Abstract. 1 Introduction

Size: px
Start display at page:

Download "Abstract. 1 Introduction"

Transcription

1 An experimental research of control rudders on tug manoeuvring E. Cueto, J.J. Achutegui, S. Mendiola, G. Gutierrez University ofcantabria, Santander, Spain Abstract We have accomplished, in an operating tugboat, a series of manoeuvres in order to determine new relationships between the turning circle diameter, the revolutions of the propeller, the torque in the rudder stock and the most significant stresses. The tests have been accomplished with two configurations, the first one with a steering system composed by rotating nozzle and a fixed rudder blade, and the second with a fixed nozzle with two coordinated helm blades. 1 Introduction The discovery of the Kort nozzle in 1933, for the propulsion of tugs where traction is the main task, was consolidated in the 1970s, after tests showed an increase in the bollard pull of 20% to 35%, depending on their design. Such an increase led to the gradual but wide installation of fixed nozzles. There were two practical results: The first one was positive because the pull increased; but not so the second, since the manoeuvring capacity was clearly limited. This limitation of the manoeuvring capacity produced by this system and the scarce effects of a conventional helm with a fixed nozzle led to different systems seeking to improve the manoeuvring capacity. Several solutions were tried to gain manoeuvring power. One of them was to install a transverse propeller in the bow, or several other solutions in the stern, such as active rudders,flaprudders, rotary cylinders, nozzle helms, Shilling helms, Tow Master, Becker and Rudder Coordinators. The most widely spread solution to the manoeuvring problems with a fixed nozzle in new tugs was to remove it and to fit a steering nozzle.

2 504 Marine Technology and Transportation In the last years the manoeuvring problem has worsened due to the reduced space left by crowded docks. In Spain, several in-port tugs have been fitted with either fixed or steering nozzles together with a couple of coordinated rudder blades. Such solution provides a greatly increased manoeuvring power at a low cost. This paper contains a short report of the tests of the manoeuvres of a real tugboat, 24 meters long between perpendiculars and with a power of 2050 bhp. The tests have been carried out with two types of steering arrangements. One composed by a turning nozzle with a fixed fin. The other consists of the same turning nozzle with two coordinated rudder fins. During the trials, turning circles were measured with a Global Positioning System, GPS, and the strains in the rudder and flap stock by means of strain gauges. 2 Experimental methodology Within this conceptual framework we investigated two different types of parameters: a) Those related with the shape and size of the turning circle. b) The strain deformations in the rudder stock. The results obtained have been arranged according to both types of steering devices above described: 1. Turning nozzle with fixed rudder fin. 2. Turning nozzle with two coordinated rudder fins. The tugboat manoeuvring capacity was tested in several series of six turning circles at sea. The first series of the tests were accomplished in Pasajes and the second in Santander. Each series of tests was accomplished in the order below specified: I.- Engine rpm 360, rudder hard-a-port. 2.- Engine rpm 360, rudder hard-a-starboard. 3.- Engine rpm 600, rudder hard-a-starboard. 4.- Engine rpm 600, rudder hard-a-port. 5.- Engine rpm 760, rudder hard-a-starboard. 6.- Engine rpm 760, rudder hard-a-port. 3 Equipment The equipment used in the trials was as follows: - A real 24 m tugboat. - A steering system with rotating nozzle,fixedfin. - A steering system with rotating nozzle, two coordinated rudder fins. - A topographic total station. - Experimental strain analysis gauges.

3 Marine Technology and Transportation 505 Main characteristics of the tugboat Length over all 26,80 m. Length between perpendiculars 24,00 m. Beam at design waterline 7,90 m. Maximum draught 4,30 m. Normal service draught 4,00 m. Displacement at normal service draught 305 Mt. Bollard poll 32,00 Mt. Main engine 160 bhp. Speed 13,00 kt. Steering system Rudder torque 9000 m.kn Time for the rudder to go from one side to the other 12 s Nozzle diameter 2136 mnr Area of the fin fixed to the nozzle 0,93 nr Attack angle of the turning nozzle 35 Coordinated rudders system (CT) Area of the first rudder fin 0,42 nr Area of the second rudder fin 0,92 nr Attack angle of the nozzle andfirstrudder fin 35 Attack angle of the second rudder fin 35 With this steering system, when the nozzle rotates 35, the fin rotates the same angle, triggered and synchronized by the rudder coordinator (CT), as shown in Figure 1. Topographic equipment Global Positioning System GPS Compact Station system Geometer 400 Time between measurements 0,4 Maximum length 3100 m Standard recording book RS - 232C communication with a compatible PC Strain measurement instrumentation Technical data of extensometric bands: Type FLA-6-11 Nominal resistance 120 Ohms Gauge length 6 mm Gauge thickness 0,0125 mm Gauge factor 2,132

4 506 Marine Technology and Transportation Trial results The two tables below show the results of the trials. Table 1 refers to the conventional system of a rotating nozzle with a fixed rudder blade. These trials were carried out in the approaches to Pasajes with calmed sea and no wind. We show the average values of the turning circle diameter, together with the engine speed. Table 2 shows the results of the second series of trials, afterfittinga second coordinated fin to the rudder, as shown in Figure 1. These trials were carried out off Santander, on the 23 of November of Table 1. Average diameters with steering nozzle and fixed fin Engine speed Slow ahead Side Mean diameter 50 metres Half ahead Full ahead 65 metres 80 metres Figure 1: Coordinated rudders (CT). The coordinated rudder consists of two rudder fins. The first is joined to the rotating nozzle, and the second one joined to thefirstby means of a hinge. The main parts of the system are: T = Nozzle M = Stock P = Pintle C = Liner

5 B = Arm A = Second blade Dl = Distance between stock and second fin axis d = Distance regulating second fin turning angle MI = Rotating torque Marine Technology and Transportation 507 During the second set of trials, meteorological conditions were excellent, as was the case during thefirstone in Pasajes. Therefore we can assume that they had no influence on the results. Engme speed Slow ahead Half ahead Full ahead Table 2. Average diameters with steering nozzle and CT 1 Side Mean diameter \ 20 metres 25 metres 35 metres Figure 2 shows the shape and dimensions of the turning circle. The reader can find in Table 3 some additional details about the manoeuvring data and conditions during the trials Figure 2: Turning circle.

