reference Frame of reference- a system

More information

Applications of trigonometry

Applications of trigonometry Applications of trigonometry This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM PHYSICS REVIEW SHEET 2010 MID-TERM EXAM Concepts And Definitions Definitions of fact, hypothesis, law, theory Explain the scientific method Difference between average and instantaneous speed and speed

More information

84 Geometric Mean (PAAP and HLLP)

84 Geometric Mean (PAAP and HLLP) 84 Geometric Mean (PAAP and HLLP) Recall from chapter 7 when we introduced the Geometric Mean of two numbers. Ex 1: Find the geometric mean of 8 and 96.ÿ,. dÿ,... : J In a right triangle, an altitude darn

More information

11.4 Apply the Pythagorean

11.4 Apply the Pythagorean 11.4 Apply the Pythagorean Theorem and its Converse Goal p and its converse. Your Notes VOCABULARY Hypotenuse Legs of a right triangle Pythagorean theorem THE PYTHAGOREAN THEOREM Words If a triangle is

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

8.3 Trigonometric Ratios-Tangent. Geometry Mr. Peebles Spring 2013

8.3 Trigonometric Ratios-Tangent. Geometry Mr. Peebles Spring 2013 8.3 Trigonometric Ratios-Tangent Geometry Mr. Peebles Spring 2013 Bell Ringer 3 5 Bell Ringer a. 3 5 3 5 = 3 5 5 5 Multiply the numerator and denominator by 5 so the denominator becomes a whole number.

More information

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart Kinematics 1 Name: Date: 1. 4. A cart moving across a level surface accelerates uniformly at 1.0 meter per second 2 for 2.0 seconds. What additional information is required to determine the distance traveled

More information

PHYSICS 20 Vectors and Dynamics

PHYSICS 20 Vectors and Dynamics NEWTONS 1st LAW 1. A 10.00 kg mass is tied to a string with a maximum strength of 100 N. A second string of equal strength is tied to the bottom of the mass. a) If the bottom string is pulled with a jerk

More information

Lesson 5. Section 2.2: Trigonometric Functions of an Acute Angle 1 = 1

Lesson 5. Section 2.2: Trigonometric Functions of an Acute Angle 1 = 1 Lesson 5 Diana Pell March 6, 2014 Section 2.2: Trigonometric Functions of an Acute Angle 1 = 1 360 We can divide 1 into 60 equal parts, where each part is called 1 minute, denoted 1 (so that 1 minute is

More information

8.6B SS - differentiate between speed, velocity, and acceleration

8.6B SS - differentiate between speed, velocity, and acceleration 8.6B SS - differentiate between speed, velocity, and acceleration What is the difference between speed, acceleration and velocity? How is speed calculated? How do we know if something is moving quickly

More information

Physics 11 Honours Lesson 3 Distance and Displacement

Physics 11 Honours Lesson 3 Distance and Displacement Name: Block: Physics 11 Honours Lesson 3 Distance and Displacement In physics, every measured quantity is either a or a. Scalars: For example: Vectors: For example: Note: Vectors are either written in

More information

Trigonometry. terminal ray

Trigonometry. terminal ray terminal ray y Trigonometry Trigonometry is the study of triangles the relationship etween their sides and angles. Oddly enough our study of triangles egins with a irle. r 1 θ osθ P(x,y) s rθ sinθ x initial

More information

CHAPTER 3 TEST REVIEW

CHAPTER 3 TEST REVIEW AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information