6 508 Marine Technology and Transportation Table 3: Miscellaneous data of a turning manoeuvre Engine RPM 360 Steering side Port Attack angle of the nozzle 35 Attack angle of the flap 3 5 Propeller RPM 120 Tug speed Length 2,28 kt 24,00 m Time to change heading 90 18,10s Time to change heading 180 Tug speed during steady turn 39,26 s 0,89 kt Speed loss 70,13% Advance Tactical diameter D< 30,96 m 40,30 m Nondimensional tactical diameter D, /L 1,67 Steady turning diameter D^ 17,80 m Nondimensional steady turning diameter Dg/L 0,74 4 Results As can be observed, the manoeuvring capability of the tug has increased two and a half times. We should outline that the relationship length / final diameter is less than one (when originally was of 2). This means that the ship practically turns on the spot. 5 Mathematical processing of data obtained in the trials Final turning diameter It is obtained with the following expression D =finaldiameter P = Number of revolutions in the propeller shaft D = P

7 Marine Technology and Transportation 509 The equation above gives acceptable results with propeller speeds of 100 to 300 rpm since, with the engine stopped, we'd get a turning diameter of 2.88 m which simply can't be true. Relationship between propeller r.p.m. and the torque in the stock Many equations have been found to calculate the forces on the rudder stock, but we propose the following: M = Torque on the stock P = Shaft revolutions M(m-KTV) = f Relationship between propeller r.p.m. and shearing forces in the CT Using the same parameters, the resulting formula is: F = Shear force on the stock F = P The above expressions are only valid for similar ships with a CT system, in fine weather, with appropriate draught and a clean hull. 6 Conclusions This paper presents some equations to calculate the final turning diameter, the stock torque and the shear forces in the steering system of a tugboat as a function of the propeller revolutions. 1 The turning diameter varies with the propeller rpm. 2 The torque and the shear forces increase with the revolutions. 3 We appreciated a moderate increase in the final diameter with an increase in the shaft revolutions. These equations for a tugboat of 24 meters fitted with a coordinated rudder show a considerable improvement of the manoeuvring capacity at low speeds. Acknowledgements The authors wish to show their gratitude to the general manager and staff of Remolques Unidos, S.A. (RUSA) for their support during the trials. References u^j\ji\.. 1. Gutierrez, G. y Pantaleon, M. Apuntes de extensometria y fotoelasticidad. Escuela Tecnica Superior de Ingenieros de Caminos, Canales y Puertos. Universidad de Cantabria. Santander, 1983.

8 510 Marine Technology and Transportation 2. Papers in journals: 1. Cueto, E. Coordinacion de Timones en Remolcadores, Rotacion, 288, p.35, 104, Cueto, E. Coordinacion de Timones en buques de pesca, Rotacion, 292, p.96, Cueto, E. Coordination of Rudders, n 72, pag. 32, Oct Cueto, E. Las estaciones topograficas totales contribuyen al estudio experimental sobre la maniobrabilidad de los remolcadores, Topografia y Cartografia, ed C.O. de Ingenieros Tecnicos en Topografia, Vol. 11, pp 9-15, Madrid, Octubre de Papers in conference proceedings: 1. Cueto, E. Accion de la Tecnologia del Coordinador de Timones en los Remolcadores, VI Congreso de la Marina Civil, Santa Cruz de Tenerife, Spain, noviembre de 1994: "For la Reactivacion del Sector Maritimo". 2. Cueto, E. Mendiola, S. Exigencias de la Tecnologia del Remolcador Escort. VI Congreso de la Marina Civil, Santa Cruz de Tenerife, Spain, noviembre de 1994: "For la Reactivacion del Sector Maritimo".

An expenmental research of control nidders on tug manoeuvring

An expenmental research of control nidders on tug manoeuvring TCHNISCHE WVR&TET Laboratorlum voor $choepshydromechanjca kchlef eko1weg 2 2628 CD Deift,a eieae* -, oie-iaia An expenmental research of control nidders on tug manoeuvring E. Cueto, J.J. Achutegui, S.

More information

IACS History File + TB

IACS History File + TB IACS History File + TB Part A UI SC246 Steering gear test with the vessel not at the deepest seagoing draught Part A. Revision History Version no. Approval date Implementation date when applicable New

More information

Conventional Ship Testing

Conventional Ship Testing Conventional Ship Testing Experimental Methods in Marine Hydrodynamics Lecture in week 34 Chapter 6 in the lecture notes 1 Conventional Ship Testing - Topics: Resistance tests Propeller open water tests

More information

MANOEUVRING BOOKLET V1.06

MANOEUVRING BOOKLET V1.06 MANOEUVRING BOOKLET V1.6 Mathematical model of Integrated Tug Barge 45 Version: v9 Dll Version: 2.31.558 According to: Solas II-1, regulation 28.3 St. Petersburg 26 1. GENERAL DESCRIPTION 1.1. Ships particulars

More information

MANOEUVRING BOOKLET V1.06

MANOEUVRING BOOKLET V1.06 MANOEUVRING BOOKLET V.6 Mathematical model of VLCC (Dis.769t) bl. Version: v Dll Version:.3.558 According : Solas II-, regulation 8.3 St. Petersburg 6 . GENERAL DESCRIPTION.. Ships particulars... Ships

More information

Note to Shipbuilders, shipowners, ship Managers and Masters. Summary

Note to Shipbuilders, shipowners, ship Managers and Masters. Summary MARINE GUIDANCE NOTE MGN 301 (M+F) Manoeuvring Information on Board Ships Note to Shipbuilders, shipowners, ship Managers and Masters This note supersedes Marine Guidance Note MGN 201 (M+F) Summary The

More information

COURSE OBJECTIVES CHAPTER 9

COURSE OBJECTIVES CHAPTER 9 COURSE OBJECTIVES CHAPTER 9 9. SHIP MANEUVERABILITY 1. Be qualitatively familiar with the 3 broad requirements for ship maneuverability: a. Controls fixed straightline stability b. Response c. Slow speed

More information

RESOLUTION MSC.137(76) (adopted on 4 December 2002) STANDARDS FOR SHIP MANOEUVRABILITY

RESOLUTION MSC.137(76) (adopted on 4 December 2002) STANDARDS FOR SHIP MANOEUVRABILITY MSC 76/23/Add.1 RESOLUTION MSC.137(76) THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) of the Convention on the International Maritime Organization concerning the functions of the Committee, RECALLING

More information

Bollard Pull. Bollard Pull is, the tractive force of a tug, expressed in metric tonnes (t) or kn.

Bollard Pull. Bollard Pull is, the tractive force of a tug, expressed in metric tonnes (t) or kn. Bollard Pull (Capt. P. Zahalka, Association of Hanseatic Marine Underwriters) Bollard Pull is, the tractive force of a tug, expressed in metric tonnes (t) or kn. This figure is not accurately determinable

More information

Maneuverability characteristics of ships with a single-cpp and their control

Maneuverability characteristics of ships with a single-cpp and their control Maneuverability characteristics of ships with a single-cpp and their control during in-harbor ship-handlinghandling Hideo YABUKI Professor, Ph.D., Master Mariner Tokyo University of Marine Science and

More information

EVALUATING CRITERIA FOR DP VESSELS

EVALUATING CRITERIA FOR DP VESSELS Journal of KONES Powertrain and Transport, Vol. 20, No. 2013 EVALUATING CRITERIA FOR DP VESSELS Jerzy Herdzik Gdynia Maritime University, Marine Power Plant Department Morska Street 81-87, 81-225 Gdynia,

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines 02 - Page 1 of 17 Table of Contents.....2 1. PURPOSE OF PROCEDURE... 2 2. RECOMMENDED PROCEDURES FOR MANOEUVRING TRIAL... 2 2.1 Trial Conditions... 2 2.1.1 Environmental Restrictions... 2 2.1.2 Loading

More information

AUTORIDAD DEL CANAL DE PANAMÁ EXECUTIVE VICE PRESIDENCY FOR OPERATIONS

AUTORIDAD DEL CANAL DE PANAMÁ EXECUTIVE VICE PRESIDENCY FOR OPERATIONS 3654-A (OPXI v. 3-2-2011 AUTORIDAD DEL CANAL DE PANAMÁ EXECUTIVE VICE PRESIDENCY FOR OPERATIONS ADVISORY TO SHIPPING No. A-20-2013 August 2, 2013 TO : All Shipping Agents, Owners, and Operators SUBJECT:

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines 7.5- -- Page 1 of 6 Table of Contents 1 PURPOSE OF PROCEDURE 2 2 PARAMETERS...2 2.1 Definition of Variables...2 3 DESCRIPTION OF PROCEDURE...2 3.1...2 3.1.1 Hull Model...2 3.1.2 Propeller Model...3 3.1.3

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 10 Table of Contents Speed/Power Trials... 2 1. PURPOSE... 2 2. DEFINITIONS... 2 3. RESPONSIBILITIES... 3 3.1 Shipbuilders Responsibilities... 3 3.2 The Trial Team... 4 4. PROCEDURES... 4 4.1

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0) Fax: +44 (0)

4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0) Fax: +44 (0) E 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0)0 7735 7611 Fax: +44 (0)0 7587 310 MEPC.1/Circ.850/Rev.1 15 July 015 013 INTERIM GUIDELINES FOR DETERMINING MINIMUM PROPULSION POWER TO MAINTAIN THE

More information

SIMMAN 2014 Systems based methods page 1 Instructions for submitting of manoeuvring predictions

SIMMAN 2014 Systems based methods page 1 Instructions for submitting of manoeuvring predictions SIMMAN 2014 Systems based methods page 1 CONTENTS 1 INTRODUCTION AND OBJECTIVE... 2 2 SHIPS AND MANOEUVRES... 4 2.1 Selectable ships... 4 2.2 Manoeuvres to be simulated... 5 3 SUBMISSION PROCEDURES...

More information

RESOLUTION A.751(18) adopted on 4 November 1993 INTERIM STANDARDS FOR SHIP MANOEUVRABILITY

RESOLUTION A.751(18) adopted on 4 November 1993 INTERIM STANDARDS FOR SHIP MANOEUVRABILITY INTERNATIONAL MARITIME ORGANIZATION A 18/Res.751 22 November 1993 Original: ENGLISH ASSEMBLY - 18th session Agenda item 11 RESOLUTION A.751(18) adopted on 4 November 1993 THE ASSEMBLY, RECALLING Article

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

Development of TEU Type Mega Container Carrier

Development of TEU Type Mega Container Carrier Development of 8 700 TEU Type Mega Container Carrier SAKAGUCHI Katsunori : P. E. Jp, Manager, Ship & Offshore Basic Design Department, IHI Marine United Inc. TOYODA Masanobu : P. E, Jp, Ship & Offshore

More information

Redesigning the Rudder for Nigat Boat

Redesigning the Rudder for Nigat Boat The International Journal Of Engineering And Science (IJES) Volume 3 Issue 1 Pages 01-09 2014 ISSN(e): 2319 1813 ISSN(p): 2319 1805 Redesigning the Rudder for Nigat Boat Yonas Mitiku Degu School of Mechanical

More information

Approximate Method of Calculating Forces on Rudder During Ship Sailing on a Shipping Route

Approximate Method of Calculating Forces on Rudder During Ship Sailing on a Shipping Route http://www.transnav.eu the International Journal on Marine Navigation and Safety of Sea Transportation Volume 8 Number 3 September 014 DOI: 10.1716/1001.08.03.18 Approximate Method of Calculating Forces

More information

Study on Marine Propeller Running in Bubbly Flow

Study on Marine Propeller Running in Bubbly Flow Third International Symposium on Marine Propulsors smp 13, Launceston, Tasmania, Australia, May 2013 Study on Marine Propeller Running in Bubbly Flow Chiharu Kawakita Mitsubishi Heavy Industries, Ltd.,

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

Experience and Future Potential of the Oblique Icebreaker

Experience and Future Potential of the Oblique Icebreaker SHIP Design & Engineering CONSULTING & Project Development ICE MODEL & Full Scale Testing OFFSHORE Development Experience and Future Potential of the Oblique Icebreaker Mika Hovilainen Project Manager

More information

ANNEX 16 RESOLUTION MEPC.232(65) Adopted on 17 May 2013

ANNEX 16 RESOLUTION MEPC.232(65) Adopted on 17 May 2013 Annex 16, page 1 ANNEX 16 RESOLUTION MEPC.3(65) Adopted on 17 May 013 013 INTERIM GUIDELINES FOR DETERMING MINIMUM PROPULSION POWER TO MAINTAIN THE MANOEUVRABILITY OF SHIPS IN ADVERSE CONDITIONS THE MARINE

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Developments in modelling ship rudder-propeller interaction A.F. Molland & S.R. Turnock Department of Ship Science, University of Southampton, Highfield, Southampton, S017 IBJ, Hampshire, UK Abstract A

More information

The OTSS System for Drift and Response Prediction of Damaged Ships

The OTSS System for Drift and Response Prediction of Damaged Ships The OTSS System for Drift and Response Prediction of Damaged Ships Shoichi Hara 1, Kunihiro Hoshino 1,Kazuhiro Yukawa 1, Jun Hasegawa 1 Katsuji Tanizawa 1, Michio Ueno 1, Kenji Yamakawa 1 1 National Maritime

More information

Numerical analysis of influence of streamline rudder on screw propeller efficiency

Numerical analysis of influence of streamline rudder on screw propeller efficiency POLISH MARITIME RESEARCH 2(65) 2010 Vol 17; pp. 18-22 10.2478/v10012-010-0013-4 Numerical analysis of influence of streamline rudder on screw efficiency Tomasz Abramowski, Ph. D. akub Handke, M. Sc. Tadeusz

More information

WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION

WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION S. Pindado, J. Meseguer, J. M. Perales, A. Sanz-Andres and A. Martinez Key words: Wind loads, bridge construction, yawing moment. Abstract.

More information

THE PRIMARY SOURCES OF SHIP NOISE OBSERVED ON THE BOTTOM OF SEA KAROL LISTEWNIK

THE PRIMARY SOURCES OF SHIP NOISE OBSERVED ON THE BOTTOM OF SEA KAROL LISTEWNIK THE PRIMARY SOURCES OF SHIP NOISE OBSERVED ON THE BOTTOM OF SEA KAROL LISTEWNIK Polish Naval Academy Smidowicza 69, 81-103 Gdynia, Poland K.Listewnik@amw.gdynia.pl The paper presents the experimental research

More information

A methodology for evaluating the controllability of a ship navigating in a restricted channel

A methodology for evaluating the controllability of a ship navigating in a restricted channel A methodology for evaluating the controllability of a ship navigating in a restricted channel K. ELOOT A, J. VERWILLIGEN B AND M. VANTORRE B a Flanders Hydraulics Research (FHR), Flemish Government, Antwerp,

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Manoeuvrability Free-Sailing Model Test Procedure

ITTC Recommended Procedures Testing and Extrapolation Methods Manoeuvrability Free-Sailing Model Test Procedure Testing and Extrapolation Methods Free-Sailing Model Test Procedure Page 1 of 10 22 CONTENTS 1. PURPOSE OF PROCEDURE 2. DESCRIPTION OF PROCEDURE 2.1 Preparation 2.1.1 Ship model characteristics 2.1.2 Model

More information

CONNING, HELM & ENGINE ORDERS. 4. Compass directions always are given using three numbers, (e.g. Course of 110 is 1-1-0) Order Sequence. Order.

CONNING, HELM & ENGINE ORDERS. 4. Compass directions always are given using three numbers, (e.g. Course of 110 is 1-1-0) Order Sequence. Order. CONNING, HELM & ENGINE ORDERS General Rules 1. Only the person who has the Con can give conning, helm or engine orders 2. The CO can take the Con anytime by giving a conning, helm or engine order 3. If

More information

Performance of SSTH-70 after Delivery and Future of SSTH Masahiro Itabashi, Ryoji Michida Ishikawajima-Harima Heavy Industries Co.,Ltd.

Performance of SSTH-70 after Delivery and Future of SSTH Masahiro Itabashi, Ryoji Michida Ishikawajima-Harima Heavy Industries Co.,Ltd. Performance of SSTH-70 after Delivery and Future of SSTH Masahiro Itabashi, Ryoji Michida Ishikawajima-Harima Heavy Industries Co.,Ltd. ABSTRUCT The SSTH-70 Ocean Arrow designed under the concept of the

More information

A Planing Boat's Thrust and Resistanc

A Planing Boat's Thrust and Resistanc A Planing Boat's Thrust and Resistanc Y Yoshida International Boat Research, Japan concurring Tokyo industrial Technical College of Tsuzuln Integrated Educational Institute,,Japan Abstract This paper is

More information

SHIP FORM DEFINITION The Shape of a Ship

SHIP FORM DEFINITION The Shape of a Ship SHIP FORM DEFINITION The Shape of a Ship The Traditional Way to Represent the Hull Form A ship's hull is a very complicated three dimensional shape. With few exceptions an equation cannot be written that

More information

THE STUDY OF SHIPS BEHAVIOR DURING PORT MANEUVERING WITH TUGS

THE STUDY OF SHIPS BEHAVIOR DURING PORT MANEUVERING WITH TUGS THE STUDY OF SHIPS BEHAVIOR DURING PORT MANEUVERING WITH TUGS Alecu TOMA 1 Valentin ONCICA 2 Dinu ATODIRESEI 3 1 Asistent professor, Eng., PhD, Mircea cel Batran Naval Academy, Constanta, Romania, alecu.toma@anmb.ro

More information

Engineering Practice on Ice Propeller Strength Assessment Based on IACS Polar Ice Rule URI3

Engineering Practice on Ice Propeller Strength Assessment Based on IACS Polar Ice Rule URI3 10th International Symposium on Practical Design of Ships and Other Floating Structures Houston, Texas, United States of America 2007 American Bureau of Shipping Engineering Practice on Ice Propeller Strength

More information

Rudder Investigation. By Harish M

Rudder Investigation. By Harish M Rudder Investigation By Harish M Where and on What? Series of RO RO Vessels designed and constructed by Flensberger Schiffbau Gesselshaft GmbH. Rudders independently manufactured by Macor Neptun GmbH.

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines 7.5 Page 1 of 11 Table of Contents... 2 1. PURPOSE OF PROCEDURE... 2 2. DESCRIPTION OF PROCEDURE... 2 2.1 Preparation 2 2.1.1 Ship model characteristics 2 2.1.1.1 Scale 2 2.1.1.2 Ship model 2 2.1.1.3 Tank

More information

C C S Technical Information

C C S Technical Information C C S Technical Information (2014) Technical Information No.7 Total No.129 Jan.28,2014 (Total 3+5+1 pages) To: CCS Surveyors, Plan Approval Surveyors, Relevant Ship Companies, Shipyards and Design Institutes

More information

DP Ice Model Test of Arctic Drillship

DP Ice Model Test of Arctic Drillship Author s Name Name of the Paper Session DYNAMIC POSITIONING CONFERENCE October 11-12, 211 ICE TESTING SESSION DP Ice Model Test of Arctic Drillship Torbjørn Hals Kongsberg Maritime, Kongsberg, Norway Fredrik

More information

Tug regulations Port of Gothenburg 29/03/2018

Tug regulations Port of Gothenburg 29/03/2018 THE PORT OF SCANDINAVIA Tug regulations Port of Gothenburg 57 42 N 11 56 E Special tug regulations are in place at the Port of Gothenburg according to the Bye-Laws of Port of Gothenburg 20. The tug regulations

More information

Propellers and propulsion

Propellers and propulsion Propellers and propulsion Kul-24.3200 Introduction of Marine Hydrodynamics Aalto University 25/10/2015 Introduction of Marine Hydrodynamics 1 Content of the course Resistance Propulsion Introduction, Momentum

More information

Objectives Topics Resources & Notes GAIN ATTENTION Review Homework for chapter 5 Slide 1 OBJECTIVE

Objectives Topics Resources & Notes GAIN ATTENTION Review Homework for chapter 5 Slide 1 OBJECTIVE 6 Inboard Engine Drive Systems 59 COURSE LESSON TITLE PRESENTATION TIME PRESENTATION METHOD MATERIALS REQUIRED Chapter 6 Inboard Engine Drive Systems 2 hours Participative Lecture Ch6 PPT slides, computer,

More information

Full Scale Measurements Sea trials

Full Scale Measurements Sea trials Full Scale Measurements Sea trials 1 Experimental Methods in Marine Hydrodynamics Lecture in week 45 Contents: Types of tests How to perform and correct speed trials Wave monitoring Measurement Observations

More information

EN400 LAB #2 PRELAB. ARCHIMEDES & CENTER of FLOTATION

EN400 LAB #2 PRELAB. ARCHIMEDES & CENTER of FLOTATION EN400 LAB #2 PRELAB ARCHIMEDES & CENTER of FLOTATION Instructions: 1. The prelab covers theories that will be examined experimentally in this lab. 2. The prelab is to be completed and handed in to your

More information

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies. Department of Mechanical Engineering Massachusetts Institute of Technology 2.14 Analysis and Design of Feedback Control Systems Fall 2004 October 21, 2004 Case Study on Ship Roll Control Problem Statement:

More information

Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments

Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments Vessel Modification and Hull Maintenance Considerations Options & Pay Back Period or Return On Investments By Dag Friis Christian Knapp Bob McGrath Ocean Engineering Research Centre MUN Engineering 1 Overview:

More information

Serenity Houseboat. Standard Operating Procedures for:

Serenity Houseboat. Standard Operating Procedures for: Serenity Houseboat Standard Operating Procedures for: Docking I. Safety a. Never get between the houseboat and the dock or other larger object. b. Always wear PFDs during docking. c. Always wear snug fitting,

More information

Abstract. Introduction

Abstract. Introduction Computer assisted analysis of Aviles Port extension: hydraulic conditions, navigation and training of pilots J.R. Iribarren & J.M. Montero Port Research Program, CEPYC-CEDEX, Antonio Lopez, 81. 28026 Madrid,

More information

Tug regulations Port of Gothenburg 01/07/2018

Tug regulations Port of Gothenburg 01/07/2018 THE PORT OF SCANDINAVIA Tug regulations Port of Gothenburg 57 42 N 11 56 E Special tug regulations are in place at the Port of Gothenburg according to the Bye-Laws of Port of Gothenburg 20. The tug regulations

More information

PROJECT and MASTER THESES 2016/2017

PROJECT and MASTER THESES 2016/2017 PROJECT and MASTER THESES 2016/2017 Below you ll find proposed topics for project and master theses. Most of the proposed topics are just sketches. The detailed topics will be made in discussion between

More information

CHAPTER 132. Roundhead Stability of Berm Breakwaters

CHAPTER 132. Roundhead Stability of Berm Breakwaters CHAPTER 132 Roundhead Stability of Berm Breakwaters Jergen Juhl 1, Amir Alikham, Peter Sloth, Renata Archetti Abstract Three-dimensional (3D) model tests were carried out for studying the stability of

More information

New Vessel Fuel Efficient Design and Construction Considerations Medium and Long-Term Options

New Vessel Fuel Efficient Design and Construction Considerations Medium and Long-Term Options New Vessel Fuel Efficient Design and Construction Considerations Medium and Long-Term Options By Dag Friis Christian Knapp Bob McGrath Ocean Engineering Research Centre MUN Engineering Overview : Introduction

More information

ISAF International A Class Catamaran-Measurers Guide

ISAF International A Class Catamaran-Measurers Guide ISAF International A Class Catamaran-Measurers Guide All A Division Catamarans shall have a valid measurement form and for all yachts measured after 1 st May 2014, it shall be on the latest style form

More information

An Investigation into the Capsizing Accident of a Pusher Tug Boat

An Investigation into the Capsizing Accident of a Pusher Tug Boat An Investigation into the Capsizing Accident of a Pusher Tug Boat Harukuni Taguchi, National Maritime Research Institute (NMRI) taguchi@nmri.go.jp Tomihiro Haraguchi, National Maritime Research Institute

More information

NEW BUILD - SB-ST 19 Steel Trawler Listing ID:

NEW BUILD - SB-ST 19 Steel Trawler Listing ID: Australia - Great Britain - Indonesia - New Zealand - Philippines - Thailand - USA E: sales@seaboats.net (sales) - E: admin@seaboats.net (accounts) NEW BUILD - SB-ST 19 Steel Trawler Listing ID: 411473

More information

TECHNICAL INFORMATION BOLLARDPULL TRIALCODE. ForTugs with SteerpropPropulsion. Steerprop

TECHNICAL INFORMATION BOLLARDPULL TRIALCODE. ForTugs with SteerpropPropulsion. Steerprop TECHNICAL INFORMATION BOLLARDPULL TRIALCODE ForTugs with SteerpropPropulsion Steerprop A Skogman / 22 March 2001 BOLLARD PULL TRIAL CODE FOR TUGS This Bollard Pull Trial Code is established to define the

More information

WATER-FREE IOM MEASUREMENT IOMICA, 2005 March 4

WATER-FREE IOM MEASUREMENT IOMICA, 2005 March 4 WATER-FREE IOM MEASUREMENT IOMICA, 2005 March 4 The IOM has grown to become the most broadly accepted radio sailing class worldwide. To a large degree that success can be attributed to a strong set of

More information

INTERIM GUIDELINES FOR DETERMINING MINIMUM PROPULSION POWER TO MAINTAIN THE MANOEUVRABILITY OF SHIPS IN ADVERSE CONDITIONS

INTERIM GUIDELINES FOR DETERMINING MINIMUM PROPULSION POWER TO MAINTAIN THE MANOEUVRABILITY OF SHIPS IN ADVERSE CONDITIONS E 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: +44 (0)20 7735 7611 Fax: +44 (0)20 7587 3210 MSC-MEPC.2/Circ.11 3 December 2012 INTERIM GUIDELINES FOR DETERMINING MINIMUM PROPULSION POWER TO MAINTAIN THE

More information

AKHIL KARTHIKA AJITH

AKHIL KARTHIKA AJITH Structural design and Stability of a 6,000 ton Capacity Floating Dock as per DNVGL Rules AKHIL KARTHIKA AJITH 7 th EMship cycle: September 2016 February 2018 Master Thesis Development Of Flap Rudder Systems

More information

Christophe Simon May Engineered For Life At Sea

Christophe Simon May Engineered For Life At Sea Presentation for: Christophe Simon May 2011 Engineered For Life At Sea Jastram Engineering Wagner Engineering Located in North Vancouver Design and Manufacturing NFU and FFU steering systems Non Follow

More information

ICE LOADS MONITORING SYSTEMS

ICE LOADS MONITORING SYSTEMS Guide for Ice Loads Monitoring Systems GUIDE FOR ICE LOADS MONITORING SYSTEMS MAY 2011 American Bureau of Shipping Incorporated by Act of Legislature of the State of New York 1862 Copyright 2011 American

More information

Title. Author(s)Yabuki, Hideo; Yoshimura, Yasuo; Ishiguro, Tsuyoshi; Issue Date Doc URL. Type. File Information

Title. Author(s)Yabuki, Hideo; Yoshimura, Yasuo; Ishiguro, Tsuyoshi; Issue Date Doc URL. Type. File Information Title Turning motion of a ship with single C and single Author(s)Yabuki, Hideo; Yoshimura, Yasuo; Ishiguro, Tsuyoshi; MARSIM 6 : International Conference on Marine Sim CitationNetherlands, June 5-3, 6

More information

Guidance for Ships for Navigation in Ice

Guidance for Ships for Navigation in Ice 2017 Guidance for Ships for Navigation in Ice GC-14-E KR APPLICATION OF "GUIDANCE FOR SHIPS FOR NAVIGATION IN ICE" 1. Unless expressly specified otherwise, the requirements in the Guidance apply to ships

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 11 Table of Contents... 2 1. PURPOSE... 2 2. TERMS AND DEFINITIONS... 2 3. RESPONSIBILITIES... 3 4. ANALYSIS PROCEDURE... 3 4.1 Measured and observed data prior to the trials... 3 4.2 Data on

More information

Voith Water Tractor Improved Manoeuvrability and Seakeeping Behaviour

Voith Water Tractor Improved Manoeuvrability and Seakeeping Behaviour Amsterdam, The Netherlands Organised by the ABR Company Ltd Day Paper No. 2 9 Voith Water Tractor Improved Manoeuvrability and Seakeeping Behaviour Dr Dirk Jürgens and Michael Palm, Voith Turbo Schneider

More information

International Journal of Offshore and Coastal Engineering Vol.1 No. 1 pp August 2017 e-issn: Department of Ocean Engineering ITS

International Journal of Offshore and Coastal Engineering Vol.1 No. 1 pp August 2017 e-issn: Department of Ocean Engineering ITS International Journal of Offshore and Coastal Engineering Vol.1 No. 1 pp. 16 21 August 2017 e-issn: 2580-0914 2017 Department of Ocean Engineering ITS Submitted: December 12, 2016 Revised: March 13, 2017

More information

THE USE OF A VERTICAL BOW FIN FOR THE COMBINED ROLL AND YAW STABILIZATION OF A FAST PATROL BOAT

THE USE OF A VERTICAL BOW FIN FOR THE COMBINED ROLL AND YAW STABILIZATION OF A FAST PATROL BOAT THE USE OF A VERTICAL BOW FIN FOR THE COMBINED ROLL AND YAW STABILIZATION OF A FAST PATROL BOAT J Alexander Keuning, Shiphydromechanics Department, Delft University of Technology, Netherlands Guido L Visch,

More information

Seakeeping Tests (with ships) Experimental Methods in Marine Hydrodynamics Lecture in week 43

Seakeeping Tests (with ships) Experimental Methods in Marine Hydrodynamics Lecture in week 43 Seakeeping Tests (with ships) Experimental Methods in Marine Hydrodynamics Lecture in week 43 1 Topics Why do seakeeping tests? What to do? Activities Details of model test set-up and instrumentation Waves

More information

ITTC - Recommended Procedures and Guidelines

ITTC - Recommended Procedures and Guidelines 7.5 Page 1 of 5 Table of Contents 1. PURPOSE OF PROCEDURE... 2 2. DESCRIPTION OF PROCEDURE... 2 4. DOCUMENTATION... 4 5. REFERENCES... 4 3. PARAMETERS... 4 Updated by Approved Manoeuvring Committee of

More information

05 Boat Handling. Captain

05 Boat Handling. Captain 05 Boat Handling Competence (Skills) Knowledge, Understanding and Proficiency Level Required Boat handling theory and techniques Coxswain Crew RQ RQ Describe the forces acting on a vessel while manoeuvering

More information

Methodology for Controlling the Ship s Path during the Turn in Confined Waterways

Methodology for Controlling the Ship s Path during the Turn in Confined Waterways 28 Scientific Journal of Maritime Research 32 (2018) 28-35 Faculty of Maritime Studies Rijeka, 2018 Multidisciplinary SCIENTIFIC JOURNAL OF MARITIME RESEARCH Multidisciplinarni znanstveni časopis POMORSTVO

More information

ABP South Wales and River Usk Towage Guidelines

ABP South Wales and River Usk Towage Guidelines Date of issue: Jan 2012 ABP South Wales and River Usk wage January 2012 Page 1 of 17 Approved by: Deputy Harbour Master South Wales Issue 1.0 Date of issue: Jan 2012 AMENDMENTS Amendment issue number Page

More information

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Proceedings of COBEM 2009 Copyright 2009 by ABCM 20th International Congress of Mechanical Engineering November 15-20, 2009, Gramado, RS, Brazil INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Helena

More information

ISO INTERNATIONAL STANDARD. Small craft Hull construction and scantlings Part 8: Rudders

ISO INTERNATIONAL STANDARD. Small craft Hull construction and scantlings Part 8: Rudders INTERNATIONAL STANDARD ISO 12215-8 First edition 2009-05-15 Small craft Hull construction and scantlings Part 8: Rudders Petits navires Construction de coques et échantillonnage Partie 8: Gouvernails Reference

More information

IMO REVISION OF THE INTACT STABILITY CODE. Proposal of methodology of direct assessment for stability under dead ship condition. Submitted by Japan

IMO REVISION OF THE INTACT STABILITY CODE. Proposal of methodology of direct assessment for stability under dead ship condition. Submitted by Japan INTERNATIONAL MARITIME ORGANIZATION E IMO SUB-COMMITTEE ON STABILITY AND LOAD LINES AND ON FISHING VESSELS SAFETY 49th session Agenda item 5 SLF 49/5/5 19 May 2006 Original: ENGLISH REVISION OF THE INTACT

More information

New Hydrodynamic Aspects of Double Ended Ferries with Voith- Schneider Propeller Dirk Jürgens, Voith Schiffstechnik Rainer Grabert, SVA Potsdam

New Hydrodynamic Aspects of Double Ended Ferries with Voith- Schneider Propeller Dirk Jürgens, Voith Schiffstechnik Rainer Grabert, SVA Potsdam New Hydrodynamic Aspects of Double Ended Ferries with Voith- Schneider Propeller Dirk Jürgens, Voith Schiffstechnik Rainer Grabert, SVA Potsdam 1. Introduction Voith-Schneider propellers (VSP) have proved

More information

FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS

FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS 87 CHAPTER-4 FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS 88 CHAPTER-4 FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS

More information

Advanced Helm Techniques

Advanced Helm Techniques Advanced Helm Techniques Contents Overview... 2 1. CRV Handling Guidelines... 2 1.1. General Rules on Trim... 3 2. Factors Affecting CRV Handling... 3 2.1 Hull Design... 3 2.2 Propeller Drive... 4 2.3

More information

Joint Industry Project (JIP) Shaft Dynamic Loads and Responses at Extreme Maneuvering and Ventilation of Mechanical Azimuthing Thrusters

Joint Industry Project (JIP) Shaft Dynamic Loads and Responses at Extreme Maneuvering and Ventilation of Mechanical Azimuthing Thrusters Joint Industry Project (JIP) Shaft Dynamic Loads and Responses at Extreme Maneuvering and Ventilation of Mechanical Azimuthing Thrusters Page 1 Contents 1.0 Background... 3 2.0 SHARES JIP Objectives...

More information

Part 1: General principles

Part 1: General principles Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO 19030-1 First edition 2016-11-15 Ships and marine technology Measurement of changes in hull and propeller performance Part 1: General principles

More information

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT 531 CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT Toru KATAYAMA, Graduate School of Engineering, Osaka Prefecture University (Japan) Kentarou TAMURA, Universal Shipbuilding Corporation (Japan) Yoshiho

More information

Krzysztof Patalong. Master Thesis

Krzysztof Patalong. Master Thesis STANDARD MANOEUVRES SIMULATION OF A FISHING VESSEL Master Thesis developed at "Dunărea de Jos" University, Galaţi in the framework of the EMSHIP Erasmus Mundus Master Course in Integrated Advanced Ship

More information

THE SHIPHANDLER'S GUIDE

THE SHIPHANDLER'S GUIDE THE SHIPHANDLER'S GUIDE CONTENTS Page Chapter One General and Introduction to the Pivot Point... 11 Chapter Two Slow Speed Control... 16 Chapter Three Transverse Thrust... 23 Chapter Four Turning... 27

More information

Rule 8 - Action to avoid collision

Rule 8 - Action to avoid collision a) Any action to avoid collision shall be taken in accordance with the Rules of this Part and shall, if the circumstances of the case admit, be positive, made in ample time and with due regard to the observance

More information

Velocity spectrum and blade s deformation of horizontal axis wind turbines

Velocity spectrum and blade s deformation of horizontal axis wind turbines Velocity spectrum and blade s deformation of horizontal axis wind turbines Sanda BUDEA*,1, Mircea Dimitrie CAZACU 1 *Corresponding author *,1 POLITEHNICA University of Bucharest, Faculty of Energetics,

More information

Analysis of Shear Lag in Steel Angle Connectors

Analysis of Shear Lag in Steel Angle Connectors University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2013 Analysis of Shear Lag in Steel Angle Connectors Benjamin Sawyer

More information

Chapter 1 Boat systems

Chapter 1 Boat systems Chapter 1 Boat systems Hulls Two common types of boating hulls, displacement and planing, are shown in Figure 5.1. A displacement hull is a type of hull that ploughs through the water, displacing a weight

More information

AZIPILOT. Intuitive operation and pilot training when using marine azimuthing control devices. Deliverable 2.3:

AZIPILOT. Intuitive operation and pilot training when using marine azimuthing control devices. Deliverable 2.3: Intuitive operation and pilot training when using marine azimuthing control devices AZIPILOT Report Title: Deliverable.3: Review of ability to simulate azimuthing device interactions No part of this document

More information

Rules Practice Exam 11

Rules Practice Exam 11 1 BOTH INTERNATIONAL & INLAND While underway in fog, you hear a vessel sound one prolonged blast followed by two short blasts on the whistle. What does this signal indicate? A. A vessel towing B. A vessel

More information

EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER

EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER EXPERIMENTAL MEASUREMENT OF THE WASH CHARACTERISTICS OF A FAST DISPLACEMENT CATAMARAN IN DEEP WATER A.F. Molland, P.A. Wilson and D.J. Taunton Ship Science Report No. 124 University of Southampton December

More information

ESCORT TUG DESIGN ALTERNATIVES AND A COMPARISON OF THEIR HYDRODYNAMIC PERFORMANCE

ESCORT TUG DESIGN ALTERNATIVES AND A COMPARISON OF THEIR HYDRODYNAMIC PERFORMANCE ESCORT TUG DESIGN ALTERNATIVES AND A COMPARISON OF THEIR HYDRODYNAMIC PERFORMANCE Robert G. Allan, (FL), President, Robert Allan Ltd. & David Molyneux, (M), National Research Council of Canada ABSTRACT

More information

Emergency Response Plan

Emergency Response Plan Emergency Response Plan 1. Emergency Steering Gear Failure at sea 2. Application Shorebased Organisation All ships prepared: approved: released: Revision 0 HLS Management 2006-11-27 Emergency Response

More information

Wind loads investigations of HAWT with wind tunnel tests and site measurements

Wind loads investigations of HAWT with wind tunnel tests and site measurements loads investigations of HAWT with wind tunnel tests and site measurements Shigeto HIRAI, Senior Researcher, Nagasaki R&D Center, Technical Headquarters, MITSUBISHI HEAVY INDSUTRIES, LTD, Fukahori, Nagasaki,

More information

12 BOAT HANDLING & HEAVY WEATHER

12 BOAT HANDLING & HEAVY WEATHER 12 BOAT HANDLING & HEAVY WEATHER Overview... 243 Small Vessel Design... 244 Hull Design... 244 Displacement Hull... 244 Planing Hull... 245 Semi Displacement Hull... 245 Basic Hull Forms (planing)... 246

More information